首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By detecting spontaneous low-frequency fluctuations (LFF) of blood oxygen level–dependent (BOLD) signals, resting-state functional magnetic resonance imaging (rfMRI) measurements are believed to reflect spontaneous cerebral neural activity. Previous fMRI studies were focused on the examination of motor-related areas and little is known about the functional changes in the extra-motor areas in amyotrophic lateral sclerosis (ALS) patients. The aim of this study is to investigate functional cerebral abnormalities in ALS patients on a whole brain scale. Twenty ALS patients and twenty age- and sex-matched healthy volunteers were enrolled. Voxel-based analysis was used to characterize the alteration of amplitude of low frequency fluctuation (ALFF). Compared with the controls, the ALS patients showed significantly decreased ALFF in the visual cortex, fusiform gyri and right postcentral gyrus; and significantly increased ALFF in the left medial frontal gyrus, and in right inferior frontal areas after grey matter (GM) correction. Taking GM volume as covariates, the ALFF results were approximately consistent with those without GM correction. In addition, ALFF value in left medial frontal gyrus was negatively correlated with the rate of disease progression and duration. Decreased functional activity observed in the present study indicates the underlying deficits of the sensory processing system in ALS. Increased functional activity points to a compensatory mechanism. Our findings suggest that ALS is a multisystem disease other than merely motor dysfunction and provide evidence that alterations of ALFF in the frontal areas may be a special marker of ALS.  相似文献   

2.

Background

Previous studies have defined low-frequency, spatially consistent intrinsic connectivity networks (ICN) in resting functional magnetic resonance imaging (fMRI) data which reflect functional interactions among distinct brain areas. We sought to explore whether and how repeated migraine attacks influence intrinsic brain connectivity, as well as how activity in these networks correlates with clinical indicators of migraine.

Methods/Principal Findings

Resting-state fMRI data in twenty-three patients with migraines without aura (MwoA) and 23 age- and gender-matched healthy controls (HC) were analyzed using independent component analysis (ICA), in combination with a “dual-regression” technique to identify the group differences of three important pain-related networks [default mode network (DMN), bilateral central executive network (CEN), salience network (SN)] between the MwoA patients and HC. Compared with the HC, MwoA patients showed aberrant intrinsic connectivity within the bilateral CEN and SN, and greater connectivity between both the DMN and right CEN (rCEN) and the insula cortex - a critical region involving in pain processing. Furthermore, greater connectivity between both the DMN and rCEN and the insula correlated with duration of migraine.

Conclusions

Our findings may provide new insights into the characterization of migraine as a condition affecting brain activity in intrinsic connectivity networks. Moreover, the abnormalities may be the consequence of a persistent central neural system dysfunction, reflecting cumulative brain insults due to frequent ongoing migraine attacks.  相似文献   

3.
Resting-state functional magnetic resonance imaging (fMRI) has been used to detect the alterations of spontaneous neuronal activity in various neurological and neuropsychiatric diseases, but rarely in hemifacial spasm (HFS), a nervous system disorder. We used resting-state fMRI with regional homogeneity (ReHo) analysis to investigate changes in spontaneous brain activity of patients with HFS and to determine the relationship of these functional changes with clinical features. Thirty patients with HFS and 33 age-, sex-, and education-matched healthy controls were included in this study. Compared with controls, HFS patients had significantly decreased ReHo values in left middle frontal gyrus (MFG), left medial cingulate cortex (MCC), left lingual gyrus, right superior temporal gyrus (STG) and right precuneus; and increased ReHo values in left precentral gyrus, anterior cingulate cortex (ACC), right brainstem, and right cerebellum. Furthermore, the mean ReHo value in brainstem showed a positive correlation with the spasm severity (r = 0.404, p = 0.027), and the mean ReHo value in MFG was inversely related with spasm severity in HFS group (r = -0.398, p = 0.028). This study reveals that HFS is associated with abnormal spontaneous brain activity in brain regions most involved in motor control and blinking movement. The disturbances of spontaneous brain activity reflected by ReHo measurements may provide insights into the neurological pathophysiology of HFS.  相似文献   

