首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common known cause of Parkinson''s disease (PD). The clinical features of LRRK2 PD are indistinguishable from idiopathic PD, with accumulation of α-synuclein and/or tau and/or ubiquitin in intraneuronal aggregates. This suggests that LRRK2 is a key to understanding the aetiology of the disorder. Although loss-of-function does not appear to be the mechanism causing PD in LRRK2 patients, it is not clear how this protein mediates toxicity. In this study, we report that LRRK2 overexpression in cells and in vivo impairs the activity of the ubiquitin-proteasome pathway, and that this accounts for the accumulation of diverse substrates with LRRK2 overexpression. We show that this is not mediated by large LRRK2 aggregates or sequestration of ubiquitin to the aggregates. Importantly, such abnormalities are not seen with overexpression of the related protein LRRK1. Our data suggest that LRRK2 inhibits the clearance of proteasome substrates upstream of proteasome catalytic activity, favouring the accumulation of proteins and aggregate formation. Thus, we provide a molecular link between LRRK2, the most common known cause of PD, and its previously described phenotype of protein accumulation.  相似文献   

2.
Dominant mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent molecular lesions so far found in Parkinson's disease (PD), an age-dependent neurodegenerative disorder affecting dopaminergic (DA) neuron. The molecular mechanisms by which mutations in LRRK2 cause DA degeneration in PD are not understood. Here, we show that both human LRRK2 and the Drosophila orthologue of LRRK2 phosphorylate eukaryotic initiation factor 4E (eIF4E)-binding protein (4E-BP), a negative regulator of eIF4E-mediated protein translation and a key mediator of various stress responses. Although modulation of the eIF4E/4E-BP pathway by LRRK2 stimulates eIF4E-mediated protein translation both in vivo and in vitro, it attenuates resistance to oxidative stress and survival of DA neuron in Drosophila. Our results suggest that chronic inactivation of 4E-BP by LRRK2 with pathogenic mutations deregulates protein translation, eventually resulting in age-dependent loss of DA neurons.  相似文献   

3.
  相似文献   

4.
Parkinson's disease (PD) results from progressive degeneration of dopaminergic neurons. Most PD cases are sporadic, but some have pathogenic mutation in the individual genes. Mutation of the leucine-rich repeat kinase-2 (LRRK2) gene is associated with familial and sporadic PD, as exemplified by G2019S substitution. While constitutive expression of mutant LRRK2 in transgenic mice fails to induce neuron death, transient expression of the disease gene by viral delivery causes a substantial loss of dopaminergic neurons in mice. To further assess LRRK2 pathogenesis, we created inducible transgenic rats expressing human LRRK2 with G2019S substitution. Temporal overexpression of LRRK2(G2019S) in adult rats impaired dopamine reuptake by dopamine transporter (DAT) and thus enhanced locomotor activity, the phenotypes that were not observed in transgenic rats constitutively expressing the gene throughout life time. Reduced DAT binding activity is an early sign of dopaminergic dysfunction in asymptomatic subjects carrying pathogenic mutation in LRRK2. Our transgenic rats recapitulated the initiation process of dopaminergic dysfunction caused by pathogenic mutation in LRRK2. Inducible transgenic approach uncovered phenotypes that may be obscured by developmental compensation in constitutive transgenic rats. Finding in inducible LRRK2 transgenic rats would guide developing effective strategy in transgenic studies: Inducible expression of transgene may induce greater phenotypes than constitutive gene expression, particularly in rodents with short life time.  相似文献   

5.
Mutations in leucine‐rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD). The LRRK2 physiological and pathological function is still debated. However, different experimental evidence based on LRRK2 cellular localization and LRRK2 protein interactors suggests that LRRK2 may be part and regulate a protein network modulating vesicle dynamics/trafficking. Interestingly, the synaptic vesicle protein SV2A is part of this protein complex. Importantly, SV2A is the binding site of the levetiracetam (LEV), a compound largely used in human therapy for epilepsy treatment. The binding of LEV to SV2A reduces the neuronal firing by the modulation of vesicle trafficking although by an unclear molecular mechanism. In this short communication, we have analysed the interaction between the LRRK2 and SV2A pathways by LEV treatment. Interestingly, LEV significantly counteracts the effect of LRRK2 G2019S pathological mutant expression in three different cellular experimental models. Our data strongly suggest that LEV treatment may have a neuroprotective effect on LRRK2 pathological mutant toxicity and that LEV repositioning could be a viable compound for PD treatment.  相似文献   

