首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Major depressive disorder (MDD) has been associated with abnormal structure and function of the brain''s affective network, including the amygdala and orbitofrontal cortex (OFC). However, it is unclear if alterations of resting-state function in this affective network are present at the initial onset of MDD.

Aims

To examine resting-state function of the brain''s affective network in first-episode, medication-naive patients with MDD compared to healthy controls (HCs).

Methods

Resting-state functional magnetic resonance imaging (rs-fMRI) was performed on 32 first-episode, medication-naive young adult patients with MDD and 35 matched HCs. The amplitude of low-frequency fluctuations (ALFF) of the blood oxygen level-dependent (BOLD) signal and amygdala-seeded functional connectivity (FC) were investigated.

Results

Compared to HC, MDD patients showed reduced ALFF in the bilateral OFC and increased ALFF in the bilateral temporal lobe extending to the insular and left fusiform cortices. Enhanced anti-correlation of activity between the left amygdala seed and the left OFC was found in MDD patients but not in HCs.

Conclusions

Reduced ALFF in the OFC suggests hypo-functioning of emotion regulation in the affective network. Enhanced anti-correlation of activity between the amygdala and OFC may reflect dysfunction of the amygdala-OFC network and additionally represent a pathological process of MDD.  相似文献   

2.

Background

Circulating miRNA-34a is increased in blood of patients with different liver diseases when compared to healthy controls. However, the origin of miRNA-34a and its possible relationship with hemodynamics and outcome in cirrhotic patients with portal hypertension is unknown. We analyzed the levels of miRNA-34a in cirrhotic patients with severe portal hypertension.

Methods

We included 60 cirrhotic patients receiving TIPS for prevention of rebleeding and/or therapy-refractory ascites. miRNA-34a levels were measured using qPCR and normalized by SV-40 in the portal and hepatic venous blood of these patients taken at TIPS procedure. Hemodynamic and clinical parameters were assessed before TIPS and during follow-up.

Results

Levels of miRNA-34a were higher in the hepatic vein than in the portal vein. Circulating miRNA-34a in the hepatic vein correlated with ALT, CHE and sodium excretion after TIPS. miRNA-34a showed no correlation with portal pressure, but its levels in the portal vein correlated inversely with the congestion index. Interestingly, the levels of miRNA-34a in the portal and hepatic vein showed inverse correlation with arterial pressure. Furthermore, levels of miRNA-34a in the hepatic vein had a predictive value for survival, but MELD, creatinine at short-time follow-up 14 days after TIPS-insertion and portal pressure after TIPS performed better.

Conclusion

This study demonstrates for the first time, that miRNA-34a may originate to a large extent from the liver. Even though higher levels of miRNA-34a are possibly associated with better survival at long-term follow-up in cirrhotic patients with severe portal hypertension receiving TIPS, classical prognostic parameters predict the survival better.  相似文献   

3.

Background

To evaluate the changes of functional connectivity of the anterior cingulate cortex (ACC) in patients with cirrhosis without overt hepatic encephalopathy (HE) using resting state functional MRI.

Methodology/Principal Findings

Participants included 67 cirrhotic patients (27 minimal hepatic encephalopathy (MHE) and 40 cirrhotic patients without MHE (non-HE)), and 40 age- and gender- matched healthy controls. rsfMRI were performed on 3 Telsa scanners. The pregenual ACC resting-state networks (RSNs) were characterized by using a standard seed-based whole-brain correlation method and compared between cirrhotic patients and healthy controls. Pearson correlation analysis was performed between the ACC RSNs and venous blood ammonia levels, neuropsychological tests (number connection test type A [NCT-A] and digit symbol test [DST]) scores in cirrhotic patients. All thresholds were set at P<0.05, with false discovery rate corrected. Compared with controls, non-HE and MHE patients showed significantly decreased functional connectivity in the bilateral ACC, bilateral middle frontal cortex (MFC), bilateral middle cingulate cortex (MCC), bilateral superior temporal gyri (STG)/middle temporal gyri (MTG), bilateral thalami, bilateral putamen and bilateral insula, and increased functional connectivity of bilateral precuneus and left temporo-occipital lobe and bilateral lingual gyri. Compared with non-HE patients, MHE showed the decreased functional connectivity of right MCC, bilateral STG/MTG and right putamen. This indicates decreased ACC functional connectivity predominated with the increasing severity of HE. NCT-A scores negatively correlated with ACC functional connectivity in the bilateral MCC, right temporal lobe, and DST scores positively correlated with functional connectivity in the bilateral ACC and the right putamen. No correlation was found between venous blood ammonia levels and functional connectivity in ACC in cirrhotic patients.

