首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelial cell adhesion to the extracellular matrix regulates migration and outgrowth of blood vessels during angiogenesis. Cell adhesion is mediated by integrins, which transduce signals from the extracellular environment into the cell and, in turn, are regulated by intracellular signaling molecules. In a paper recently published in Cell Research, Sandri et al. show that RIN2 connects three GTPases, R-Ras, Rab5 and Rac1, to promote endothelial cell adhesion through the regulation of integrin internalization and Rac1 activation.The formation of the vascular tree during development requires the orderly growth of blood vessels to irrigate all organs and tissues. This process of blood vessel remodeling, termed angiogenesis, requires endothelial cell proliferation, adhesion, migration and tube formation1. Pathological angiogenesis takes place during tumor growth as hypoxia within the tumor induces the release of pro-angiogenic mediators such as vascular endothelial growth factor (VEGF).Small GTPases are critical for the regulation of cell behavior and thus also play a central role in angiogenesis. Small GTPases are 20-25 kDa signaling proteins that cycle between an active GTP-bound and an inactive GDP-bound state. When active, GTPases associate with and activate diverse effector molecules that subsequently relay the signal to other molecules, ultimately leading to a specific cell response. Two classes of proteins facilitate GTPase cycling. Guanine exchange factors (GEFs) catalyze GDP unloading thereby promoting GTP binding and GTPase activation. Conversely, GTPase activating proteins (GAPs) enhance the intrinsic GTP hydrolysis activity of the GTPase leading to its inactivation. Small GTPases form a large superfamily with over 100 members in mammals. Based on structural and functional criteria, the GTPase superfamily is subdivided in Ras, Rab, Rho, Arf and Ran subfamilies, each of them generally, but not exclusively, specialized in the regulation of specific cellular events. For example, Rho GTPases primarily regulate cytoskeletal dynamics; Rab GTPases regulate intracellular membrane trafficking; and Ras GTPases function in the regulation of cell proliferation and survival. However, complex processes such as angiogenesis require the coordinated action of several GTPases. This is evidenced by the work of Sandri et al.2 recently published in Cell Research. In their paper, Sandri et al. propose a mechanism for the regulation of endothelial cell adhesion and migration involving three GTPases belonging to different GTPase branches, R-Ras, Rab5 and Rac1. The protein RIN2 (Ras and Rab adaptor 2) brings together R-Ras and Rab5 to form a signaling module that orchestrates integrin trafficking and Rac1 activation, processes that are essential for cell adhesion and migration.Integrins are heterodimeric transmembrane extracellular matrix (ECM) receptors composed of one α and one β chain. In a process known as ''outside-in'' signaling, integrins transmit signals from the extracellular environment to intracellular adaptor and signaling molecules that regulate cell migration, survival and growth. Conversely, during ''inside-out'' signaling, integrins can be switched from an inactive to an active conformation by cytoplasmic signaling molecules leading to increased integrin affinity for the ECM.During 2D migration of adherent cells, nascent, highly dynamic focal contacts are formed at the leading edge lamellipodia where integrins mediate adhesion to the ECM. Some of these focal contacts disassemble and some mature into larger focal adhesions with a longer half-life. Failure in maintaining a dynamic assembly and disassembly of focal contacts will result in the inhibition of cell migration.Integrin-mediated adhesion can be regulated at different levels: (1) by changing integrin conformation and thus affinity for their ligand; (2) by modulating integrin avidity, i.e., by promoting integrin clustering on the plasma membrane; and (3) by changing the kinetics of integrin endocytosis and/or recycling3.The Ras GTPase R-Ras is primarily expressed in the vascular system (endothelial cells and vascular smooth muscle cells)4. Zhang et al.5 were the first to show that R-Ras is a potent regulator of cell adhesion when they reported that expression of active R-Ras was enough to induce ECM adhesion of suspension cells, whereas dominant negative R-Ras reduced adhesion of the adherent cell line CHO. Although R-Ras was shown to enhance integrin affinity5, this effect was not consistently observed6,7. These contradictory findings could be explained by the fact that R-Ras may activate integrins indirectly through antagonizing H-Ras-mediated integrin inhibition6.Recent findings suggest that R-Ras stimulates adhesion through the regulation of integrin internalization into Rab11-positive endosomes8. Now, the data of Sandri et al.2 support this model. The authors addressed the question on how R-Ras regulates cell adhesion of endothelial cells by performing a yeast-two-hybrid screen using constitutively-active R-Ras as bait. The screen revealed that RIN2 is a major R-Ras-interacting protein. RIN proteins (RIN1, 2 and 3) are downstream effectors of Ras GTPases that function