首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gao Q  Yuan XG  Li XY  Lu Y  Xia Q 《中国应用生理学杂志》2010,26(4):450-2, 480
目的:观察降钙素基因相关肽(CGRP)在离体大鼠心肌缺血后处理保护中的作用。方法:采用离体大鼠全心停灌心肌缺血复灌模型。测定心室动力学指标、复灌各时间点冠脉流出液中乳酸脱氢酶(LDH)含量和心肌组织formazan含量的变化。结果:与缺血/复灌组相比,缺血后处理组明显增加心脏formazan含量,降低冠脉流出液中LDH含量,促进左室发展压、左室做功和冠脉流量的恢复。CGRP受体阻断剂CGRP-(8-37)和线粒体ATP敏感性钾通道阻断剂5-HD均减弱了缺血后处理的作用,且CGRP-(8-37)阻断了线粒体ATP敏感性钾通道开放剂Diaz的心肌保护作用。结论:缺血后处理可能通过促进线粒体ATP敏感性钾通道的开放,引起内源性降钙素基因相关肽的释放发挥心肌保护作用。  相似文献   

2.
M J Twery  R L Moss 《Peptides》1985,6(3):373-378
Individual neurons in the hypothalamus, thalamus, cortex, and other forebrain areas of urethane-anesthetized, male rats were iontophoretically tested for their membrane sensitivity to salmon calcitonin (CT), human CT, and CT gene-related peptide (CGRP). Extracellular recording of unit activity revealed that depression of neuronal firing was the predominant effect of iontophoretically applied salmon CT (35 of 74 cells tested). Few neurons responded to salmon CT with an increase in firing rate (N = 3). When CGRP was iontophoretically applied a pattern of response resembling that of salmon CT was observed. CGRP was predominantly inhibitory and excited those neurons whose firing rate was increased by salmon CT. Inhibition was also the predominant effect of human CT. However, no neurons were excited by human CT. The results clearly demonstrate that a subpopulation of neurons with membrane sensitivity to salmon CT, human CT, and CGRP are present in the rat forebrain. This finding suggests that modulation of neuronal activity may underlie the behavioral and biochemical effects of these peptides when administered centrally. Endogenous CGRP and CT-like peptides in rat brain may be capable of regulating these events as neurotransmitters or neuromodulators.  相似文献   

3.
The effects of intracerebroventricular (ICV) and intrathecal (IT) administration of calcitonin gene-related peptide (CGRP) on intestinal motility were examined in conscious rats chronically fitted with intraparietal electrodes in the duodeno-jejunum and a cannula in a cerebral lateral ventricle or catheter in the subarachnoid space. ICV administration of CGRP (0.5–10 μg) restores the fasted pattern of intestinal motility in fed rats in a dose-related manner. Intrathecal administration of CGRP or calcitonin also induces fasted pattern but after a 30 min delay. These effects persisted after transection of the spinal cord and no change in intestinal motility appeared after intravenous administration of CGRP at a dose effective when given IT. This study suggests that CGRP, as calcitonin, has a neuromodulatory role in the control of intestinal motility at both brain and spinal cord levels.  相似文献   

4.
Summary We found cells with calcitonin gene-related peptide-like immunoreactivity and with many cored vesicles in the secretory portions of sweat glands of rat foot pads. About 10% of sweat glands contained single immunoreactive cells. The immunoreactive cells were flaskshaped, with a narrow apex facing the glandular lumen and the bulk of the cell body in the basal half of the glandular wall. In the cytoplasm, there were many vesicles, 100–250 nm in diameter, with cores of various electron densities. These cytochemical and cytological characteristics suggest that the immunoreactive cells are homologous to gastrointestinal basal granulated cells.  相似文献   

