首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transient receptor potential melastatin 2 (TRPM2) is a Ca2+-permeable cation channel involved in physiological and pathophysiological processes linked to oxidative stress. TRPM2 channels are co-activated by intracellular Ca2+ and ADP-ribose (ADPR) but also modulated in intact cells by several additional factors. Superfusion of TRPM2-expressing cells with H2O2 or intracellular dialysis of cyclic ADPR (cADPR) or nicotinic acid adenine dinucleotide phosphate (NAADP) activates, whereas dialysis of AMP inhibits, TRPM2 whole-cell currents. Additionally, H2O2, cADPR, and NAADP enhance ADPR sensitivity of TRPM2 currents in intact cells. Because in whole-cell recordings the entire cellular machinery for nucleotide and Ca2+ homeostasis is intact, modulators might affect TRPM2 activity either directly, by binding to TRPM2, or indirectly, by altering the local concentrations of the primary ligands ADPR and Ca2+. To identify direct modulators of TRPM2, we have studied the effects of H2O2, AMP, cADPR, NAADP, and nicotinic acid adenine dinucleotide in inside-out patches from Xenopus oocytes expressing human TRPM2, by directly exposing the cytosolic faces of the patches to these compounds. H2O2 (1 mm) and enzymatically purified cADPR (10 μm) failed to activate, whereas AMP (200 μm) failed to inhibit TRPM2 currents. NAADP was a partial agonist (maximal efficacy, ∼50%), and nicotinic acid adenine dinucleotide was a full agonist, but both had very low affinities (K0.5 = 104 and 35 μm). H2O2, cADPR, and NAADP did not enhance activation by ADPR. Considering intracellular concentrations of these compounds, none of them are likely to directly affect the TRPM2 channel protein in a physiological context.  相似文献   

2.
Accumulation of d-leucine, d-allo-isoleucine, and d-valine was observed in the growth medium of a lactic acid bacterium, Lactobacillus otakiensis JCM 15040, and the racemase responsible was purified from the cells and identified. The N-terminal amino acid sequence of the purified enzyme was GKLDKASKLI, which is consistent with that of a putative γ-aminobutyrate aminotransferase from Lactobacillus buchneri. The putative γ-aminobutyrate aminotransferase gene from L. buchneri JCM 1115 was expressed in recombinant Escherichia coli and then purified to homogeneity. The enzyme catalyzed the racemization of a broad spectrum of nonpolar amino acids. In particular, it catalyzed at high rates the epimerization of l-isoleucine to d-allo-isoleucine and d-allo-isoleucine to l-isoleucine. In contrast, the enzyme showed no γ-aminobutyrate aminotransferase activity. The relative molecular masses of the subunit and native enzyme were estimated to be about 49 kDa and 200 kDa, respectively, indicating that the enzyme was composed of four subunits of equal molecular masses. The Km and Vmax values of the enzyme for l-isoleucine were 5.00 mM and 153 μmol·min−1·mg−1, respectively, and those for d-allo-isoleucine were 13.2 mM and 286 μmol·min−1·mg−1, respectively. Hydroxylamine and other inhibitors of pyridoxal 5′-phosphate-dependent enzymes completely blocked the enzyme activity, indicating the enzyme requires pyridoxal 5′-phosphate as a coenzyme. This is the first evidence of an amino acid racemase that specifically catalyzes racemization of nonpolar amino acids at the C-2 position.  相似文献   

3.
Early studies revealed that chicken embryos incubated with a rare analog of l-proline, 4-oxo-l-proline, showed increased levels of the metabolite 4-hydroxy-l-proline. In 1962, 4-oxo-l-proline reductase, an enzyme responsible for the reduction of 4-oxo-l-proline, was partially purified from rabbit kidneys and characterized biochemically. However, only recently was the molecular identity of this enzyme solved. Here, we report the purification from rat kidneys, identification, and biochemical characterization of 4-oxo-l-proline reductase. Following mass spectrometry analysis of the purified protein preparation, the previously annotated mammalian cytosolic type 2 (R)-β-hydroxybutyrate dehydrogenase (BDH2) emerged as the only candidate for the reductase. We subsequently expressed rat and human BDH2 in Escherichia coli, then purified it, and showed that it catalyzed the reversible reduction of 4-oxo-l-proline to cis-4-hydroxy-l-proline via chromatographic and tandem mass spectrometry analysis. Specificity studies with an array of compounds carried out on both enzymes showed that 4-oxo-l-proline was the best substrate, and the human enzyme acted with 12,500-fold higher catalytic efficiency on 4-oxo-l-proline than on (R)-β-hydroxybutyrate. In addition, human embryonic kidney 293T (HEK293T) cells efficiently metabolized 4-oxo-l-proline to cis-4-hydroxy-l-proline, whereas HEK293T BDH2 KO cells were incapable of producing cis-4-hydroxy-l-proline. Both WT and KO HEK293T cells also produced trans-4-hydroxy-l-proline in the presence of 4-oxo-l-proline, suggesting that the latter compound might interfere with the trans-4-hydroxy-l-proline breakdown in human cells. We conclude that BDH2 is a mammalian 4-oxo-l-proline reductase that converts 4-oxo-l-proline to cis-4-hydroxy-l-proline and not to trans-4-hydroxy-l-proline, as originally thought. We also hypothesize that this enzyme may be a potential source of cis-4-hydroxy-l-proline in mammalian tissues.  相似文献   