as GEFs for Rab59, a GTPase that regulates endocytosis. RIN1 was shown to mediate the stimulation of EGF receptor-mediated endocytosis by H-Ras through the activation of Rab510. Surprisingly, Sandri et al. found that R-Ras dramatically impaired the Rab5 exchange activity of RIN2, while H-Ras had no effect. However, RIN2 was still able to specifically bind active Rab5. These data suggest that active R-Ras, RIN2 and active Rab5 form a signaling complex. Accordingly, Sandri et al. show that endogenous R-Ras, RIN2 and Rab5 are indeed found in a complex in endothelial cells. While active R-Ras and RIN2 colocalize at nascent focal contacts and on intracellular vesicles, colocalization with Rab5 takes place on endosomes. The deletion of either the Ras- or the Rab5-binding domains of RIN2 prevented the colocalization of the trio. Thus, RIN2 appears to facilitate the transport of active R-Ras to Rab5-positive endosomes. What is the functional relevance of these interactions? Sandri et al. show that silencing of endogenous RIN2 impaired the increase in adhesion induced by active R-Ras and by Rab5. A similar effect was obtained upon expression of RIN2 deletion mutants lacking Ras- or Rab5-binding domains. These data strongly suggest that the adaptor function of RIN2 in connecting R-Ras and Rab5 regulates endothelial cell adhesion to the ECM. But what is the mechanism? Previous work has shown that the pro-adhesive activity of active R-Ras is linked to its ability to regulate β1 integrin endocytosis8. Sandri et al. confirm these data by showing that silencing of R-Ras or RIN2 decreases the rate of endocytosis of active ECM-engaged β1 integrins. In addition, the authors set a step further as they show that the signaling complex R-Ras/RIN2/Rab5 mediates basal Rac1 GTPase activation. Rac1 regulates actin dynamics and ruffle formation at the leading edge of migrating cells and its activity is essential for cell adhesion and migration. TIAM-1-mediated activation of Rac1 on endosomes and subsequent polarized transport to the plasma membrane has been proposed as a way to restrict Rac activity to sites of membrane protrusion11,12. In line with this model, Sandri et al. show that active R-Ras and RIN2 colocalize with Rac1 on endosomes and that the endosomal Rac GEF TIAM-1 is necessary for R-Ras- and RIN2-induced cell adhesion.Altogether, the data of Sandri et al. support a model in which, integrin-activated R-Ras recruits RIN2 to focal adhesions and induces RIN2 conversion from a Rab5 GEF to a Rab5-docking protein. Subsequently, the complex promotes the endocytosis of ECM-engaged integrins and moves to early endosomes where R-Ras activates the TIAM-1/Rac1 pathway13. Active Rac1 translocates to the plasma membrane where it promotes actin polymerization and formation of new focal contacts (Figure 1).Open in a separate windowFigure 1Model proposed by Sandri et al.2 for the regulation of focal adhesion dynamics by R-Ras. (1) R-Ras is activated by ECM-engaged integrins, recruits RIN2 and converts it from a Rab5 GEF to a Rab5 adaptor; (2) RIN2 binding to active Rab5 mediates the endocytosis of integrins and the transport of active R-Ras to endosomes; (3) R-Ras contributes to the activation of the Rac1 GEF TIAM-1, which then activates Rac1; (4) Active Rac1 translocates to the plasma membrane and promotes actin polymerization and formation of new focal contacts.By bridging active R-Ras and Rab5, RIN2 combines two processes essential for cell adhesion: (1) focal contact dynamics through the internalization of ECM-engaged integrins; and (2) local Rac1 activation to ensure actin polymerization at lamellipodia. Similarly, RIN2 also connects H-Ras and Rab5 in the internalization of the epithelial cell-cell adhesion molecule E-cadherin14. Thus, RIN2 appears to be a universal effector of Ras-induced endocytosis of membrane receptors.Interestingly, the phenotype of a family with a homozygous mutation in RIN2 was recently described15. The affected individuals showed diverse abnormalities related to a defective connective tissue. Indeed, ultrastructural analysis of the skin showed an abnormal morphology of collagen fibrils. Collagen is a ligand for β1 integrins. Through simultaneous binding to collagen and to the intracellular cytoskeleton, integrins contribute to the assembly of the ECM by transmitting contraction forces from the cell to the ECM. It is tempting to speculate that the phenotype of the patients lacking RIN2 is due to a deficient β1 integrin function as found by Sandri et al. in their in vitro analysis. In addition, these patients bruise easily and present prolonged bleeding, which could be caused by deficient wound healing of blood vessels as a consequence of impaired R-Ras signaling.It should be noted, however, that R-Ras knockout mice have no major defects in vascular development but respond with increased angiogenesis to stress conditions such as tumor implantation4. On the contrary, the in vitro study by Sandri et al. suggests that R-Ras deficiency results in decreased endothelial cell migration. Further research is needed to clarify the role of R-Ras in angiogenesis. Likewise, it will be interesting to study vascular responses in RIN2-deficient mice in comparison to R-Ras knockout mice.  相似文献   