5.
Calcitonin gene-related peptide and its receptor in the thymus   总被引:2,自引:0,他引:2  
Calcitonin gene-related peptide (CGRP), a 37-amino acid residue neuropeptide, was immunostained in rat thymus at two sites: a subpopulation of thymic epithelial cells, namely subcapsular/perivascular cells, were heavily stained besides some nerve fibers surrounding arteries and arterioles. The administration of nanomolar concentrations of rat -CGRP dose-dependently raised intracellular cyclic adenosine monophosphate (cAMP) levels in isolated rat thymocytes (half-maximum stimulation 1 nM) but not in cultured rat thymic epithelial cells. Peptides structurally related to CGRP (i.e., rat calcitonin or amylin) had no effect. CGRP(8–37), an N-terminally truncated form, acted as an antagonist. Peripheral blood lymphocytes did not respond to CGRP, suggesting that receptors are present only on a subpopulation of thymocytes but not on mature T cells. This was substantiated by visualization of CGRP receptors on single cells by use of CGRP-gold and -biotin conjugates of established biological activity: only a small proportion of isolated thymocytes was surface labeled. In situ, the CGRP conjugates labeled receptors on large thymocytes residing in the outer cortical region of rat thymus pseudolobules. Thus, immunoreactive CGRP is found in subcapsular/perivascular thymic epithelial cells and acts via specific CGRP receptors on thymocytes by raising their intracellular cAMP level. It is suggested that CGRP is a paracrine thymic mediator that might influence the differentiation, maturation, and proliferation of thymocytes.  相似文献   

6.
This review focuses on the evolutionary and functional relationship of calcitonin receptor-stimulating peptide (CRSP) with calcitonin (CT)/calcitonin gene-related peptide (CGRP) in mammals. CRSP shows high sequence identity with CGRP, but distinct biological properties. CRSP genes (CRSPs) have been identified in mammals such as pigs and dogs of the Laurasiatheria, but not in primates and rodents of the Euarchontoglires or in non-placental mammals. CRSPs have genomic organizations highly similar to those of CT/CGRP genes (CT/CGRPs), which are located along with CGRPs in a locus between CYP2R1 and INSC, while the other members of the CGRP superfamily, adrenomedullin and amylin, show genomic organizations and locations distinct from CT, CGRP, and CRSP. Thus, we categorized these three peptides into the CT/CGRP/CRSP family. Non-placental mammals having one and placental mammals having multiple CT/CGRP/CRSP family genes suggests that multiplicity of CT/CGRP started at an early stage of mammalian evolution. In the placental mammals, Laurasiatheria generally possesses multiple CRSPs and only one CT/CGRP, while Euarchontoglires possesses CT/CGRP and CGRPβ but no CRSP, indicating an increase in the diversity and multiplicity of this family of genes in mammalian evolution. Phylogenetic analysis suggests that some CRSPs have been generated very recently in mammalian evolution. Taken together, the increase in the number and complexity of the CT/CGRP/CRSP family genes may have due to evolutionary pressure to facilitate adaptation during mammalian evolution. In this regard, it is important to elucidate the physiological roles of CT, CGRP and CRSP from the viewpoint of the CT/CGRP/CRSP family even in Euarchontoglires.  相似文献   

7.
Calcitonin gene-related peptide (CGRP) occurs only in some motoneurons. In this study, the presence of CGRP in motor endplates in relation to muscle fibre types was examined in slow (soleus muscle) and fast [tibialis anterior (TA) and extensor digitorum longus (EDL)] leg muscles of the rat. CGRP was detected by use of immunohistochemical methods, and staining for the mitochondrial-bound enzyme NADH-TR was used for demonstration of fibre types. The fibres showing low NADH-TR activity were interpreted as representing IIB fibres. All such fibres located in the superficial portion of TA were innervated by endplates displaying CGRP-like immunoreactivity (LI), whereas in the deep portion of TA some of these fibres lacked CGRP-LI at their endplates. Thirty per cent of the IIB fibres in EDL showed CGRP-LI at the endplates. All fibres in TA and EDL displaying high NADH-TR activity and interpreted as type-IIA fibres, lacked CGRP-LI in their motor innervation. One third of the fibres with intermediate NADH-TR activity in TA exhibited CGRP-LI at their endplates, whereas in EDL only few such fibres displayed CGRP-LI in the endplate formation. These fibres are likely to belong to type-IIX or type-I motor units. CGRP-LI was very rarely detected at the endplates in the soleus muscle. These observations show that distinct differences exist between the slow muscle, soleus, and the fast muscles, TA and EDL, but that there are also differences between the different types of fibres in TA and EDL with respect to presence of CGRP-LI at the endplates. As CGRP-LI was frequently detected at endplates of IIB fibres, it is likely that CGRP has a particular role related to the differentiation and maintenance of these fibres.  相似文献   

