首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wolverton T  Lalande M 《Genomics》2001,76(1-3):66-72
Protocadherins are members of a nonclassic subfamily of calcium-dependent cell-cell adhesion molecules in the cadherin superfamily. Although the extracellular domains have several common structural features, there is no extensive homology between the cytoplasmic domains of protocadherin subfamily members. We have identified a new subclass of protocadherins based on a shared and highly conserved 17-amino-acid cytoplasmic motif. The subclass currently consists of 18 protocadherin members. Two of these, PCDH18 and PCDH19, are novel protocadherins and a third is the human orthologue of mouse Pcdh10. All three genes encode six ectodomain repeats with cadherin-like attributes and, consistent with the structural characteristics of protocadherins, a large first exon encodes the extracellular domain of each gene.  相似文献   

3.
4.
5.
The clustered protocadherins are a subfamily of neuronal cell adhesion molecules that play an important role in development of the nervous systems in vertebrates. The clustered protocadherin genes exhibit complex expression patterns in the central nervous system. In this study, we have investigated the molecular mechanism underlying neuronal expression of protocadherin genes using the protocadherin gene cluster in fugu as a model. By in silico prediction, we identified multiple neuron-restrictive silencer elements (NRSEs) scattered in the fugu protocadherin cluster and demonstrated that these elements bind specifically to NRSF/REST in vitro and in vivo. By using a transgenic Xenopus approach, we show that these NRSEs regulate neuronal specificity of protocadherin promoters by suppressing their activity in non-neuronal tissues. We provide evidence that protocadherin genes that do not contain an NRSE in their 5′ intergenic region are regulated by NRSEs in the regulatory region of their neighboring genes. We also show that protocadherin clusters in other vertebrates such as elephant shark, zebrafish, coelacanth, lizard, mouse and human, contain different sets of multiple NRSEs. Taken together, our data suggest that the neuronal specificity of protocadherin cluster genes in vertebrates is regulated by the NRSE-NRSF/REST system.  相似文献   

6.
7.
8.
Takei Y  Hamada S  Senzaki K  Mutoh T  Sugino H  Yagi T 《Genomics》2001,72(3):321-330
Cadherin-related neuronal receptor (CNR) family proteins are known as synaptic cadherins and Reelin receptors. Here we have identified two novel mouse CNR genes, CNRc1 and CNRc2, orthologues of human protocadherin (Pcdh) alpha-c1 and Pcdhalpha-c2, respectively. While the variable large exons of CNRc1 and c2 contain six conserved extracellular cadherin repeats (EC1-6) and are linked to the constant exons, both contain several molecular features distinct from CNR1-8. CNRc1 and c2 lack the Arg-Gly-Asp (RGD) sequence that is conserved in the EC1 of CNR1-8, which is necessary for binding to Reelin. The present studies confirm that CNRc1 and c2 failed to immunoprecipitate with Reelin. In addition, the regulation of novel CNR expression patterns during brain development is slightly different from that of CNR1. The identification of these new CNR genes characterized by their distinct extracellular function and expression is indicative of the novel diversity of the processes of brain structuring and synapse regulation.  相似文献   

9.
10.
Regions of extensive linkage disequilibrium (LD) appear to be a common feature of the human genome. However, the mechanisms that maintain these regions are unknown. In an effort to understand whether gene density contributes to LD, we determined the degree of promoter sequence variation in a large tandem-arrayed gene family, the human protocadherin alpha cluster, on chromosome 5. These genes are expressed at synaptic junctions in the developing brain and the adult brain and may be involved in the determination of synaptic complexity. We sequenced the promoters of all 13 alpha protocadherin genes in 96 European Americans and identified polymorphisms in the promoters alpha 1, alpha 3, alpha 4, alpha 5, alpha 7, alpha 9, alpha 11, and alpha 13. In these promoters, 11 common SNPs are in extensive LD, forming two 48-kb haplotypes of equal frequency, in this population, that extend from the alpha1 through alpha 7 genes. We sequenced these promoters in East Asians and African Americans, and we estimated haplotype frequencies and calculated LD statistics for all three populations. Our results indicate that, although extensive LD is an ancient feature of the alpha cluster, it has eroded over time. SNPs 3' of alpha 7 are involved in ancestral recombination events in all populations, and overall alpha-cluster LD is reduced in African Americans. We obtained significant positive values for Tajima's D test for all alpha promoter SNPs in Europeans (D=3.03) and East Asians (D=2.64), indicating an excess of intermediate-frequency variants, which is a signature of balancing selection. We also discovered a 16.7-kb deletion that truncates the alpha 8 gene and completely removes the alpha 9 and alpha 10 genes. This deletion appears in unaffected individuals from multiple populations, suggesting that a reduction in protocadherin gene number is not obviously deleterious.  相似文献   

11.
Antisense transcripts at the EMX2 locus in human and mouse   总被引:2,自引:0,他引:2  
  相似文献   

12.
Human chromosome 10q21-22 harbors USH1F in a region of conserved synteny to mouse chromosome 10. This region of mouse chromosome 10 contains Pcdh15, encoding a protocadherin gene that is mutated in ames waltzer and causes deafness and vestibular dysfunction. Here we report two mutations of protocadherin 15 (PCDH15) found in two families segregating Usher syndrome type 1F. A Northern blot probed with the PCDH15 cytoplasmic domain showed expression in the retina, consistent with its pathogenetic role in the retinitis pigmentosa associated with USH1F.  相似文献   

13.
14.
15.
16.
17.
Trichothecenes are mycotoxins produced by Trichoderma, Fusarium, and at least four other genera in the fungal order Hypocreales. Fusarium has a trichothecene biosynthetic gene (TRI) cluster that encodes transport and regulatory proteins as well as most enzymes required for the formation of the mycotoxins. However, little is known about trichothecene biosynthesis in the other genera. Here, we identify and characterize TRI gene orthologues (tri) in Trichoderma arundinaceum and Trichoderma brevicompactum. Our results indicate that both Trichoderma species have a tri cluster that consists of orthologues of seven genes present in the Fusarium TRI cluster. Organization of genes in the cluster is the same in the two Trichoderma species but differs from the organization in Fusarium. Sequence and functional analysis revealed that the gene (tri5) responsible for the first committed step in trichothecene biosynthesis is located outside the cluster in both Trichoderma species rather than inside the cluster as it is in Fusarium. Heterologous expression analysis revealed that two T. arundinaceum cluster genes (tri4 and tri11) differ in function from their Fusarium orthologues. The Tatri4-encoded enzyme catalyzes only three of the four oxygenation reactions catalyzed by the orthologous enzyme in Fusarium. The Tatri11-encoded enzyme catalyzes a completely different reaction (trichothecene C-4 hydroxylation) than the Fusarium orthologue (trichothecene C-15 hydroxylation). The results of this study indicate that although some characteristics of the tri/TRI cluster have been conserved during evolution of Trichoderma and Fusarium, the cluster has undergone marked changes, including gene loss and/or gain, gene rearrangement, and divergence of gene function.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号