2.
The small GTPase Rab5, which cycles between GDP-bound inactive and GTP-bound active forms, plays essential roles in membrane budding and trafficking in the early endocytic pathway. Rab5 is activated by various vacuolar protein sorting 9 (VPS9) domain-containing guanine nucleotide exchange factors. Rab21, Rab22, and Rab31 (members of the Rab5 subfamily) are also involved in the trafficking of early endosomes. Mechanisms controlling the activation Rab5 subfamily members remain unclear. RIN (Ras and Rab interactor) represents a family of multifunctional proteins that have a VPS9 domain in addition to Src homology 2 (SH2) and Ras association domains. We investigated whether RIN family members act as guanine nucleotide exchange factors (GEFs) for the Rab5 subfamily on biochemical and cell morphological levels. RIN3 stimulated the formation of GTP-bound Rab31 in cell-free and in cell GEF activity assays. RIN3 also formed enlarged vesicles and tubular structures, where it colocalized with Rab31 in HeLa cells. In contrast, RIN3 did not exhibit any apparent effects on Rab21. We also found that serine to alanine substitutions in the sequences between SH2 and RIN family homology domain of RIN3 specifically abolished its GEF action on Rab31 but not Rab5. We examined whether RIN3 affects localization of the cation-dependent mannose 6-phosphate receptor (CD-MPR), which is transported between trans-Golgi network and endocytic compartments. We found that RIN3 partially translocates CD-MPR from the trans-Golgi network to peripheral vesicles and that this is dependent on its Rab31-GEF activity. These results indicate that RIN3 specifically acts as a GEF for Rab31.  相似文献   