4.
Subjective tinnitus is characterized by the perception of phantom sound without an external auditory stimulus. We hypothesized that abnormal functionally connected regions in the central nervous system might underlie the pathophysiology of chronic subjective tinnitus. Statistical significance of functional connectivity (FC) strength is affected by the regional autocorrelation coefficient (AC). In this study, we used resting-state functional MRI (fMRI) and measured regional mean FC strength (mean cross-correlation coefficient between a region and all other regions without taking into account the effect of AC (rGC) and with taking into account the effect of AC (rGCa) to elucidate brain regions related to tinnitus symptoms such as distress, depression and loudness. Consistent with previous studies, tinnitus loudness was not related to tinnitus-related distress and depressive state. Although both rGC and rGCa revealed similar brain regions where the values showed a statistically significant relationship with tinnitus-related symptoms, the regions for rGCa were more localized and more clearly delineated the regions related specifically to each symptom. The rGCa values in the bilateral rectus gyri were positively correlated and those in the bilateral anterior and middle cingulate gyri were negatively correlated with distress and depressive state. The rGCa values in the bilateral thalamus, the bilateral hippocampus, and the left caudate were positively correlated and those in the left medial superior frontal gyrus and the left posterior cingulate gyrus were negatively correlated with tinnitus loudness. These results suggest that distinct brain regions are responsible for tinnitus symptoms. The regions for distress and depressive state are known to be related to depression, while the regions for tinnitus loudness are known to be related to the default mode network and integration of multi-sensory information.  相似文献   

5.
Recent developments in graph theory have heightened the need for investigating the disruptions in the topological structure of functional brain network in major depressive disorder (MDD). In this study, we employed resting-state functional magnetic resonance imaging (fMRI) and graph theory to examine the whole-brain functional networks among 42 MDD patients and 42 healthy controls. Our results showed that compared with healthy controls, MDD patients showed higher local efficiency and modularity. Furthermore, MDD patients showed altered nodal centralities of many brain regions, including hippocampus, temporal cortex, anterior cingulate gyrus and dorsolateral prefrontal gyrus, mainly located in default mode network and cognitive control network. Together, our results suggested that MDD was associated with disruptions in the topological structure of functional brain networks, and provided new insights concerning the pathophysiological mechanisms of MDD.  相似文献   

6.

Background

Youth with conduct disorder (CD) not only inflict serious physical and psychological harm on others, but are also at greatly increased risk of sustaining injuries, developing depression or substance abuse, and engaging in criminal behaviors. The underlying neurobiological basis of CD remains unclear.

Objective

The present study investigated whether participants with CD have altered hemodynamic activity under resting-state conditions.

Methods

Eighteen medication-naïve boys with CD and 18 age- and sex- matched typically developing (TD) controls underwent functional magnetic resonance imaging (MRI) scans in the resting state. The amplitude of low-frequency fluctuations (ALFF) was measured and compared between the CD and TD groups.

Results

Compared with the TD participants, the CD participants showed lower ALFF in the bilateral amygdala/parahippocampus, right lingual gyrus, left cuneus and right insula. Higher ALFF was observed in the right fusiform gyrus and right thalamus in the CD participants compared to the TD group.

Conclusions

Youth with CD displayed widespread functional abnormalities in emotion-related and visual cortical regions in the resting state. These results suggest that deficits in the intrinsic activity of resting state networks may contribute to the etiology of CD.  相似文献   