6.
7.
Mutations in the leucine‐rich repeat kinase 2 (LRRK2) are associated with Parkinson's disease, chronic inflammation and mycobacterial infections. Although there is evidence supporting the idea that LRRK2 has an immune function, the cellular function of this kinase is still largely unknown. By using genetic, pharmacological and proteomics approaches, we show that LRRK2 kinase activity negatively regulates phagosome maturation via the recruitment of the Class III phosphatidylinositol‐3 kinase complex and Rubicon to the phagosome in macrophages. Moreover, inhibition of LRRK2 kinase activity in mouse and human macrophages enhanced Mycobacterium tuberculosis phagosome maturation and mycobacterial control independently of autophagy. In vivo, LRRK2 deficiency in mice resulted in a significant decrease in M. tuberculosis burdens early during the infection. Collectively, our findings provide a molecular mechanism explaining genetic evidence linking LRRK2 to mycobacterial diseases and establish an LRRK2‐dependent cellular pathway that controls M. tuberculosis replication by regulating phagosome maturation.  相似文献   

8.
(G2019S) mutation of leucine-rich repeat kinase 2 (LRRK2) is the most common genetic cause of both familial and sporadic Parkinson's disease (PD) cases. Twelve- to sixteen-month-old (G2019S) LRRK2 transgenic mice prepared by us displayed progressive degeneration of substantia nigra pars compacta (SNpc) dopaminergic neurons and parkinsonism phenotypes of motor dysfunction. LRRK2 is a member of mixed lineage kinase subfamily of mitogen-activated protein kinase kinase kinases (MAPKKKs). We hypothesized that (G2019S) mutation augmented LRRK2 kinase activity, leading to overphosphorylation of downstream MAPK kinase (MKK) and resulting in activation of neuronal death signal pathway. Consistent with our hypothesis, (G2019S) LRRK2 expressed in HEK 293 cells exhibited an augmented kinase activity of phosphorylating MAPK kinase 4 (MKK4) at Ser(257), and protein expression of active phospho-MKK4(Ser257) was upregulated in the SN of (G2019S) LRRK2 transgenic mice. Protein level of active phospho-JNK(Thr183/Tyr185) and phospho-c-Jun(Ser63), downstream targets of phospho-MKK4(Ser257), was increased in the SN of (G2019S) LRRK2 mice. Upregulated mRNA expression of pro-apoptotic Bim and FasL, target genes of phospho-c-Jun(Ser63), and formation of active caspase-9, caspase-8 and caspase-3 were also observed in the SN of (G2019S) LRRK2 transgenic mice. Our results suggest that mutant (G2019S) LRRK2 activates MKK4-JNK-c-Jun pathway in the SN and causes the resulting degeneration of SNpc dopaminergic neurons in PD transgenic mice.  相似文献   

9.
Genetic studies show that LRRK2, and not its closest paralogue LRRK1, is linked to Parkinson's disease. To gain insight into the molecular and cellular basis of this discrepancy, we searched for LRRK1‐ and LRRK2‐specific cellular processes by identifying their distinct interacting proteins. A protein microarray‐based interaction screen was performed with recombinant 3xFlag‐LRRK1 and 3xFlag‐LRRK2 and, in parallel, co‐immunoprecipitation followed by mass spectrometry was performed from SH‐SY5Y neuroblastoma cell lines stably expressing 3xFlag‐LRRK1 or 3xFlag‐LRRK2. We identified a set of LRRK1‐ and LRRK2‐specific as well as common interactors. One of our most prominent findings was that both screens pointed to epidermal growth factor receptor (EGF‐R) as a LRRK1‐specific interactor, while 14‐3‐3 proteins were LRRK2‐specific. This is consistent with phosphosite mapping of LRRK1, revealing phosphosites outside of 14‐3‐3 consensus binding motifs. To assess the functional relevance of these interactions, SH‐SY5Y‐LRRK1 and ‐LRRK2 cell lines were treated with LRRK2 kinase inhibitors that disrupt 14‐3‐3 binding, or with EGF, an EGF‐R agonist. Redistribution of LRRK2, not LRRK1, from diffuse cytoplasmic to filamentous aggregates was observed after inhibitor treatment. Similarly, EGF induced translocation of LRRK1, but not of LRRK2, to endosomes. Our study confirms that LRRK1 and LRRK2 can carry out distinct functions by interacting with different cellular proteins.

  相似文献   


10.
The R1441C mutation of LRRK2 disrupts GTP hydrolysis   总被引:5,自引:0,他引:5  
Mutations in Leucine Rich Repeat Kinase 2 (LRRK2) are the leading genetic cause of Parkinson's disease (PD). LRRK2 is predicted to contain kinase and GTPase enzymatic domains, with recent evidence suggesting that the kinase activity of LRRK2 is central to the pathogenic process associated with this protein. The GTPase domain of LRRK2 plays an important role in the regulation of kinase activity. To investigate how the GTPase domain might be related to disease, we examined the GTP binding and hydrolysis properties of wild type and a mutant form of LRRK2. We show that LRRK2 immunoprecipitated from cells has a detectable GTPase activity that is disrupted by a familial mutation associated with PD located within the GTPase domain, R1441C.  相似文献   