3.
The small GTPase Rab5 plays a key role in early endocytic pathway, and its activation requires guanine-nucleotide exchange factors (GEFs). Rab5-GEFs share a conserved VPS9 domain for the GEF action, and RIN3 containing additional domains, such as Src-homology 2, RIN-family homology (RH), and Ras-association (RA), was identified as a new Rab5-GEF. However, precise functions of the additional domains and the activation mechanism of RIN3 remain unknown. Here, we found tyrosine-phosphorylation signals are involved in the Rab5-GEF activation. Treatment of HeLa cells with pervanadate translocates RIN3 from cytoplasm to the Rab5-positive vesicles. This RIN3 translocation was applied to various mutants lacking each domain of RIN3. Our present results suggest that a Ras GTPase(s) activated by tyrosine-phosphorylation signals interacts with the inhibitory RA domain, resulting in an active conformation of RIN3 as a Rab5-GEF and that RIN-unique RH domain constitutes a Rab5-binding region for the progress of GEF action.  相似文献   

4.
E-cadherin is a key cell-cell adhesion molecule at adherens junctions (AJs) and undergoes endocytosis when AJs are disrupted by the action of an extracellular signal, such as hepatocyte growth factor (HGF)/scatter factor. Rab5 small G protein has been implicated in the HGF-induced endocytosis of E-cadherin, but the molecular mechanism for the regulation of Rab5 activity remains unknown. We first studied this mechanism by using the cell-free assay system for the endocytosis of E-cadherin of the AJ-enriched fraction from rat livers. HGF induced activation of Ras small G protein, which then bound to RIN2, a Rab5 GDP/GTP exchange factor with the Vps9p-like guanine nucleotide exchange factor and Ras association domains, and activated it. Activated RIN2 then activated Rab5, eventually inducing the endocytosis of E-cadherin. We then studied whether RIN2 was involved in the HGF-induced endocytosis of E-cadherin in intact Madin-Darby canine kidney cells. RIN2 localized at the cell-cell adhesion sites, and its guanine nucleotide exchange factor activity was required for the HGF-induced endocytosis of E-cadherin in Madin-Darby canine kidney cells. These results indicate that RIN2 connects Ras to Rab5 in the HGF-induced endocytosis of E-cadherin.  相似文献   

5.
Mutations in the ALS2 gene cause a number of recessive motor neuron diseases, indicating that the ALS2 protein (ALS2/alsin) is vital for motor neurons. ALS2 acts as a guanine nucleotide exchange factor (GEF) for Rab5 (Rab5GEF) and is involved in endosome dynamics. However, the spatiotemporal regulation of the ALS2-mediated Rab5 activation is unclear. Here we identified an upstream activator for ALS2 and showed a functional significance of the ALS2 activation in endosome dynamics. ALS2 preferentially interacts with activated Rac1. In the cells activated Rac1 recruits cytoplasmic ALS2 to membrane ruffles and subsequently to nascent macropinosomes via Rac1-activated macropinocytosis. At later endocytic stages macropinosomal ALS2 augments fusion of the ALS2-localized macropinosomes with the transferrin-positive endosomes, depending on the ALS2-associated Rab5GEF activity. These results indicate that Rac1 promotes the ALS2 membranous localization, thereby rendering ALS2 active via Rac1-activated endocytosis. Thus, ALS2 is a novel Rac1 effector and is involved in Rac1-activated macropinocytosis. All together, loss of ALS2 may perturb macropinocytosis and/or the following membrane trafficking, which gives rise to neuronal dysfunction in the ALS2-linked motor neuron diseases.  相似文献   

6.
RIN1 was originally identified by its ability to inhibit activated Ras and likely participates in multiple signaling pathways because it binds c-ABL and 14-3-3 proteins, in addition to Ras. RIN1 also contains a region homologous to the catalytic domain of Vps9p-like Rab guanine nucleotide exchange factors (GEFs). Here, we show that this region is necessary and sufficient for RIN1 interaction with the GDP-bound Rabs, Vps21p, and Rab5A. RIN1 is also shown to stimulate Rab5 guanine nucleotide exchange, Rab5A-dependent endosome fusion, and EGF receptor-mediated endocytosis. The stimulatory effect of RIN1 on all three of these processes is potentiated by activated Ras. We conclude that Ras-activated endocytosis is facilitated, in part, by the ability of Ras to directly regulate the Rab5 nucleotide exchange activity of RIN1.  相似文献   

7.
The small GTPase Rab4 is involved in endocytosis through sorting and recycling early endosomes. To better understand the role of Rab4 in regulation of vesicular trafficking, we searched for effectors that specifically interact with Rab4-Q67L, the GTP-bound form of Rab4. We cloned an ubiquitous 80-kDa protein, identical to CD2-associated protein/Cas ligand with multiple SH3 domains (CD2AP/CMS), that interacts with Rab4-Q67L in the yeast two-hybrid system and in vitro . CD2AP/CMS expressed in mammalian cells was localized to punctate structures and along actin filaments. None of the known markers of early endosomes [Early Endosomes Antigen 1 (EEA1), Rab5 and Rab11] colocalized with the CD2AP/CMS-positive vesicles. However, coexpression of Rab4-Q67L with CD2AP/CMS induces a significant enlargement of EEA1-positive early endosomes. Rab4, CD2AP/CMS and Rab7 colocalized in these modified endosomes. Coexpression of c-Cbl and CD2AP/CMS also resulted in an enlargement of early endosomes. Using various truncated forms of CD2AP/CMS, we demonstrate that early endosomes enlargement requires that CD2AP/CMS interacts with both Rab4 and c-Cbl. The expression of a truncated form of CD2AP/CMS that retains the ability to interact with Rab4 but not c-Cbl inhibits ligand-induced PDGF receptor degradation. We propose that CD2AP/CMS, through interactions with Rab4 and c-Cbl, controls early endosome morphology and may play a role in traffic between early and late endosomes, and thus in the degradative pathway .  相似文献   