Conclusions/Significance

Disrupted functional connectivity in ACC was found in cirrhotic patients which further deteriorated with the increasing severity of HE and correlated cognitive dysfunction in cirrhotic patients.  相似文献   

4.
LJ Zhang  R Qi  J Zhong  Q Xu  G Zheng  GM Lu 《PloS one》2012,7(8):e42824

Purpose

To evaluate the effect of hepatic encephalopathy (HE), hepatic failure, and portosystemic shunt (PS) on the brain volume alteration in cirrhotic patients with MRI voxel-based morphometry (VBM).

Methods

Sixty cirrhotic patients (overt HE [OHE], n = 11; minimal HE [MHE], n = 19; non HE [nHE], n = 30) including 12 with pre- and post-transjugular intrahepatic portosystemic shunt (TIPS) scanning and 40 healthy controls were recruited. Neuropsychological and laboratory tests were performed in all patients. VBM was analyzed with ANOVA test among 4 groups, and t-tests for patients with different hepatic function, PS scores, and TIPS. Multiple linear regression was performed to investigate the effect of venous blood ammonia levels, Child-Pugh scores, and PS on the brain volumes in all patients.

Results

Cirrhotic patients exhibited decreased volume in many areas of gray matter (GM), increased volume in thalamus, and increased whiter matter (WM) volume, with the extent of affected brain volume greater in HE patients than nHE patients. Hepatic failure also resulted in decreased GM volume. Patients with high PS scores and TIPS displayed decreased GM and increased WM volume in some regions. Post-TIPS patients displayed increased GM volume in the thalamus. Multiple covariate regression results suggested that Child-Pugh score was a major factor to affect GM volume, while PS mainly affected WM volume.

Conclusion

Brain structure abnormalities appeared bilaterally symmetrical in cirrhotic patients, and the impairment was more extensive in HE patients than those without HE. Increased thalamus volume was not associated with HE progression. Hepatic failure and PS altered cirrhotic patients’ brain structure.  相似文献   

5.

Purpose

To investigate correlations between altered spontaneous brain activity, diabetic vascular disease, and cognitive function for patients with type 2 diabetes mellitus (T2DM) using resting-state functional magnetic resonance imaging (rs-fMRI).

Methods

Rs-fMRI was performed for T2DM patients (n = 26) and age-, gender-, and education-matched non-diabetic control subjects (n = 26). Amplitude of low frequency fluctuations (ALFF) were computed from fMRI signals to measure spontaneous neuronal activity. Differences in the ALFF patterns between patients and controls, as well as their correlations with clinical variables, were evaluated.

Results

Compared with healthy controls, T2DM patients exhibited significantly decreased ALFF values mainly in the frontal and parietal lobes, the bilateral thalumi, the posterior lobe of the cerebellum, and increased ALFF values mainly in the visual cortices. Furthermore, lower ALFF values in the left subcallosal gyrus correlated with lower ankle-brachial index values (r = 0.481, p = 0.020), while lower ALFF values in the bilateral medial prefrontal gyri correlated with higher urinary albumin-creatinine ratio (r = −0.418, p = 0.047). In addition, most of the regions with increased ALFF values in the visual cortices were found to negatively correlate with MoCA scores.