8.
Cortistatin (CST) is an endogenous neuropeptide bearing strong structural and functional analogies with somatostatin (SST). Gene expression of CST and its putative receptor MrgX2 in dorsal root ganglia (DRG) neurons in man suggests the involvement of CST in pain transmission. In this study we have investigated the effects of CST and SST on calcitonin gene-related peptide (CGRP, the main neuropeptide mediator of pain transmission) from primary cultures of rat trigeminal neurons. Moreover, here for the first time we used organotypic cultures of rat brainstem to investigate the release of CGRP form nucleus caudalis as a model of pre-synaptic peptide release. In both experimental paradigm CGRP release was evaluated in the presence of CST or SST, with or without the addition of known secretagogues (namely high KCl concentrations, veratridine and capsaicin). We found that CST and SST do not modify basal CGRP secretion from trigeminal neurons, but both peptides were able to inhibit in a concentration-dependent manner the release of CGRP stimulated by KCl, veratridine or capsaicin. Likewise, in brainstem organotypic cultures CST and SST did not modify baseline CGRP secretion. Of the secretagogues used, capsaicin proved to be most effective compared to KCl and veratridine (8-fold vs 2-fold increase, respectively). Thereafter, CST and SST were tested on capsaicin-stimulated CGPR release only. Under these conditions, CST but not SST was able to inhibit in a significant manner pre-synaptic CGRP release from the brainstem, providing further evidence in support of a role for CST in pain transmission.  相似文献   

9.
Calcitonin gene-related peptide (CGRP) in the female rat urogenital tract   总被引:1,自引:0,他引:1  
CGRP-immunoreactivity was found throughout the female rat urogenital tract by specific radioimmunoassay, and shown to be present in nerve fibres by immunocytochemistry. The highest concentrations of CGRP-like immunoreactivity were found in the urinary tract, with lower levels in regions of the genitalia. Chromatographic analysis of bladder and vaginal extracts on Sephadex G-50 columns and HPLC revealed at least three CGRP-immunoreactive peaks. The major peak emerged in the same position as synthetic rat CGRP. CGRP nerve fibres were associated mainly with blood vessels, non-vascular smooth muscle, squamous epithelium and uterine and cervical glands, and were particularly abundant in the ureter and bladder. CGRP-immunoreactivity was depleted by neonatal treatment with capsaicin and after surgical section of pelvic and/or hypogastric nerves. Immunocytochemistry demonstrated that depletion occurred predominantly in the mucosal layer of the urogenital tract. These findings indicate a sensory function for most of the CGRP-immunoreactive nerves in the rat urogenital tract.  相似文献   

10.
11.
Summary Calcitonin gene-related peptide-immunoreactive cells were identified within the epithelium of distal conducting airways in the human fetus and infant. Several peptides and amines, including calcitonin, have been identified previously within a specific population of airway epithelial cells. These cells, referred to as pulmonary neuroendocrine cells, are postulated to be airway chemoreceptors responsible for changes in ventilation and perfusion in response to changes in airway gas composition. Calcitonin gene-related peptide immunoreactive cells could be identified throughout the period of development studies (20 weeks gestation to 3 months of age), but were present in only limited numbers in less than 50% of individuals (n=23). In contrast, large numbers of calcitonin gene-related peptide immunoreactive cells were identified in 100% of infants (1–3 months, n=5) with bronchopulmonary dysplasia. The differential processing of mRNA transcribed from the calcitonin gene in neural and non-neural tissue suggests that calcitonin, rather than calcitonin gene-related peptide, is the primary product of translation in pulmonary neuroendocrine cells. However, considering the potent vasodilatory and bronchoconstrictive effects of calcitonin gene-related peptide, its presence in pulmonary neuroendocrine cells, even in small amounts, may be important in controlling pulmonary vaso- and/or bronchomotor tone. The presence of large numbers of calcitonin gene-related peptide immunoreactive cells in infants with bronchopulmonary dysplasia suggests that calcitonin gene-related peptide may be one further agent contributing to the pulmonary pathophysiology seen in this disease.  相似文献   