8.
Rab GTPases are regulators of membrane trafficking that cycle between active (GTP-bound) and inactive (GDP-bound) states. In this study, we report the identification of a new human Rab5 guanine nucleotide exchange factor (GEF), which we have named RAP6 (Rab5-activating protein 6). RAP6 contains a Rab5 GEF and a Ras GAP domain. We show that the Vps9 domain is sufficient for the interaction of RAP6 with GDP-bound Rab5 and that RAP6 stimulates Rab5 guanine nucleotide exchange. We also find that the Ras GAP domain of RAP6 shows GAP activity for Ras. Immunofluorescence experiments reveal that RAP6 is associated with plasma membrane and small intracellular vesicles that also contain Rab5. Additionally, the overexpression of RAP6 affects both fluid phase and receptor-mediated endocytosis. This study is the first to show that RAP6 is a novel regulator of endocytosis that exhibits GEF activity specific for Rab5 and GAP activity specific for Ras.  相似文献   

9.
Structural basis for recruitment of RILP by small GTPase Rab7   总被引:1,自引:0,他引:1  
Wu M  Wang T  Loh E  Hong W  Song H 《The EMBO journal》2005,24(8):1491-1501
Rab7 regulates vesicle traffic from early to late endosomes, and from late endosomes to lysosomes. The crystal structure of Rab7-GTP in complex with the Rab7 binding domain of RILP reveals that Rab7 interacts with RILP specifically via two distinct areas, with the first one involving the switch and interswitch regions and the second one consisting of RabSF1 and RabSF4. Disruption of these interactions by mutations abrogates late endosomal/lysosomal targeting of Rab7 and RILP. The Rab7 binding domain of RILP forms a coiled-coil homodimer with two symmetric surfaces to interact with two separate Rab7-GTP molecules, forming a dyad configuration of Rab7-RILP(2)-Rab7. Mutations that disrupt RILP dimerization also abolish its interactions with Rab7-GTP and late endosomal/lysosomal targeting, suggesting that the dimeric form of RILP is a functional unit. Structural comparison suggests that the combined use of RabSF1 and RabSF4 with the switch regions may be a general mode of action for most Rab proteins in regulating membrane trafficking.  相似文献   

10.
The small GTPase Rab7 promotes fusion events between late endosomes and lysosomes. Rab7 activity is regulated by extrinsic signals, most likely via effects on its guanine nucleotide exchange factor (GEF) or GTPase-activating protein (GAP). Based on their homology to the yeast proteins that regulate the Ypt7 GTP binding state, TBC1D15, and mammalian Vps39 (mVps39) have been suggested to function as the Rab7 GAP and GEF, respectively. We developed an effector pull-down assay to test this model. TBC1D15 functioned as a Rab7 GAP in cells, reducing Rab7 binding to its effector protein RILP, fragmenting the lysosome, and conferring resistance to growth factor withdrawal-induced cell death. In a cellular context, TBC1D15 GAP activity was selective for Rab7. TBC1D15 overexpression did not inhibit transferrin internalization or recycling, Rab7-independent processes that require Rab4, Rab5, and Rab11 activation. TBC1D15 was thus renamed Rab7-GAP. Contrary to expectations for a Rab7 GEF, mVps39 induced lysosomal clustering without increasing Rab7 GTP binding. Moreover, a dominant-negative mVps39 mutant fragmented the lysosome and promoted growth factor independence without decreasing Rab7-GTP levels. These findings suggest that a protein other than mVps39 serves as the Rab7 GEF. In summary, although only TBC1D15/Rab7-GAP altered Rab7-GTP levels, both Rab7-GAP and mVps39 regulate lysosomal morphology and play a role in maintaining growth factor dependence.  相似文献   