Conclusions

These results confirm that ALFF are altered in many brain regions in T2DM patients, and this is associated with the presence of diabetic vascular disease and poor cognitive performance. These findings may provide additional insight into the neurophysiological mechanisms that mediate T2DM-related cognitive dysfunction, and may also serve as a reference for future research.  相似文献   

6.
R Qi  Q Xu  LJ Zhang  J Zhong  G Zheng  S Wu  Z Zhang  W Liao  Y Zhong  L Ni  Q Jiao  Z Zhang  Y Liu  G Lu 《PloS one》2012,7(7):e41376

Background and Purpose

Live failure can cause brain edema and aberrant brain function in cirrhotic patients. In particular, decreased functional connectivity within the brain default-mode network (DMN) has been recently reported in overt hepatic encephalopathy (HE) patients. However, so far, little is known about the connectivity among the DMN in the minimal HE (MHE), the mildest form of HE. Here, we combined diffusion tensor imaging (DTI) and resting-state functional MRI (rs-fMRI) to test our hypothesis that both structural and functional connectivity within the DMN were disturbed in MHE.

Materials and Methods

Twenty MHE patients and 20 healthy controls participated in the study. We explored the changes of structural (path length, tracts count, fractional anisotropy [FA] and mean diffusivity [MD] derived from DTI tractography) and functional (temporal correlation coefficient derived from rs-fMRI) connectivity of the DMN in MHE patients. Pearson correlation analysis was performed between the structural/functional indices and venous blood ammonia levels/neuropsychological tests scores of patients. All thresholds were set at P<0.05, Bonferroni corrected.

Results

Compared to the healthy controls, MHE patients showed both decreased FA and increased MD in the tract connecting the posterior cingulate cortex/precuneus (PCC/PCUN) to left parahippocampal gyrus (PHG), and decreased functional connectivity between the PCC/PCUN and left PHG, and medial prefrontal cortex (MPFC). MD values of the tract connecting PCC/PCUN to the left PHG positively correlated to the ammonia levels, the temporal correlation coefficients between the PCC/PCUN and the MPFC showed positive correlation to the digital symbol tests scores of patients.

Conclusion

MHE patients have both disturbed structural and functional connectivity within the DMN. The decreased functional connectivity was also detected between some regions without abnormal structural connectivity, suggesting that the former may be more sensitive in detecting the early abnormalities of MHE. This study extends our understanding of the pathophysiology of MHE.  相似文献   

7.

Background

The formation of compulsive pattern of drug use is related to abnormal regional neural activity and functional reorganization in the heroin addicts’ brain, but the relationship between heroin-use-induced disrupted local neural activity and its functional organization pattern in resting-state is unknown.

Methodology/Principal Findings

With fMRI data acquired during resting state from 17 male heroin dependent individuals (HD) and 15 matched normal controls (NC), we analyzed the changes of amplitude of low frequency fluctuation (ALFF) in brain areas, and its relationship with history of heroin use. Then we investigated the addiction related alteration in functional connectivity of the brain regions with changed ALFF using seed-based correlation analysis. Compared with NC, the ALFF of HD was obviously decreased in the right caudate, right dorsal anterior cingulate cortex (dACC), right superior medial frontal cortex and increased in the bilateral cerebellum, left superior temporal gyrus and left superior occipital gyrus. Of the six regions, only the ALFF value of right caudate had a negative correlation with heroin use. Setting the six regions as “seeds”, we found the functional connectivity between the right caudate and dorsolateral prefrontal cortex (dlPFC) was reduced but that between the right caudate and cerebellum was enhanced. Besides, an abnormal lateral PFC-dACC connection was also observed in HD.