12.
Summary The distribution of calcitonin gene-related peptide-immunoreactive nerve fibers in the renal pelvis and ureter was examined by immunohistochemistry using whole-mount preparations and cryostat sections. The patterns of innervation were contrasted between the pelvis and ureter; the immunoreactive nerve fibers in the pelvis ran parallel to the long axis of each of the circular and longitudinal muscle layers, causing a lattice-like appearance of the nerve fibers. In the ureter, the immunoreactive fibers were accumulated in the subepithelial region and the longitudinal muscle. In both the pelvis and ureter, a portion of the nerve fibers of smaller caliber showed a swollen or beaded structure; they were located in the musculature and beneath the epithelium extending for considerable distances. Ligation of the ureter caused a marked decrease in the immunoreactive nerves in the pelvis and the proximal portion of the ureter, suggesting that the axonal flow in the calcitonin gene-related peptide-containing neurons of the ureter runs towards the pelvis.  相似文献   

13.
Immunohistochemical and radioimmunoassay studies revealed that both CGRP- and SP-like immunoreactivity in the caudal spinal trigeminal nucleus and tract, the substantia gelatinosa and the dorsal cervical spinal cord as well as in cell bodies of the trigeminal ganglion and the spinal dorsal root ganglion is markedly depleted by capsaicin which is known to cause degeneration of a certain number of primary sensory neurons. Higher brain areas and the ventral spinal cord were not affected by capsaicin treatment. Furthermore CGRP and substance P-like immunoreactivity were shown to be colocalized in the above areas and to coexist in cell bodies of the trigeminal ganglion and the spinal dorsal root ganglia. It is suggested that CGRP, like substance P, may have a neuromodulatory role on nociception and peripheral cardiovascular reflexes.  相似文献   

14.
With the use of an antiserum generated in rabbits against synthetic human calcitonin gene-related peptide (CGRP) the distribution of CGRP-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system. A detailed stereotaxic atlas of CGRP-like neurons was prepared. CGRP-like immunoreactivity was widely distributed in the rat central nervous system. CGRP positive cell bodies were observed in the preoptic area and hypothalamus (medial preoptic, periventricular, anterior hypothalamic nuclei, perifornical area, medial forebrain bundle), premamillary nucleus, amygdala medialis, hippocampus and dentate gyrus, central gray and the ventromedial nucleus of the thalamus. In the midbrain a large cluster of cells was contained in the peripeduncular area ventral to the medial geniculate body. In the hindbrain cholinergic motor nuclei (III, IV, V, VI, VII XII) contained CGRP-immunoreactivity. Cell bodies were also observed in the ventral tegmental nucleus, the parabrachial nuclei, superior olive and nucleus ambiguus. The ventral horn cells of the spinal cord, the trigeminal and dorsal root ganglia also contained CGRP-immunoreactivity. Dense accumulations of fibers were observed in the amydala centralis, caudal portion of the caudate putamen, sensory trigeminal area, substantia gelatinosa, dorsal horn of the spinal cord (laminae I and II). Other areas containing CGRP-immunoreactive fibers are the septal area, nucleus of the stria terminalis, preoptic and hypothalamic nuclei (e.g., medial preoptic, periventricular, dorsomedial, median eminence), medial forebrain bundle, central gray, medial geniculate body, peripeduncular area, interpeduncular nucleus, cochlear nucleus, parabrachial nuclei, superior olive, nucleus tractus solitarii, and in the confines of clusters of cell bodies. Some fibers were also noted in the anterior and posterior pituitary and the sensory ganglia. As with other newly described brain neuropeptides it can only be conjectured that CGRP has a neuroregulatory action on a variety of functions throughout the brain and spinal cord.  相似文献   