11.
The small GTPases, Rab5 and Rac, are essential for endocytosis and actin remodeling, respectively. Coordination of these processes is critical to achieve spatial restriction of intracellular signaling, which is essential for a variety of polarized functions. Here, we show that clathrin- and Rab5-mediated endocytosis are required for the activation of Rac induced by motogenic stimuli. Rac activation occurs on early endosomes, where the RacGEF Tiam1 is also recruited. Subsequent recycling of Rac to the plasma membrane ensures localized signaling, leading to the formation of actin-based migratory protrusions. Thus, membrane trafficking of Rac is required for the spatial resolution of Rac-dependent motogenic signals. We further demonstrate that a Rab5-to-Rac circuitry controls the morphology of motile mammalian tumor cells and primordial germinal cells during zebrafish development, suggesting that this circuitry is relevant for the regulation of migratory programs in various cells, in both in vitro settings and whole organisms.  相似文献   

12.
Sorting endosomes and the endocytic recycling compartment are critical intracellular stores for the rapid recycling of internalized membrane receptors to the cell surface in multiple cell types. However, the molecular mechanisms distinguishing fast receptor recycling from sorting endosomes and slow receptor recycling from the endocytic recycling compartment remain poorly understood. We previously reported that Rab15 differentially regulates transferrin receptor trafficking through sorting endosomes and the endocytic recycling compartment, suggesting a role for distinct Rab15-effector interactions at these endocytic compartments. In this study, we identified the novel protein Rab15 effector protein (REP15) as a binding partner for Rab15-GTP. REP15 is compartment specific, colocalizing with Rab15 and Rab11 on the endocytic recycling compartment but not with Rab15, Rab4, or early endosome antigen 1 on sorting endosomes. REP15 interacts directly with Rab15-GTP but not with Rab5 or Rab11. Consistent with its localization, REP15 overexpression and small interfering RNA-mediated depletion inhibited transferrin receptor recycling from the endocytic recycling compartment, without affecting receptor entry into or recycling from sorting endosomes. Our data identify REP15 as a compartment-specific protein for receptor recycling from the endocytic recycling compartment, highlighting that the rapid and slow modes of transferrin receptor recycling are mechanistically distinct pathways.  相似文献   

13.
When expressed in epithelial cells, cytohesin-2/ARNO, a guanine nucleotide exchange factor (GEF) for ARF small GTPases, causes a robust migration response. Recent evidence suggests that cytohesin-2/ARNO acts downstream of small the GTPase R-Ras to promote spreading and migration. We hypothesized that cytohesin-2/ARNO could transmit R-Ras signals by regulating the recycling of R-Ras through ARF activation. We found that Eps15-homology domain 1 (EHD1), a protein that associates with the endocytic recycling compartment (ERC), colocalizes with active R-Ras in transiently expressed HeLa cells. In addition, we show that EHD1-positive recycling endosomes are a novel compartment for cytohesin-2/ARNO. Knockdown or expression of GEF-inactive (E156K) cytohesin-2/ARNO causes R-Ras to accumulate on recycling endosomes containing EHD1 and inhibits cell spreading. E156K-ARNO also causes a reduction in focal adhesion size and number. Finally, we demonstrate that R-Ras/ARNO signaling is required for recycling of α5-integrin and R-Ras to the plasma membrane. These data establish a role for cytohesin-2/ARNO as a regulator of R-Ras and integrin recycling and suggest that ARF-regulated trafficking of R-Ras is required for R-Ras–dependent effects on spreading and adhesion formation.  相似文献   