7.
《Endocrine practice》2019,25(4):320-327
Objective: Previous neuroimaging studies have shown that diabetic retinopathy (DR) is accompanied by abnormal spontaneous brain activity. The purpose of the current study was to investigate changes in brain neural homogeneity in patients with DR using regional homogeneity (ReHo).Methods: A total of 56 subjects were recruited, including 28 patients with DR (16 female and 12 male patients) and 28 healthy controls (HCs) (16 female and 12 male patients) approximately matched for age and sex. All subjects underwent resting-state functional magnetic resonance imaging scans. The ReHo method was applied to explore neural homogeneity in the brain. The patients with DR were distinguished from HCs following the construction of receiver operating characteristic curves. The ReHo method was applied to assess changes in synchronous neural activity.Results: Compared to HCs, the ReHo values in the left and right posterior lobes of the cerebellum in patients with DR were significantly increased, whereas ReHo values in the right anterior cingulate gyrus, right cuneus, bilateral precuneus, and left-middle frontal gyrus were significantly decreased. In addition, the ReHo value in the right cuneus showed a positive correlation with the best corrected visual acuity in patients with DR.Conclusion: Dysfunctional brain homology may reveal the pathological mechanisms underlying the visual pathways of patients with DR.Abbreviations: AUC = area under the curve; BA = Brodmann area; DR = diabetic retinopathy; fMRI = functional magnetic resonance imaging; HC = healthy control; MRI = magnetic resonance imaging; rs-fMRI = resting-state fMRI; ReHo = regional homogeneity; ROC = receiver operating characteristic  相似文献   

8.

Background

To identify changes in brain activation patterns in bipolar disorder (BD) and unipolar depression (UD) patients.

Methodology/Principal Findings

Resting-state fMRI scans of 16 healthy controls, 17 BD and 16 UD patients were obtained. T-test of normalized regional homogeneity (ReHo) was performed in a voxel-by-voxel manner. A combined threshold of á = 0.05, minimum cluster volume of V = 10503 mm3 (389 voxels) were used to determine ReHo differences between groups. In UD group, fMRI revealed ReHo increases in the left middle occipital lobe, right inferior parietal lobule, right precuneus and left convolution; and ReHo decreases in the left parahippocampalgyrus, right precentralgyrus, left postcentralgyrus, left precentralgyrus and left cingulated. In BD group, ReHo increases in the right insular cortex, left middle frontal gyrus, left precuneus, left occipital lobe, left parietal, left superior frontal gyrus and left thalamus; and ReHo decreases in the right anterior lobe of cerebellum, pons, right precentralgyrus, left postcentralgyrus, left inferior frontal gyrus, and right cingulate. There were some overlaps in ReHo profiles between UD and BD groups, but a marked difference was seen in the thalamus of BD.

Conclusions/Significance

The resting-state fMRI and ReHo mapping are a promising tool to assist the detection of functional deficits and distinguish clinical and pathophysiological signs of BD and UD.  相似文献   

9.

Background

Previous studies have demonstrated that patients with treatment-resistant depression (TRD) and treatment-sensitive depression (TSD) differed at neural level. However, it remains unclear if these two subtypes of depression differ in the interhemispheric coordination. This study was undertaken for two purposes: (1) to explore the differences in interhemispheric coordination between these two subtypes by using the voxel-mirrored homotopic connectivity (VMHC) method; and (2) to determine if the difference of interhemispheric coordination can be used as a biomarker(s) to differentiate TRD from both TSD and healthy subjects (HS).

Methods

Twenty-three patients with TRD, 22 with TSD, and 19 HS participated in the study. Data of these participants were analyzed with the VMHC and seed-based functional connectivity (FC) approaches.

Results

Compared to the TSD group, the TRD group showed significantly lower VMHC values in the calcarine cortex, fusiform gyrus, hippocampus, superior temporal gyrus, middle cingulum, and precentral gyrus. Lower VMHC values were also observed in the TRD group in the calcarine cortex relative to the HS group. However, the TSD group had no significant change in VMHC value in any brain region compared to the HS group. Receiver operating characteristic curves (ROC) analysis revealed that the VMHC values in the calcarine cortex had discriminatory function distinguishing patients with TRD from patients with TSD as well as those participants in the HS group.