15.
Using autoradiographic method and 125I-Tyro rat CGRP as a ligand, receptor binding sites were demonstrated in the rat central nervous system. Saturation studies and Scatchard analysis of CGRP-binding to slide mounted tissue sections containing primarily cerebellum showed a single class of receptors with a dissociation constant of 0.96 nM and a Bmax of 76.4 fmol/mg protein. 125I-Tyro rat CGRP binding sites were demonstrated throughout the rat central nervous system. Dense binding was observed in the telencephalon (medial prefrontal, insular and outer layers of the temporal cortex, nucleus accumbens, fundus striatum, central and inferior lateral amygdaloid nuclei, most caudal caudate putamen, organum vasculosum laminae terminalis, subfornical organ), the diencephalon (anterior hypothalamic, suprachiasmatic, arcuate, paraventricular, dorsomedial, periventricular, reuniens, rhomboid, lateral thalamic pretectalis and habenula nuclei, zona incerta), in the mesencephalon (superficial layers of the superior colliculus, central nucleus of the geniculate body, inferior colliculus, nucleus of the fifth nerve, locus coeruleus, nucleus of the mesencephalic tract, the dorsal tegmental nucleus, superior olive), in the molecular layer of the cerebellum, in the medulla oblongata (inferior olive, nucleus tractus solitarii, nucleus commissuralis, nuclei of the tenth and twelfth nerves, the prepositus hypoglossal and the gracilis nuclei, dorsomedial part of the spinal trigeminal tract), in the dorsal gray matter of the spinal cord (laminae I-VI) and the confines of the central canal. Moderate receptor densities were found in the septal area, the "head" of the anterior caudate nucleus, medial amygdaloid and bed nucleus of the stria terminalis, the pyramidal layers of the hippocampus and dentate gyri, medial preoptic area, ventromedial nucleus, lateral hypothalamic and ventrolateral thalamic area, central gray, reticular part of the substantia nigra, parvocellular reticular nucleus. Purkinje cell layer of the cerebellum, nucleus of the spinal trigeminal tract and gracile fasciculus of the spinal cord. The discrete distribution of CGRP-like binding sites in a variety of sensory systems of the brain and spinal cord as well as in thalamic and hypothalamic areas suggests a widespread involvement of CGRP in a variety of brain functions.  相似文献   

16.
Calcitonin gene-related peptide (CGRP) is a 37 amino acid peptide recently demonstrated to be a peptide expressed by the calcitonin gene in the rat central nervous system. Intracerebroventricular administration of CGRP in pylorus ligated rats resulted in a dose dependent suppression of gastric acid secretion. This effect was also present in acutely vagotomized rats. In addition, CGRP inhibited the stimulation of gastric acid secretion by thyrotropin releasing hormone. CGRP was considerably less potent in its effect on gastric acid than calcitonin, a well known central inhibitor of gastric acid secretion in the rat. This study suggests that CGRP may be a factor in the central regulation of gastric acid secretion in the rat.  相似文献   

17.
Using an antiserum directed against human calcitonin gene-related peptide (hCGRP), which fully cross reacts with rat CGRP, a sensitive radioimmunoassay was developed. The antiserum was characterized by displacement curve characteristics and high performance liquid chromatography. The assay was applied to rat brain tissue and the concentration of CGRP for 48 microdissected brain areas is presented. Highest levels (1000–4500 fmol/mg protein) were found in the central amygdaloid, caudate putamen, and spinal trigeminal nerve nucleus and tract, substantia gelatinosa, and the dorsal horn of the spinal cord. Moderate levels (200–600 fmol/mg protein) were found in the bed nucleus of the stria terminalis, the subfornical organ, the paraventricular, arcuate, dorsomedial, dorsal parabrachial, ambiguus and tractus solitarii nuclei and in the median eminence. These results coincide with those previously obtained by immunohistochemistry. The widespread distribution in the brain suggests involvement of CGRP in a variety of behavioral functions.  相似文献   