Conclusions

The observations of dysfunction of fronto-striatal and fronto-cerebellar circuit in HD implicate an altered balance between local neuronal assemblies activity and their integrated network organization pattern which may be involved in the process from voluntary to habitual and compulsive drug use.  相似文献   

8.
Jiao Q  Ding J  Lu G  Su L  Zhang Z  Wang Z  Zhong Y  Li K  Ding M  Liu Y 《PloS one》2011,6(9):e25159

Background

A functional discrepancy exists in adolescents between frontal and subcortical regions due to differential regional maturational trajectories. It remains unknown how this functional discrepancy alters and whether the influence from the subcortical to the frontal system plays a primacy role in medication naïve adolescent with major depressive disorder (MDD).

Methodology/Principal Findings

Eighteen MDD and 18 healthy adolescents were enrolled. Depression and anxiety severity was assessed by the Short Mood and Feeling Questionnaire (SMFQ) and Screen for Child Anxiety Related Emotional Disorders (SCARED) respectively. The functional discrepancy was measured by the amplitude of low-frequency fluctuations (ALFF) of resting-state functional MRI signal. Correlation analysis was carried out between ALFF values and SMFQ and SCARED scores. Resting brain activity levels measured by ALFF was higher in the frontal cortex than that in the subcortical system involving mainly (para) limbic-striatal regions in both HC and MDD adolescents. The difference of ALFF values between frontal and subcortical systems was increased in MDD adolescents as compared with the controls.

Conclusions/Significance

The present study identified an increased imbalance of resting-state brain activity between the frontal cognitive control system and the (para) limbic-striatal emotional processing system in MDD adolescents. The findings may provide insights into the neural correlates of adolescent MDD.  相似文献   

9.

Objectives

Resting state (RS) functional MRI recently identified default network abnormalities related to cognitive impairment in MS. fMRI can also be used to map functional connectivity (FC) while the brain is at rest and not adhered to a specific task. Given the importance of the anterior cingulate cortex (ACC) for higher executive functioning in MS, we here used the ACC as seed-point to test for differences and similarities in RS-FC related to sustained attention between MS patients and controls.

Design

Block-design rest phases of 3 Tesla fMRI data were analyzed to assess RS-FC in 31 patients (10 clinically isolated syndromes, 16 relapsing-remitting, 5 secondary progressive MS) and 31 age- and gender matched healthy controls (HC). Participants underwent extensive cognitive testing.

Observations

In both groups, signal changes in several brain areas demonstrated significant correlation with RS-activity in the ACC. These comprised the posterior cingulate cortex (PCC), insular cortices, the right caudate, right middle temporal gyrus, angular gyri, the right hippocampus, and the cerebellum. Compared to HC, patients showed increased FC between the ACC and the left angular gyrus, left PCC, and right postcentral gyrus. Better cognitive performance in the patients was associated with increased FC to the cerebellum, middle temporal gyrus, occipital pole, and the angular gyrus.

Conclusion

We provide evidence for adaptive changes in RS-FC in MS patients compared to HC in a sustained attention network. These results extend and partly mirror findings of task-related fMRI, suggesting FC may increase our understanding of cognitive dysfunction in MS.  相似文献   

10.

Background

Identifying the ischemic penumbra in acute stroke subjects is important for the clinical decision making process. The aim of this study was to use resting-state functional magnetic resonance singal (fMRI) to investigate the change in the amplitude of low-frequency fluctuations (ALFF) of these subjects in three different subsections of acute stroke regions: the infarct core tissue, the penumbra tissue, and the normal brain tissue. Another aim of this study was to test the feasilbility of consistently detecting the penumbra region of the brain through ALFF analysis.

Methods

Sixteen subjects with first-ever acute ischemic stroke were scanned within 27 hours of the onset of stroke using magnetic resonance imaging. The core of infarct regions and penumbra regions were determined by diffusion and perfusion-weighted imaging respectively. The ALFF were measured from resting-state blood oxygen level dependent (BOLD) fMRI scans. The averaged relative ALFF value of each regions were correlated with the time after the onset of stroke.

Results

Relative ALFF values were significantly different in the infarct core tissue, penumbra tissue and normal brain tissue. The locations of lesions in the ALFF maps did not match perfectly with diffusion and perfusion-weighted imagings; however, these maps provide a contrast that can be used to differentiate between penumbra brain tissue and normal brain tissue. Significant correlations between time after stroke onset and the relative ALFF values were present in the penumbra tissue but not in the infarct core and normal brain tissue.