Conclusions

Lower VMHC values of patients with TRD relative to those with TSD and those in the HS group in the calcarine cortex appeared to be a unique feature for patients with TRD and it may be used as an imaging biomarker to separate patients with TRD from those with TSD or HS.  相似文献   

10.
Machine learning-based approaches play an important role in examining functional magnetic resonance imaging (fMRI) data in a multivariate manner and extracting features predictive of group membership. This study was performed to assess the potential for measuring brain intrinsic activity to identify minimal hepatic encephalopathy (MHE) in cirrhotic patients, using the support vector machine (SVM) method. Resting-state fMRI data were acquired in 16 cirrhotic patients with MHE and 19 cirrhotic patients without MHE. The regional homogeneity (ReHo) method was used to investigate the local synchrony of intrinsic brain activity. Psychometric Hepatic Encephalopathy Score (PHES) was used to define MHE condition. SVM-classifier was then applied using leave-one-out cross-validation, to determine the discriminative ReHo-map for MHE. The discrimination map highlights a set of regions, including the prefrontal cortex, anterior cingulate cortex, anterior insular cortex, inferior parietal lobule, precentral and postcentral gyri, superior and medial temporal cortices, and middle and inferior occipital gyri. The optimized discriminative model showed total accuracy of 82.9% and sensitivity of 81.3%. Our results suggested that a combination of the SVM approach and brain intrinsic activity measurement could be helpful for detection of MHE in cirrhotic patients.  相似文献   

11.

Background

A pilot study has shown that real-time fMRI (rtfMRI) neurofeedback could be an alternative approach for chronic pain treatment. Considering the relative small sample of patients recruited and not strictly controlled condition, it is desirable to perform a replication as well as a double-blinded randomized study with a different control condition in chronic pain patients. Here we conducted a rtfMRI neurofeedback study in a subgroup of pain patients – patients with postherpetic neuralgia (PHN) and used a different sham neurofeedback control. We explored the feasibility of self-regulation of the rostral anterior cingulate cortex (rACC) activation in patients with PHN through rtfMRI neurofeedback and regulation of pain perception.

Methods

Sixteen patients (46–71 years) with PHN were randomly allocated to a experimental group (n = 8) or a control group (n = 8). 2 patients in the control group were excluded for large head motion. The experimental group was given true feedback information from their rACC whereas the control group was given sham feedback information from their posterior cingulate cortex (PCC). All subjects were instructed to perform an imagery task to increase and decrease activation within the target region using rtfMRI neurofeedback.

Results

Online analysis showed 6/8 patients in the experimental group were able to increase and decrease the blood oxygen level dependent (BOLD) fMRI signal magnitude during intermittent feedback training. However, this modulation effect was not observed in the control group. Offline analysis showed that the percentage of BOLD signal change of the target region between the last and first training in the experimental group was significantly different from the control group’s and was also significantly different than 0. The changes of pain perception reflected by numerical rating scale (NRS) in the experimental group were significantly different from the control group. However, there existed no significant correlations between BOLD signal change and NRS change.

Conclusion

Patients with PHN could learn to voluntarily control over activation in rACC through rtfMRI neurofeedback and alter their pain perception level. The present study may provide new evidence that rtfMRI neurofeedback training may be a supplemental approach for chronic clinical pain management.  相似文献   

12.
《Endocrine practice》2020,26(12):1399-1405
Objective: Recent studies have suggested that diabetic optic neuropathy (DON) independently increases the incidence of brain diseases like cerebral infarction and hemorrhage. In this study, voxel-level degree centrality (DC) was used to study potential changes in functional network brain activity in DON patients.Methods: The study included 14 DON patients and 14 healthy controls (HCs) matched by age, sex, and weight. All subjects underwent resting functional magnetic resonance imaging. Receiver operating characteristic curves and Pearson correlation analysis were performed.Results: The DC values of the left frontal mid-orb and right middle frontal gyrus/right frontal sup were significantly lower in DON patients compared to HCs. The DC value of the left temporal lobe was also significantly higher than in HCs.Conclusion: Three different brain regions show DC changes in DON patients, suggesting common optic neuropathy in the context of diabetes and providing new ideas for treating optic nerve disease in patients with long-term diabetes.Abbreviations: AUC = area under the curve; BCVA = best corrected visual acuity; DC = degree centrality; DON = diabetic optic neuropathy; fMRI = functional magnetic resonance imaging; HC = healthy control; LFMO = left frontal mid orb; LTL = left temporal lobe; RFS = right frontal sup; RMFG = right middle frontal gyrus; ROC = receiver operating characteristic  相似文献   

13.