11.
Mutations in leucine-rich repeat kinase-2 (LRRK2) are the most common genetic cause of Parkinson’s disease (PD). The most frequent kinase-enhancing mutation is the G2019S residing in the kinase activation domain. This opens up a promising therapeutic avenue for drug discovery targeting the kinase activity of LRRK2 in PD. Several LRRK2 inhibitors have been reported to date. Here, we report a selective, brain penetrant LRRK2 inhibitor and demonstrate by a competition pulldown assay in vivo target engagement in mice.  相似文献   

12.
Parkinson's disease (PD) is one of the most common movement disorders with loss of dopaminergic neurons and the presence of Lewy bodies in certain brain areas. However, it is not clear how Lewy body (inclusion with protein aggregation) formation occurs. Mutations in leucine-rich repeat kinase 2 (LRRK2) can cause a genetic form of PD and contribute to sporadic PD with the typical Lewy body pathology. Here, we used our recently identified LRRK2 GTP-binding inhibitors as pharmacological probes to study the LRRK2-linked ubiquitination and protein aggregation. Pharmacological inhibition of GTP-binding by GTP-binding inhibitors (68 and Fx2149) increased LRRK2-linked ubiquitination predominantly via K27 linkage. Compound 68- or Fx2149 increased G2019S-LRRK2-linked ubiquitinated aggregates, which occurred through the atypical linkage types K27 and K63. Coexpression of K27R and K63R, which prevented ubiquitination via K27 and K63 linkages, reversed the effects of 68 and Fx2149. Moreover, 68 and Fx2149 also promoted G2019S-LRRK2-linked aggresome (Lewy body-like inclusion) formation via K27 and K63 linkages. These findings demonstrate that LRRK2 GTP-binding activity is critical in LRRK2-linked ubiquitination and aggregation formation. These studies provide novel insight into the LRRK2-linked Lewy body-like inclusion formation underlying PD pathogenesis.  相似文献   

13.
14.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the major genetic cause of autosomal-dominantly inherited Parkinson's disease. LRRK2 is implicated in the regulation of intracellular trafficking, neurite outgrowth and PD risk in connection with Rab7L1, a putative interactor of LRRK2. Recently, a subset of Rab GTPases have been reported as substrates of LRRK2. Here we examine the kinase activity of LRRK2 on Rab7L1 in situ in cells. Phos-tag analyses and metabolic labeling assays revealed that LRRK2 readily phosphorylates Golgi-localized wild-type Rab7L1 but not mutant forms that are distributed in the cytoplasm. In vitro assays demonstrated direct phosphorylation of Rab7L1 by LRRK2. Subsequent screening using Rab7L1 mutants harboring alanine-substitution for every single Ser/Thr residue revealed that Ser72 is a major phosphorylation site, which was confirmed by using a phospho-Ser72-specific antibody. Moreover, LRRK2 pathogenic Parkinson mutants altogether markedly enhanced the phosphorylation at Ser72. The modulation of Ser72 phosphorylation in Rab7L1 resulted in an alteration of the morphology and distribution of the trans-Golgi network. These data collectively support the involvement of Rab7L1 phosphorylation in the LRRK2-mediated cellular and pathogenetic mechanisms.  相似文献   

15.
Mutations in LRRK2, a large multi-domain protein kinase, create risk factors for Parkinson’s Disease (PD). LRRK2 has seven well-folded domains that include three N-terminal scaffold domains (NtDs) and four C-terminal domains (CtDs). In full-length inactive LRRK2 there is an additional well-folded motif, the LRR-ROC Linker, that lies between the NtDs and the CtDs. This motif, which is stabilized by hydrophobic residues in the LRR and ROC/COR-A domains, is anchored to the C-Lobe of the kinase domain. The LRR-ROC Linker becomes disordered when the NtDs are unleashed from the CtDs following activation by Rab29 or by various PD mutations. A key residue within the LRR-ROC Linker, W1295, sterically blocks access of substrate proteins. The W1295A mutant blocks cis-autophosphorylation of S1292 and reduces phosphorylation of heterologous Rab substrates. GaMD simulations show that the LRR-Linker motif, P + 1 loop and the inhibitory helix in the DYGψ motif are very stable. Finally, in full-length inactive LRRK2 ATP is bound to the kinase domain and GDP:Mg to the GTPase/ROC domain. The fundamentally different mechanisms for binding nucleotide (G-Loop vs P-Loop) are captured by these GaMD simulations. In this model, where ATP binds with low affinity (μM range) to N-Lobe capping residues, the known auto-phosphorylation sites are located in the space that is sampled by the flexible phosphates thus providing a potential mechanism for cis-autophosphorylation.  相似文献   