4.
The artificial electron donor compounds p-phenylenediamine (PD), N, N, N′, N′-tetramethyl-p-phenylenediamine (TMPD), and 2,6-dichlorophenol-indophenol (DCPIP) restored the Hill reaction and photophosphorylation in chloroplasts that had been inhibited by washing with 0.8 m tris (hydroxymethyl) aminomethane (tris) buffer, pH 8.0. The tris-wash treatment inhibited the electron transport chain between water and photosystem II and electron donation occurred between the site of inhibition and photosystem II. Photoreduction of nicotinamide adenine dinucleotide phosphate (NADP) supported by 33 μm PD plus 330 μm ascorbate was largely inhibited by 1 μm 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) while that supported by 33 μm TMPD or DCPIP plus ascorbate was relatively insensitive to DCMU. Experiments with the tris-washed chloroplasts indicated that electron donors preferentially donate electrons to photosystem II but in the presence of DCMU the donors (with the exception of PD at low concentrations) could also supply electrons after the DCMU block. The PD-supported photoreduction of NADP showed the relative inefficiency in far-red light characteristic of chloroplast reactions requiring photosystem II. With phosphorylating systems involving electron donors at low concentrations (33 μm donor plus 330 μm ascorbate) photophosphorylation, which occurred with P/e2 ratios approaching unity, was completely inhibited by DCMU but with higher concentrations of the donor systems, photophosphorylation was only partially inhibited.  相似文献   

5.
Acanthamoeba polyphaga Mimivirus, a complex virus that infects amoeba, was first reported in 2003. It is now known that its DNA genome encodes for nearly 1,000 proteins including enzymes that are required for the biosynthesis of the unusual sugar 4‐amino‐4,6‐dideoxy‐d‐glucose, also known as d‐viosamine. As observed in some bacteria, the pathway for the production of this sugar initiates with a nucleotide‐linked sugar, which in the Mimivirus is thought to be UDP‐d‐glucose. The enzyme required for the installment of the amino group at the C‐4′ position of the pyranosyl moiety is encoded in the Mimivirus by the L136 gene. Here, we describe a structural and functional analysis of this pyridoxal 5′‐phosphate‐dependent enzyme, referred to as L136. For this analysis, three high‐resolution X‐ray structures were determined: the wildtype enzyme/pyridoxamine 5′‐phosphate/dTDP complex and the site‐directed mutant variant K185A in the presence of either UDP‐4‐amino‐4,6‐dideoxy‐d‐glucose or dTDP‐4‐amino‐4,6‐dideoxy‐d‐glucose. Additionally, the kinetic parameters of the enzyme utilizing either UDP‐d‐glucose or dTDP‐d‐glucose were measured and demonstrated that L136 is efficient with both substrates. This is in sharp contrast to the structurally related DesI from Streptomyces venezuelae, whose three‐dimensional architecture was previously reported by this laboratory. As determined in this investigation,DesI shows a profound preference in its catalytic efficiency for the dTDP‐linked sugar substrate. This difference can be explained in part by a hydrophobic patch in DesI that is missing in L136. Notably, the structure of L136 reported here represents the first three‐dimensional model for a virally encoded PLP‐dependent enzyme and thus provides new information on sugar aminotransferases in general.  相似文献   

6.
2′ -Deoxymugineic acid (DMA), one of mugineic acid-family phytosiderophores (MAs), was synthesized in vitro both from l-methionine and from nicotianamine (NA) with a cell-free system derived from root tips of iron-deficient barley (Hordeum vulgare L.). The reactions producing DMA from NA needed an amino group acceptor (i.e. 2-oxoglutarate, pyruvate, or oxalacetic acid) and a reductant (i.e. NADH or NADPH). The activity of the enzymes to produce NA from l-methionine was the highest at about pH 9. This biosynthetic activity was markedly induced by iron-deficiency stress. The synthesis of NA from S-adenosyl-l-methionine was more efficient than from l-methionine. From the results with the cell-free system reported here, we propose a revised biosynthetic pathway of MAs.  相似文献   