Conclusion

Preliminary results from this study suggest that the ALFF reflects the underlying neurovascular activity and has a great potential to estimate the brain tissue viability after ischemia. Results also show that the ALFF may contribute to acute stroke imaging for thrombolytic or neuroprotective therapies.  相似文献   

11.

Background

Obsessive-compulsive disorder (OCD) is a mental illness characterized by the loss of control. Because the cingulate cortex is believed to be important in executive functions, such as inhibition, we used functional magnetic resonance imaging (fMRI) techniques to examine whether and how activity and functional connectivity (FC) of the cingulate cortex were altered in drug-naïve OCD patients.

Methods

Twenty-three medication-naïve OCD patients and 23 well-matched healthy controls received fMRI scans in a resting state. Functional connectivities of the anterior cingulate (ACC) and the posterior cingulate (PCC) to the whole brain were analyzed using correlation analyses based on regions of interest (ROI) identified by the fractional amplitude of low-frequency fluctuation (fALFF). Independent Component Analysis (ICA) was used to identify the resting-state sub-networks.

Results

fALFF analysis found that regional activity was increased in the ACC and decreased in the PCC in OCD patients when compared to controls. FC of the ACC and the PCC also showed different patterns. The ACC and the PCC were found to belong to different resting-state sub-networks in ICA analysis and showed abnormal FC, as well as contrasting correlations with the severity of OCD symptoms.

Conclusions

Activity of the ACC and the PCC were increased and decreased, respectively, in the medication-naïve OCD patients compared to controls. Different patterns in FC were also found between the ACC and the PCC with respect to these two groups. These findings implied that the cardinal feature of OCD, the loss of control, may be attributed to abnormal activities and FC of the ACC and the PCC.  相似文献   

12.
Han Y  Lui S  Kuang W  Lang Q  Zou L  Jia J 《PloS one》2012,7(2):e28664

Background

Anatomical and functional deficits have been studied in patients with amnestic mild cognitive impairment (MCI). However, it is unclear whether and how the anatomical deficits are related to the functional alterations. Present study aims to characterize the association between anatomical and functional deficits in MCI patients.

Methods

Seventeen amnestic MCI patients and 18 healthy aging controls were scanned using a T1 Weighted MPRAGE sequence and a gradient-echo echo-planar imaging sequence. Clinical severity of MCI patients was evaluated by using Clinical Dementia Rating, Mini Mental State Examination (MMSE), Clock Drawing Test, Auditory Verbal Learning Test and Activities of Daily Living. VBM with DARTEL was used to characterize the gray matter deficits in MCI. Regional amplitude of low-frequency (0.01–0.08 Hz) fluctuations (ALFF) was used to evaluate regional functional alteration in MCI and fractional ALFF(fALFF) in slow 4 (0.027–0.073 Hz) and slow 5 (0.01–0.027 Hz) were also calculated.

Results

Significantly decreased gray matter volume (GMV) was observed in amnestic MCI group mainly in bilateral prefrontal, left temporal and posterior cingulate cortex. Significant positive correlation was observed between the GMV in left inferior frontal gyrus and MMSE scores. Interestingly, decreased ALFF/fALFF was revealed in MCI group compared to controls mainly in prefrontal, left parietal regions and right fusiform gyrus, while the increased ALFF/fALFF was found in limbic and midbrain. Furthermore, the changes of fALFF in MCI in the slow-5 band were greater than those in the slow-4. No significant correlation was found between the morphometric and functional results.

Conclusions

Findings from the study document that wide spread brain volume reduction accompanied with decreased and increased regional function in MCI, while the anatomical and functional changes were independently. Therefore, the combination of structural and functional MRI methods would provide complementary information and together advance our understanding of the pathophysiology underlying the symptoms of MCI.  相似文献   

13.