14.
Rab conversion as a mechanism of progression from early to late endosomes   总被引:38,自引:0,他引:38  
Rink J  Ghigo E  Kalaidzidis Y  Zerial M 《Cell》2005,122(5):735-749
The mechanisms of endosome biogenesis and maintenance are largely unknown. The small GTPases Rab 5 and Rab 7 are key determinants of early and late endosomes, organizing effector proteins into specific membrane subdomains. Whether such Rab machineries are indefinitely maintained on membranes or can disassemble in the course of cargo transport is an open question. Here, we combined novel image-analysis algorithms with fast live-cell imaging. We found that the level of Rab 5 dynamically fluctuates on individual early endosomes, linked by fusion and fission events into a network in time. Within it, degradative cargo concentrates in progressively fewer and larger endosomes that migrate from the cell periphery to the center where Rab 5 is rapidly replaced with Rab 7. The class C VPS/HOPS complex, an established GEF for Rab 7, interacts with Rab 5 and is required for Rab 5-to-Rab 7 conversion. Our results reveal unexpected dynamics of Rab domains and suggest Rab conversion as the mechanism of cargo progression between early and late endosomes.  相似文献   

15.
Adult hematopoietic progenitor cells (HPCs) are maintained by highly coordinated signals in the bone marrow. The molecular mechanisms linking intracellular signaling network of HPCs with their microenvironment remain poorly defined. The Rho family GTPase Rac1/Rac2 has previously been implicated in cell functions involved in HPC maintenance, including adhesion, migration, homing, and mobilization. In the present studies we have identified R-Ras, a member of the Ras family, as a key signal mediator required for Rac1/Rac2 activation. We found that whereas Rac1 activity is up-regulated upon stem cell factor, integrin, or CXCL12 stimulation, R-Ras activity is inversely up-regulated. Expression of a constitutively active R-Ras mutant resulted in down-regulation of Rac1-activity whereas deletion of R-Ras led to an increase in Rac1/Rac2 activity and signaling. R-Ras(-/-) HPCs displayed a constitutively assembled cortical actin structure and showed increased directional migration. Rac1/Rac2 inhibition reversed the migration phenotype of R-Ras(-/-) HPCs, similar to that by expressing an R-Ras active mutant. Furthermore, R-Ras(-/-) mice showed enhanced responsiveness to G-CSF for HPC mobilization and exhibited decreased bone marrow homing. Transplantation experiments indicate that the R-Ras deficiency-induced HPC mobilization is a HPC intrinsic property. These results indicate that R-Ras is a critical regulator of Rac signaling required for HPC migration, homing, and mobilization.  相似文献   

16.
Directional cell motility is a complex process requiring orchestration of signals from diverse cell adhesion receptors for proper organization of neuronal groups in the brain. The L1 cell adhesion molecule potentiates integrin-dependent migration of neuronal cells and stimulates integrin endocytosis but its mechanism of action is unclear. The hypothesis was investigated that L1 stimulates cell motility by modulating surface levels of integrins through intracellular trafficking using a model cell system. Antibody-induced clustering of L1, which mimics ligand binding, induced formation of cell surface complexes of L1 and beta1 integrins in L1-expressing HEK293 cells. L1 formed cell surface complexes with integrin beta1 and alpha3 subunits but not with integrin alpha1. Following cell surface clustering, beta1 integrins and L1 became rapidly internalized into Rab5+ early endosomes. Internalization of L1 and beta1 integrins was prevented by treatment with monodansyl cadaverine (MDC), an inhibitor of clathrin-dependent endocytosis, and by deletion of the AP2/clathrin binding motif (RSLE) from the L1 cytoplasmic domain. MDC treatment coordinately inhibited L1-potentiated haptotactic migration of HEK293 cells to fibronectin in Transwell assays. These results suggested that downregulation of adhesive complexes of L1 and beta1 integrin at the plasma membrane by clathrin-mediated endocytosis is a potential mechanism for enhancing cell motility.  相似文献   

17.
The rapid modulation of ligand-binding affinity ("activation") is a central property of the integrin family of cell adhesion receptors. The small GTP-binding protein Ras and its downstream effector kinase Raf-1 suppress integrin activation. In this study we explored the relationship between Ras and the closely related small GTP-binding protein R-Ras in modulating the integrin affinity state. We found that R-Ras does not seem to be a direct activator of integrins in Chinese hamster ovary cells. However, we observed that GTP-bound R-Ras strongly antagonizes the Ras/Raf-initiated integrin suppression pathway. Furthermore, this reversal of the Ras/Raf suppressor pathway does not seem to be via a competition between Ras and R-Ras for common downstream effectors or via an inhibition of Ras/Raf-induced MAP kinase activation. Thus, R-Ras and Ras may act in concert to regulate integrin affinity via the activation of distinct downstream effectors.  相似文献   