7.
1. The formation of adenosine 5′-phosphate, guanosine 5′-phosphate and inosine 5′-phosphate from [8-14C]adenine, [8-14C]guanine and [8-14C]hypoxanthine respectively in the presence of 5-phosphoribosyl pyrophosphate and an extract from Ehrlich ascites-tumour cells was assayed by a method involving liquid-scintillation counting of the radioactive nucleotides on diethylaminoethylcellulose paper. The results obtained with guanine were confirmed by a spectrophotometric assay which was also used to assay the conversion of 6-mercaptopurine and 5-phosphoribosyl pyrophosphate into 6-thioinosine 5′-phosphate in the presence of 6-mercaptopurine phosphoribosyltransferase from these cells. 2. At pH 7·8 and 25° the Michaelis constants for adenine, guanine and hypoxanthine were 0·9 μm, 2·9 μm and 11·0 μm in the assay with radioactive purines; the Michaelis constant for guanine in the spectrophotometric assay was 2·6 μm. At pH 7·9 the Michaelis constant for 6-mercaptopurine was 10·9 μm. 3. 25 μm-6-Mercaptopurine did not inhibit adenine phosphoribosyltransferase. 6-Mercaptopurine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 4·7 μm) and hypoxanthine phosphoribosyltransferase (Ki 8·3 μm). Hypoxanthine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 3·4 μm). 4. Differences in kinetic parameters and in the distribution of phosphoribosyltransferase activities after electrophoresis in starch gel indicate that different enzymes are involved in the conversion of adenine, guanine and hypoxanthine into their nucleotides. 5. From the low values of Ki for 6-mercaptopurine, and from published evidence that ascites-tumour cells require supplies of purines from the host tissues, it is likely that inhibition of hypoxanthine and guanine phosphoribosyltransferases by free 6-mercaptopurine is involved in the biological activity of this drug.  相似文献   

8.
A UDP glucosyltransferase from Bacillus licheniformis was overexpressed, purified, and incubated with nucleotide diphosphate (NDP) d- and l-sugars to produce glucose, galactose, 2-deoxyglucose, viosamine, rhamnose, and fucose sugar-conjugated resveratrol glycosides. Significantly higher (90%) bioconversion of resveratrol was achieved with α-d-glucose as the sugar donor to produce four different glucosides of resveratrol: resveratrol 3-O-β-d-glucoside, resveratrol 4′-O-β-d-glucoside, resveratrol 3,5-O-β-d-diglucoside, and resveratrol 3,5,4′-O-β-d-triglucoside. The conversion rates and numbers of products formed were found to vary with the other NDP sugar donors. Resveratrol 3-O-β-d-2-deoxyglucoside and resveratrol 3,5-O-β-d-di-2-deoxyglucoside were found to be produced using TDP-2-deoxyglucose as a donor; however, the monoglycosides resveratrol 4′-O-β-d-galactoside, resveratrol 4′-O-β-d-viosaminoside, resveratrol 3-O-β-l-rhamnoside, and resveratrol 3-O-β-l-fucoside were produced from the respective sugar donors. Altogether, 10 diverse glycoside derivatives of the medically important resveratrol were generated, demonstrating the capacity of YjiC to produce structurally diverse resveratrol glycosides.  相似文献   

9.
Fructooligosaccharides and their anhydrides are widely used as health-promoting foods and prebiotics. Various enzymes acting on β-D-fructofuranosyl linkages of natural fructan polymers have been used to produce functional compounds. However, enzymes that hydrolyze and form α-D-fructofuranosyl linkages have been less studied. Here, we identified the BBDE_2040 gene product from Bifidobacterium dentium (α-D-fructofuranosidase and difructose dianhydride I synthase/hydrolase from Bifidobacterium dentium [αFFase1]) as an enzyme with α-D-fructofuranosidase and α-D-arabinofuranosidase activities and an anomer-retaining manner. αFFase1 is not homologous with any known enzymes, suggesting that it is a member of a novel glycoside hydrolase family. When caramelized fructose sugar was incubated with αFFase1, conversions of β-D-Frup-(2→1)-α-D-Fruf to α-D-Fruf-1,2′:2,1′-β-D-Frup (diheterolevulosan II) and β-D-Fruf-(2→1)-α-D-Fruf (inulobiose) to α-D-Fruf-1,2′:2,1′-β-D-Fruf (difructose dianhydride I [DFA I]) were observed. The reaction equilibrium between inulobiose and DFA I was biased toward the latter (1:9) to promote the intramolecular dehydrating condensation reaction. Thus, we named this enzyme DFA I synthase/hydrolase. The crystal structures of αFFase1 in complex with β-D-Fruf and β-D-Araf were determined at the resolutions of up to 1.76 Å. Modeling of a DFA I molecule in the active site and mutational analysis also identified critical residues for catalysis and substrate binding. The hexameric structure of αFFase1 revealed the connection of the catalytic pocket to a large internal cavity via a channel. Molecular dynamics analysis implied stable binding of DFA I and inulobiose to the active site with surrounding water molecules. Taken together, these results establish DFA I synthase/hydrolase as a member of a new glycoside hydrolase family (GH172).  相似文献   