18.
In order to evaluate the mode of action of calcitonin gene-related peptide (CGRP) on the neuroeffector mechanism of peripheral sympathetic nerve fibers, the effects of CGRP were tested on the electrical stimulated and the non-stimulated preparations of the isolated rat vas deferens. The contractile responses, which were mediated predominantly by activation of postganglionic noradrenergic nerve fibers, were dose-dependently inhibited by CGRP in concentrations ranging from 0.1 to 10 nM. The inhibitory response produced by CGRP in high concentrations (greater than 2 nM) usually returned to the control level at 20-30 min and were rarely tachyphylactic. The inhibitory action of CGRP was not modified by pretreatment with 10(-7) M propranolol or 10(-7) M atropine. Contractions produced by exogenous norepinephrine (NE) and 5-hydroxytryptamine (5-HT) in unstimulated preparations were not affected by pretreatment with CGRP in a low concentration (less than 2 nM). On the other hand, the contractions were slightly reduced 1 min after pretreatment with CGRP in high concentrations (greater than 5 nM), which recovered in 15 min after constant flow washout. High concentrations of CGRP also caused a concentration-dependent relaxation on the precontracted preparations produced by high potassium (60 mM K+) solution. These results suggest that CGRP in high concentrations (greater than 5 nM) may have a non-specific inhibitory action on the postsynaptic plasma membrane of the smooth muscle cell and a postulated CGRP receptor exists presynaptically in the rat vas deferens and that CGRP may inhibit the release of NE during adrenergic nerve stimulation.  相似文献   

19.
The rat medullary thyroid carcinoma cell line, CA-77, is known to express the calcitonin gene and the cell line has been used for characterization of procalcitonin. The present investigations concentrate on a molecular characterization of the calcitonin gene-related peptide (CGRP) expressed by a subclone of this cell line. The investigations demonstrate that this subclone produces significantly more CGRP compared to calcitonin. Gel chromatography of cell extracts demonstrates heterogeneity for both CGRP and calcitonin, but a significant amount of immunoreactivity elutes corresponding to the elution position for synthetic CGRP and calcitonin, respectively. The gel chromatogram for CGRP demonstrates four immunoreactive peaks with Kd of 0.42, 0.53, 0.68, and 0.85. The immunoreactive peak with Kd 0.42 elutes corresponding to synthetic rat CGRP. The four immunoreactive peaks were characterized by high pressure liquid chromatography followed by sequence analysis and mass spectrometry. The immunoreactive peak with Kd 0.42 was identified as rat -CGRP as was the peak with Kd 0.53. The peak with Kd 0.68 was identified as 19–37 rat -CGRP and the peak with Kd 0.85 as 28–37 rat -CGRP. In summary, we find that the CA-77 cell line expresses large quantities of normally processed amidated -CGRP and specific fragments thereof. However, the cell line does not express detectable levels of rat β-CGRP. The findings indicate that the CA-77 cell line can be useful for studies of calcitonin/CGRP gene expression.  相似文献   

20.
Summary Substance P and calcitonin gene-related peptide were immunohistochemically identified in axons innervating the cornea and the ureter of adult rats and pigeons. The two neuropeptides were similarly distributed in both species. Capsaicin pretreatment induced depletion of the immunoreactivity; this was quantitatively and qualitatively different in rats and pigeons. Topical application of capsaicin (1%) reduced the immunoreactivity in the cornea in both species by 50%. Systemic capsaicin treatment completely depleted both peptides from the corneal innervation of rats but reduced the peptide content only by 50% in the cornea of pigeons. In the ureter of rats, capsaicin pretreatment completely depleted the peptide immunoreactivity. In pigeons the peptide depletion was only complete in the outer longitudinal muscle layer. Whereas only a few immunoreactive fibres were observed in the circular muscle layer, about 50% of the peptide remained in the inner longitudinal muscle layer. The results demonstrate that peptidergic afferents in the cornea and ureter of pigeons are sensitive to capsaicin, although birds do not show nociceptive responses to local administration of the drug. The long-term depletion of substance P and calcitonin gene-related peptide by capsaicin is discussed with regard to the possibility that functionally capsaicin receptors may exist in the axon but not at nerve endings.Part of the thesis of Gerhard Harti, to be presented to the Fachbereich Biologie, Justus-Liebig-Universität, Giessen  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号