Background

The rs12807809 single-nucleotide polymorphism in NRGN is a genetic risk variant with genome-wide significance for schizophrenia. The frequency of the T allele of rs12807809 is higher in individuals with schizophrenia than in those without the disorder. Reduced immunoreactivity of NRGN, which is expressed exclusively in the brain, has been observed in Brodmann areas (BA) 9 and 32 of the prefrontal cortex in postmortem brains from patients with schizophrenia compared with those in controls.

Methods

Genotype effects of rs12807809 were investigated on gray matter (GM) and white matter (WM) volumes using magnetic resonance imaging (MRI) with a voxel-based morphometry (VBM) technique in a sample of 99 Japanese patients with schizophrenia and 263 healthy controls.

Results

Although significant genotype-diagnosis interaction either on GM or WM volume was not observed, there was a trend of genotype-diagnosis interaction on GM volume in the left anterior cingulate cortex (ACC). Thus, the effects of NRGN genotype on GM volume of patients with schizophrenia and healthy controls were separately investigated. In patients with schizophrenia, carriers of the risk T allele had a smaller GM volume in the left ACC (BA32) than did carriers of the non-risk C allele. Significant genotype effect on other regions of the GM or WM was not observed for either the patients or controls.

Conclusions

Our findings suggest that the genome-wide associated genetic risk variant in the NRGN gene may be related to a small GM volume in the ACC in the left hemisphere in patients with schizophrenia.  相似文献   

14.

Background and Aims

Brain dysfunction in functional dyspepsia (FD) has been identified by multiple neuroimaging studies. This study aims to investigate the regional gray matter density (GMD) changes in meal-related FD patients and their correlations with clinical variables, and to explore the possible influence of the emotional state on FD patients’s brain structures.

Methods

Fifty meal-related FD patients and forty healthy subjects (HS) were included and underwent a structural magnetic resonance imaging scan. Voxel-based morphometry analysis was employed to identify the cerebral structure alterations in meal-related FD patients. Regional GMD changes'' correlations with the symptoms and their durations, respectively, have been analyzed.

Results

Compared to the HS, the meal-related FD patients showed a decreased GMD in the bilateral precentral gyrus, medial prefrontal cortex (MPFC), anterior cingulate cortex (ACC) and midcingulate cortex (MCC), left orbitofrontal cortex (OFC) and right insula (p<0.05, FWE Corrected, Cluster size>50). After controlling for anxiety and depression, the meal-related FD patients showed a decreased GMD in the bilateral middle frontal gyrus, left MCC, right precentral gyrus and insula (p<0.05, FWE Corrected, Cluster size>50). Before controlling psychological factors, the GMD decreases in the ACC were negatively associated with the symptom scores of the Nepean Dyspepsia Index (NDI) (r = −0.354, p = 0.048, Bonferroni correction) and the duration of FD (r = −0.398, p = 0.02, Bonferroni correction) respectively.

Conclusions

The regional GMD of meal-related FD patients, especially in the regions of the homeostatic afferent processing network significantly differed from that of the HS, and the psychological factors might be one of the essential factors significantly affecting the regional brain structure of meal-related FD patients.  相似文献   

15.

Background

Monogenic dementias represent a great opportunity to trace disease progression from preclinical to symptomatic stages. Frontotemporal Dementia related to Granulin (GRN) mutations presents a specific framework of brain damage, involving fronto-temporal regions and long inter-hemispheric white matter bundles. Multimodal resting-state functional MRI (rs-fMRI) is a promising tool to carefully describe disease signature from the earliest disease phase.

Objective

To define local connectivity alterations in GRN related pathology moving from the presymptomatic (asymptomatic GRN mutation carriers) to the clinical phase of the disease (GRN- related Frontotemporal Dementia).