Purpose

To investigate correlations between altered spontaneous brain activity, diabetic vascular disease, and cognitive function for patients with type 2 diabetes mellitus (T2DM) using resting-state functional magnetic resonance imaging (rs-fMRI).

Methods

Rs-fMRI was performed for T2DM patients (n = 26) and age-, gender-, and education-matched non-diabetic control subjects (n = 26). Amplitude of low frequency fluctuations (ALFF) were computed from fMRI signals to measure spontaneous neuronal activity. Differences in the ALFF patterns between patients and controls, as well as their correlations with clinical variables, were evaluated.

Results

Compared with healthy controls, T2DM patients exhibited significantly decreased ALFF values mainly in the frontal and parietal lobes, the bilateral thalumi, the posterior lobe of the cerebellum, and increased ALFF values mainly in the visual cortices. Furthermore, lower ALFF values in the left subcallosal gyrus correlated with lower ankle-brachial index values (r = 0.481, p = 0.020), while lower ALFF values in the bilateral medial prefrontal gyri correlated with higher urinary albumin-creatinine ratio (r = −0.418, p = 0.047). In addition, most of the regions with increased ALFF values in the visual cortices were found to negatively correlate with MoCA scores.

Conclusions

These results confirm that ALFF are altered in many brain regions in T2DM patients, and this is associated with the presence of diabetic vascular disease and poor cognitive performance. These findings may provide additional insight into the neurophysiological mechanisms that mediate T2DM-related cognitive dysfunction, and may also serve as a reference for future research.  相似文献   

14.
Previous researches have explored the changes of functional connectivity caused by smoking with the aid of fMRI. This study considers not only functional connectivity but also effective connectivity regarding both brain networks and brain regions by using a novel analysis framework that combines independent component analysis (ICA) and Granger causality analysis (GCA). We conducted a resting-state fMRI experiment in which twenty-one heavy smokers were scanned in two sessions of different conditions: smoking abstinence followed by smoking satiety. In our framework, group ICA was firstly adopted to obtain the spatial patterns of the default-mode network (DMN), executive-control network (ECN), and salience network (SN). Their associated time courses were analyzed using GCA, showing that the effective connectivity from SN to DMN was reduced and that from ECN/DMN to SN was enhanced after smoking replenishment. A paired t-test on ICA spatial patterns revealed functional connectivity variation in regions such as the insula, parahippocampus, precuneus, anterior cingulate cortex, supplementary motor area, and ventromedial/dorsolateral prefrontal cortex. These regions were later selected as the regions of interest (ROIs), and their effective connectivity was investigated subsequently using GCA. In smoking abstinence, the insula showed the increased effective connectivity with the other ROIs; while in smoking satiety, the parahippocampus had the enhanced inter-area effective connectivity. These results demonstrate our hypothesis that for deprived heavy smokers, smoking replenishment takes effect on both functional and effective connectivity. Moreover, our analysis framework could be applied in a range of neuroscience studies.  相似文献   

15.

Purpose

To investigate the pattern of spontaneous neural activity in patients with end-stage renal disease (ESRD) with and without neurocognitive dysfunction using resting-state functional magnetic resonance imaging (rs-fMRI) with a regional homogeneity (ReHo) algorithm.