18.
The Ras family GTPase, R-Ras, elicits important integrin-dependent cellular behaviors such as adhesion, spreading and migration. While oncogenic Ras GTPases and R-Ras share extensive sequence homology, R-Ras induces a distinct set of cellular behaviors. To explore the structural basis for these differences, we asked whether the unique N-terminal 26 amino acid extension of R-Ras was responsible for R-Ras-specific signaling events. Using a 32D mouse myeloid cell line, we show that full-length R-Ras activates Rac and induces Rac-dependent cell spreading. In contrast, truncated R-Ras lacking its first 26 amino acids fails to activate Rac, resulting in reduced cell spreading. Truncated R-Ras also stimulates more beta3 integrin-dependent cell migration than full-length R-Ras, suggesting that the N-terminus may negatively regulate cell movement. However, neither the subcellular localization of R-Ras nor its effects on cell adhesion are affected by the presence or absence of the N-terminus. These results indicate that the N-terminus of R-Ras positively regulates specific R-Ras functions such as Rac activation and cell spreading but negatively regulates R-Ras-mediated cell migration.  相似文献   

19.
Activated epidermal growth factor receptor (EGFR) continues to signal in the early endosome, but how this signaling process is regulated is less well understood. Here we describe a protein complex consisting of TIP30, endophilin B1, and acyl-CoA synthetase long chain family member 4 (ACSL4) that interacts with Rab5a and regulates EGFR endocytosis and signaling. These proteins are required for the proper endocytic trafficking of EGF-EGFR. Knockdown of TIP30, ACSL4, endophilin B1, or Rab5a in human liver cancer cells or genetic knock-out of Tip30 in mouse primary hepatocytes results in the trapping of EGF-EGFR complexes in early endosomes, leading to delayed EGFR degradation and prolonged EGFR signaling. Furthermore, we show that Rab5a colocalizes with vacuolar (H(+))-ATPases (V-ATPases) on transport vesicles. The TIP30 complex facilitates trafficking of Rab5a and V-ATPases to EEA1-positive endosomes in response to EGF. Together, these results suggest that this TIP30 complex regulates EGFR endocytosis by facilitating the transport of V-ATPases from trans-Golgi network to early endosomes.  相似文献   

20.

Background

Rabex-5 is a guanine nucleotide exchange factor (GEF) that specifically activates Rab5, i.e., converting Rab5-GDP to Rab5-GTP, through two distinct pathways to promote endosome fusion and endocytosis. The direct pathway involves a pool of membrane-associated Rabex-5 that targets to the membrane via an early endosomal targeting (EET) domain. The indirect pathway, on the other hand, involves a cytosolic pool of Rabex-5/Rabaptin-5 complex. The complex is recruited to the membrane via Rabaptin-5 binding to Rab5-GTP, suggesting a positive feedback mechanism. The relationship of these two pathways for Rab5 activation in the cell is unclear.

Methodology/Principal Findings

We dissect the relative contribution of each pathway to Rab5 activation via mathematical modeling and kinetic analysis in the cell. These studies show that the indirect pathway constitutes a positive feedback loop for converting Rab5-GDP to Rab5-GTP on the endosomal membrane and allows sensitive regulation of endosome fusion activity by the levels of Rab5 and Rabex-5 in the cell. The onset of this positive feedback effect, however, contains a threshold, which requires above endogenous levels of Rab5 or Rabex-5 in the cell. We term this novel phenomenon “delayed response”. The presence of the direct pathway reduces the delay by increasing the basal level of Rab5-GTP, thus facilitates the function of the Rabex-5/Rabaptin-5-mediated positive feedback loop.

Conclusion

Our data support the mathematical model. With the model''s guidance, the data reveal the affinity of Rabex-5/Rabaptin-5/Rab5-GTP interaction in the cell, which is quantitatively related to the Rabex-5 concentration for the onset of the indirect positive feedback pathway. The presence of the direct pathway and increased Rab5 concentration can reduce the Rabex-5 concentration required for the onset of the positive feedback loop. Thus the direct and indirect pathways cooperate in the regulation of early endosome fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号