Methods

Thirty-one GRN Thr272fs mutation carriers (14 patients with Frontotemporal Dementia and 17 asymptomatic carriers) and 38 healthy controls were recruited. Local connectivity measures (Regional Homogeneity (ReHo), Fractional Amplitude of Low Frequency Fluctuation (fALFF) and Degree Centrality (DC)) were computed, considering age and gender as nuisance variables as well as the influence of voxel-level gray matter atrophy.

Results

Asymptomatic GRN carriers had selective reduced ReHo in the left parietal region and increased ReHo in frontal regions compared to healthy controls. Considering Frontotemporal Dementia patients, all measures (ReHo, fALFF and DC) were reduced in inferior parietal, frontal lobes and posterior cingulate cortex. Considering GRN mutation carriers, an inverse correlation with age in the posterior cingulate cortex, inferior parietal lobule and orbitofrontal cortex was found.

Conclusions

GRN pathology is characterized by functional brain network alterations even decades before the clinical onset; they involve the parietal region primarily and then spread to the anterior regions of the brain, supporting the concept of molecular nexopathies.  相似文献   

16.

Background

TNFα levels are increased in liver cirrhosis even in the absence of infection, most likely owing to a continuous endotoxin influx into the portal blood. Soluble TNFα receptors (sTNFR type I and II) reflect release of the short-lived TNFα, because they are cleaved from the cells after binding of TNFα. The aims were to investigate the circulating levels of soluble TNFR-I and -II in cirrhotic patients receiving TIPS.

Methods

Forty-nine patients with liver cirrhosis and portal hypertension (12 viral, 37 alcoholic) received TIPS for prevention of re-bleeding (n = 14), therapy-refractory ascites (n = 20), or both (n = 15). Portal and hepatic venous blood was drawn in these patients during the TIPS procedure and during the control catheterization two weeks later. sTNFR-I and sTNFR-II were measured by ELISA, correlated to clinical and biochemical characteristics.

Results

Before TIPS insertion, sTNFR-II levels were lower in portal venous blood than in the hepatic venous blood, as well as in portal venous blood after TIPS insertion. No significant differences were measured in sTNFR-I levels. Hepatic venous levels of sTNFR-I above 4.5 ng/mL (p = 0.036) and sTNFR-II above 7 ng/mL (p = 0.05) after TIPS insertion were associated with decreased survival. A multivariate Cox-regression survival analysis identified the hepatic venous levels of sTNFR-I (p = 0.004) two weeks after TIPS, and Child score (p = 0.002) as independent predictors of mortality, while MELD-score was not.

Conclusion

Hepatic venous levels of sTNFR-I after TIPS insertion may predict mortality in patients with severe portal hypertension.  相似文献   

17.

Background

Why are some people happier than others? This question has intrigued many researchers. However, limited work has addressed this question within a neuroscientific framework.

Methods

The present study investigated the neural correlates of trait happiness using the resting-state functional magnetic resonance imaging (rs-fMRI) approach. Specifically, regional homogeneity (ReHo) was examined on two groups of young adults: happy and unhappy individuals (N = 25 per group).

Results

Decreased ReHo in unhappy relative to happy individuals was observed within prefrontal cortex, medial temporal lobe, superior temporal lobe, and retrosplenial cortex. In contrast, increased ReHo in unhappy relative to happy individuals was observed within the dorsolateral prefrontal cortex, middle cingulate gyrus, putamen, and thalamus. In addition, the ReHo within the left thalamus was negatively correlated with Chinese Happiness Inventory (CHI) score within the happy group.

Limitations

As an exploratory study, we examined how general trait happiness is reflected in the regional homogeneity of intrinsic brain activity in a relatively small sample. Examining other types of happiness in a larger sample using a multitude of intrinsic brain activity indices are warranted for future work.

Conclusions

The local synchronization of BOLD signal is altered in unhappy individuals. The regions implicated in this alteration partly overlapped with previously identified default mode network, emotional circuitry, and rewarding system, suggesting that these systems may be involved in happiness.  相似文献   

18.