Materials and Methods

rs-fMRI data were acquired in 36 ESRD patients (minimal nephro-encephalopathy [MNE], n = 19, 13 male, 37±12.07 years; non-nephro-encephalopathy [non-NE], n = 17, 11 male, 38±12.13 years) and 20 healthy controls (13 male, 7 female, 36±10.27 years). Neuropsychological (number connection test type A [NCT-A], digit symbol test [DST]) and laboratory tests were performed in all patients. The Kendall''s coefficient of concordance (KCC) was used to measure the regional homogeneity for each subject. The regional homogeneity maps were compared using ANOVA tests among MNE, non-NE, and healthy control groups and post hoc t -tests between each pair in a voxel-wise way. A multiple regression analysis was performed to evaluate the relationships between ReHo index and NCT-A, DST scores, serum creatinine and urea levels, disease and dialysis duration.

Results

Compared with healthy controls, both MNE and non-NE patients showed decreased ReHo in the multiple areas of bilateral frontal, parietal and temporal lobes. Compared with the non-NE, MNE patients showed decreased ReHo in the right inferior parietal lobe (IPL), medial frontal cortex (MFC) and left precuneus (PCu). The NCT-A scores and serum urea levels of ESRD patients negatively correlated with ReHo values in the frontal and parietal lobes, while DST scores positively correlated with ReHo values in the bilateral PCC/precuneus, MFC and inferior parietal lobe (IPL) (all P<0.05, AlphaSim corrected). No significant correlations were found between any regional ReHo values and disease duration, dialysis duration and serum creatinine values in ESRD patients (all P>0.05, AlphaSim corrected).

Conclusion

Diffused decreased ReHo values were found in both MNE and non-NE patients. The progressively decreased ReHo in the default mode network (DMN), frontal and parietal lobes might be trait-related in MNE. The ReHo analysis may be potentially valuable for elucidating neurocognitive abnormalities of ESRD patients and detecting the development from non-NE to MNE.  相似文献   

16.

Background

The formation of compulsive pattern of drug use is related to abnormal regional neural activity and functional reorganization in the heroin addicts’ brain, but the relationship between heroin-use-induced disrupted local neural activity and its functional organization pattern in resting-state is unknown.

Methodology/Principal Findings

With fMRI data acquired during resting state from 17 male heroin dependent individuals (HD) and 15 matched normal controls (NC), we analyzed the changes of amplitude of low frequency fluctuation (ALFF) in brain areas, and its relationship with history of heroin use. Then we investigated the addiction related alteration in functional connectivity of the brain regions with changed ALFF using seed-based correlation analysis. Compared with NC, the ALFF of HD was obviously decreased in the right caudate, right dorsal anterior cingulate cortex (dACC), right superior medial frontal cortex and increased in the bilateral cerebellum, left superior temporal gyrus and left superior occipital gyrus. Of the six regions, only the ALFF value of right caudate had a negative correlation with heroin use. Setting the six regions as “seeds”, we found the functional connectivity between the right caudate and dorsolateral prefrontal cortex (dlPFC) was reduced but that between the right caudate and cerebellum was enhanced. Besides, an abnormal lateral PFC-dACC connection was also observed in HD.

Conclusions

The observations of dysfunction of fronto-striatal and fronto-cerebellar circuit in HD implicate an altered balance between local neuronal assemblies activity and their integrated network organization pattern which may be involved in the process from voluntary to habitual and compulsive drug use.  相似文献   