16.
Leucine‐rich repeat kinase 2 (LRRK2) is a large multidomain protein that is expressed in many tissues and participates in numerous biological pathways. Mutations in LRRK2 are recognized as genetic risk factors for familial Parkinson's disease (PD) and may also represent causal factors in the more common sporadic form of PD. The structure of LRRK2 comprises a combination of GTPase, kinase, and scaffolding domains. This functional diversity, combined with a potentially central role in genetic and idiopathic PD motivates significant effort to further credential LRRK2 as a therapeutic target. Here, we review the current understanding for LRRK2 function in normal physiology and PD, with emphasis on insight gained from proteomic approaches.  相似文献   

17.
Inhibition of LRRK2 kinase activity with small molecules has emerged as a potential novel therapeutic treatment for Parkinson’s disease. Herein we disclose the discovery of a 4-ethoxy-7H-pyrrolo[2,3-d]pyrimidin-2-amine series as potent LRRK2 inhibitors identified through a kinase-focused set screening. Optimization of the physicochemical properties and kinase selectivity led to the discovery of compound 7, which exhibited potent in vitro inhibition of LRRK2 kinase activity, good physicochemical properties and kinase selectivity across the kinome. Moreover, compound 7 was able to penetrate into the CNS, and in vivo pharmacology studies revealed significant inhibition of Ser935 phosphorylation in the brain of both rats (30 and 100?mg/kg) and mice (45?mg/kg) following oral administration.  相似文献   

18.
Leucine-rich repeat kinase 2 (LRRK2) has been suggested as a potential therapeutic target for Parkinson’s disease. Herein we report the discovery of 5-substituent-N-arylbenzamide derivatives as novel LRRK2 inhibitors. Extensive SAR study led to the discovery of compounds 8e, which demonstrated potent LRRK2 inhibition activity, high selectivity across the kinome, good brain exposure, and high oral bioavailability.  相似文献   

19.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease. An amino terminal cluster of constitutively phosphorylated residues, serines 860, 910, 935, 955, and 973, appears to be biologically relevant. Phosphorylation of serines 910 and 935 is regulated in response to LRRK2 kinase activity and is responsible for interaction with 14-3-3 and maintaining LRRK2 in a non-aggregated state. We examined the phosphorylation status of two other constitutive phosphorylation sites, serines 955 and 973. Treatment of LRRK2 expressing cells with the selective LRRK2 inhibitor LRRK2-IN1 revealed that, like Ser910/Ser935, phosphorylation of Ser955 and Ser973 is disrupted by acute inhibition of LRRK2 kinase activity. Additionally, phosphorylation of Ser955 and 973 is disrupted in the context of several Parkinson's disease associated mutations [R1441G/C, Y1699C, and I2020T]. We observed that modification of Ser973 is dependent on the modification of Ser910/Ser935. Ser955Ala and Ser973Ala mutations do not induce relocalization of LRRK2; however, all phosphomutants exhibited similar localization patterns when exposed to LRRK2-IN1. We conclude that the mechanisms of regulation of Ser910/935/955/973 phosphorylation are similar and physiologically relevant. These sites can be utilized as biomarkers for LRRK2 activity as well as starting points for the elucidation of upstream and downstream enzymes that regulate LRRK2.  相似文献   

20.
The effect of leucine-rich repeat kinase 2 (LRRK2) mutation I2020T on its kinase activity has been controversial, with both increased and decreased effects being reported. We conducted steady-state and pre-steady-state kinetic studies on LRRKtide and its analog LRRKtideS. Their phosphorylation differs by the rate-limiting steps: product release is rate-limiting for LRRKtide and phosphoryl transfer is rate-limiting for LRRKtideS. As a result, we observed that the I2020T mutant is more active than wild type (WT) LRRK2 for LRRKtideS phosphorylation, whereas it is less active than WT for LRRKtide phosphorylation. Our pre-steady-state kinetic data suggest that (i) the I2020T mutant accelerates the rates of phosphoryl transfer of both reactions by 3–7-fold; (ii) this increase is masked by a rate-limiting product release step for LRRKtide phosphorylation; and (iii) the observed lower activity of the mutant for LRRKtide phosphorylation is a consequence of its instability: the concentration of the active form of the mutant is 3-fold lower than WT. The I2020T mutant has a dramatically low KATP and therefore leads to resistance to ATP competitive inhibitors. Two well known DFG-out or type II inhibitors are also weaker toward the mutant because they inhibit the mutant in an unexpected ATP competitive mechanism. The I2020 residue lies next to the DYG motif of the activation loop of the LRRK2 kinase domain. Our modeling and metadynamic simulations suggest that the I2020T mutant stabilizes the DYG-in active conformation and creates an unusual allosteric pocket that can bind type II inhibitors but in an ATP competitive fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号