Purpose

Excessive brain iron accumulation contributes to cognitive impairments in hepatitis B virus (HBV)-related cirrhotic patients. The underlying mechanism remains unclear. Hepcidin, a liver-produced, 25-aminoacid peptide, is the major regulator of systemic iron metabolism. Abnormal hepcidin level is a key factor in some body iron accumulation or deficiency disorders, especially in those associated with liver diseases. Our study was aimed to explore the relationship between brain iron content in patients with HBV-related cirrhosis and serum hepcidin level.

Methods

Seventy HBV-related cirrhotic patients and forty age- sex-matched healthy controls were enrolled. Brain iron content was quantified by susceptibility weighted phase imaging technique. Serum hepcidin as well as serum iron, serum transferrin, ferritin, soluble transferrin receptor, total iron binding capacity, and transferrin saturation were tested in thirty cirrhotic patients and nineteen healthy controls. Pearson correlation analysis was performed to investigate correlation between brain iron concentrations and serum hepcidin, or other iron parameters.

Results

Cirrhotic patients had increased brain iron accumulation compared to controls in the left red nuclear, the bilateral substantia nigra, the bilateral thalamus, the right caudate, and the right putamen. Cirrhotic patients had significantly decreased serum hepcidin concentration, as well as lower serum transferring level, lower total iron binding capacity and higher transferrin saturation, compared to controls. Serum hepcidin level negatively correlated with the iron content in the right caudate, while serum ferritin level positively correlated with the iron content in the bilateral putamen in cirrhotic patients.

Conclusions

Decreased serum hepcidin level correlated with excessive iron accumulation in the basal ganglia in HBV-related cirrhotic patients. Our results indicated that systemic iron overload underlined regional brain iron repletion. Serum hepcidin may be a clinical biomarker for brain iron deposition in cirrhotic patients, which may have therapeutic potential.  相似文献   

19.
Liu J  Qin W  Yuan K  Li J  Wang W  Li Q  Wang Y  Sun J  von Deneen KM  Liu Y  Tian J 《PloS one》2011,6(10):e23098

Background

The majority of previous heroin cue-reactivity functional magnetic resonance imaging (fMRI) studies focused on local function impairments, such as inhibitory control, decision-making and stress regulation. Our previous studies have demonstrated that these brain circuits also presented dysfunctional connectivity during the resting state. Yet few studies considered the relevance of resting state dysfunctional connectivity to task-related neural activity in the same chronic heroin user (CHU).

Methodology/Principal Findings

We employed the method of graph theory analysis, which detected the abnormality of brain regions and dysregulation of brain connections at rest between 16 male abstinent chronic heroin users (CHUs) and 16 non-drug users (NDUs). Using a cue-reactivity task, we assessed the relationship between drug-related cue-induced craving activity and the abnormal topological properties of the CHUs'' resting networks. Comparing NDUs'' brain activity to that of CHUs, the intensity of functional connectivity of the medial frontal gyrus (meFG) in patients'' resting state networks was prominently greater and positively correlated with the same region''s neural activity in the heroin-related task; decreased functional connectivity intensity of the anterior cingulate cortex (ACC) in CHUs at rest was associated with more drug-related cue-induced craving activities.

Conclusions

These results may indicate that there exist two brain systems interacting simultaneously in the heroin-addicted brain with regards to a cue-reactivity task. The current study may shed further light on the neural architecture that supports craving responses in heroin dependence.  相似文献   

20.

Background

Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson''s disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of non-invasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC) (areas 9/46) stimulation on prefrontal dopamine (DA).

Methodology/Principal Findings

Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [11C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS) of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [11C]FLB 457 binding potential (BP) in the ipsilateral subgenual anterior cingulate cortex (ACC) (BA 25/12), pregenual ACC (BA 32) and medial orbitofrontal cortex (BA 11). There were no significant changes in [11C]FLB 457 BP following right DLPFC rTMS.

Conclusions/Significance

To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [11C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help to identify the neurobiological effects of TMS for the treatment of different neurological and psychiatric diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号