17.
The present study aimed to investigate changes in structural gray matter (GM) volume and functional amplitude of spontaneous low-frequency oscillations (LFO) and functional connectivity density in patients with subcortical vascular mild cognitive impairment (svMCI). Structural MRI and resting-sate functional MRI data were collected from 26 svMCI patients and 28 age- and gender-matched healthy controls. Structurally, widespread GM atrophy was found in the svMCI patients that resided primarily in frontal (e.g., the superior and middle frontal gyri and medial prefrontal cortex) and temporal (the superior and inferior temporal gyri) brain regions as well as several subcortical brain sites (e.g., the thalamus and the caudate). Functionally, svMCI-related changes were predominantly found in the default mode network (DMN). Compared with the healthy controls, the svMCI patients exhibited decreased LFO amplitudes in the anterior part of the DMN (e.g., the medial prefrontal cortex), whereas increased LFO amplitudes in the posterior part of the DMN (e.g., the posterior cingulate/precuneus). As for functional connectivity density, the DMN regions (e.g., the posterior cingulate/precuneus, the medial prefrontal cortex and the middle temporal gyrus) consistently exhibited decreased functional connectivity. Finally, the overall patterns of functional alterations in LFO amplitudes and functional connectivity density remained little changed after controlling for structural GM volume losses, which suggests that functional abnormalities can be only partly explained by morphological GM volume changes. Together, our results indicate that svMCI patients exhibit widespread abnormalities in both structural GM volume and functional intrinsic brain activity, which have important implications in understanding the pathophysiological mechanism of svMCI.  相似文献   

18.
Brain tissue was obtained at autopsy from nine cirrhotic patients dying in hepatic coma and from an equal number of controls, free from neurological, psychiatric, or hepatic diseases, matched for age and time interval from death to freezing of dissected brain samples. Glutamine, glutamate, aspartate, and gamma-aminobutyric acid (GABA) levels were measured in homogenates of cerebral cortex (prefrontal and frontal), caudate nuclei, hypothalamus, cerebellum (cortex and vermis), and medulla oblongata as their o-phthalaldehyde derivatives by HPLC using fluorescence detection. Glutamine concentrations were found to be elevated two- to fourfold in all brain structures, the largest increases being observed in prefrontal cortex and medulla oblongata. Glutamate levels were selectively decreased in prefrontal cortex (by 20%), caudate nuclei (by 27%), and cerebellar vermis (by 17%) from cirrhotic patients. On the other hand, GABA content of autopsied brain tissue from these patients was found to be within normal limits in all brain structures. It is suggested that such region-selective reductions of glutamate may reflect loss of the amino acid from the releasable (neurotransmitter) pool. These findings may be of significance in the pathogenesis of hepatic encephalopathy resulting from chronic liver disease.  相似文献   

19.

Background

Several task-based functional MRI (fMRI) studies have highlighted abnormal activation in specific regions involving the low-level perceptual (auditory, visual, and somato-motor) network in posttraumatic stress disorder (PTSD) patients. However, little is known about whether the functional connectivity of the low-level perceptual and higher-order cognitive (attention, central-execution, and default-mode) networks change in medication-naïve PTSD patients during the resting state.

Methods

We investigated the resting state networks (RSNs) using independent component analysis (ICA) in 18 chronic Wenchuan earthquake-related PTSD patients versus 20 healthy survivors (HSs).

Results

Compared to the HSs, PTSD patients displayed both increased and decreased functional connectivity within the salience network (SN), central executive network (CEN), default mode network (DMN), somato-motor network (SMN), auditory network (AN), and visual network (VN). Furthermore, strengthened connectivity involving the inferior temporal gyrus (ITG) and supplementary motor area (SMA) was negatively correlated with clinical severity in PTSD patients.

Limitations

Given the absence of a healthy control group that never experienced the earthquake, our results cannot be used to compare alterations between the PTSD patients, physically healthy trauma survivors, and healthy controls. In addition, the breathing and heart rates were not monitored in our small sample size of subjects. In future studies, specific task paradigms should be used to reveal perceptual impairments.

Conclusions

These findings suggest that PTSD patients have widespread deficits in both the low-level perceptual and higher-order cognitive networks. Decreased connectivity within the low-level perceptual networks was related to clinical symptoms, which may be associated with traumatic reminders causing attentional bias to negative emotion in response to threatening stimuli and resulting in emotional dysregulation.  相似文献   

20.
Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs) and 15 age-, gender-matched normal controls (NCs) were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI) were acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-group differences in network topological properties using graph theory method. We found that the HDIs showed decreases in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms underlying heroin addiction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号