10.
Studies of inhibition of rat spermidine synthase and spermine synthase   总被引:5,自引:4,他引:1  
1. S-Adenosyl-l-methionine, S-adenosyl-l-homocysteine, 5′-methylthioadenosine and a number of analogues having changes in the base, sugar or amino acid portions of the molecule were tested as potential inhibitors of spermidine synthase and spermine synthase from rat ventral prostate. 2. S-Adenosyl-l-methionine was inhibitory to these reactions, as were other nucleosides containing a sulphonium centre. The most active of these were S-adenosyl-l-ethionine, S-adenosyl-4-methylthiobutyric acid, S-adenosyl-d-methionine and S-tubercidinylmethionine, which were all comparable in activity with S-adenosylmethionine itself, producing 70–98% inhibition at 1mm concentrations. Spermine synthase was somewhat more sensitive than spermidine synthase. 3. 5′-Methylthioadenosine, 5′-ethylthioadenosine and 5′-methylthiotubercidin were all powerful inhibitors of both enzymes, giving 50% inhibition of spermine synthase at 10–15μm and 50% inhibition of spermidine synthase at 30–45μm. 4. S-Adenosyl-l-homocysteine was a weak inhibitor of spermine synthase and practically inactive against spermidine synthase. Analogues of S-adenosylhomocysteine lacking either the carboxy or the amino group of the amino acid portion were somewhat more active, as were derivatives in which the ribose ring had been opened by oxidation. The sulphoxide and sulphone derivatives of decarboxylated S-adenosyl-l-homocysteine and the sulphone of S-adenosyl-l-homocysteine were quite potent inhibitors and were particularly active against spermidine synthase (giving 50% inhibition at 380, 50 and 20μm respectively). 5. These results are discussed in terms of the possible regulation of polyamine synthesis by endogenous nucleosides and the possible value of some of the inhibitory substances in experimental manipulations of polyamine concentrations. It is suggested that 5′-methylthiotubercidin and the sulphone of S-adenosylhomocysteine or of S-adenosyl-3-thiopropylamine may be particularly valuable in this respect.  相似文献   

11.
A salicylic acid (SA)-inducible uridine 5′-diphosphate (UDP)-glucose:SA 3-O-glucosyltransferase was extracted from oat (Avena sativa L. cv Dal) roots. Reverse phase high-performance liquid chromatography or anion exchange chromatography was used to separate SA from the product, β-O-d-glucosylsalicylic acid. The soluble enzyme was purified 176-fold with 5% recovery using a combination of pH fractionation, anion exchange, gel filtration, and chromatofocusing chromatography. The partially purified protein had a native molecular weight of about 50,000, an apparent isoelectric point at pH 5.0, and maximum activity at pH 5.5. The enzyme had a Km of 0.28 mm for UDP-glucose and was highly specific for this sugar donor. More than 20 hydroxybenzoic and hydroxycinnamic acid derivatives were assayed as potential glucose acceptors. UDP-glucose:SA 3-O-glucosyltransferase activity was highly specific toward SA (Km = 0.16 mm). The enzyme was inhibited by UDP and uridine 5′-triphosphate but not by up to 7.5 mm uridine 5′-monophosphate.  相似文献   

12.
The cell-free system of clinical isolates of drug-resistant Staphylococcus aureus inactivated kanamycin, and the inactivated product was identified with kanamycin-3′-phosphate, in which the C-3-OH of the 6-amino-6-deoxy-d-glucose moiety of kanamycin was phosphorylated.  相似文献   

13.
1. An enzyme that catalyses the transfer of sulphate from adenosine 3′-phosphate 5′[35S]-sulphatophosphate to l-tyrosine methyl ester and tyramine was purified approx. 70-fold from female rat livers. 2. The partially purified preparation is still contaminated with adenosine 3′-phosphate 5′-sulphatophosphate–phenol sulphotransferase (EC 2.8.2.1), but a partial separation of the two enzymes can be achieved by chromatography on columns of Sephadex G-200 and DEAE-Sephadex. 3. The enzyme responsible for the sulphation of l-tyrosine methyl ester and tyramine is activated by dithiothreitol, 2-mercaptoethanol and GSH, the degree of activation being more marked with preparations previously stored at 0 or −10°C. In contrast, the enzymic sulphation of p-nitrophenol is inhibited by all three thiols. Again, there is a quantitative difference in the degree of inhibition of the two enzymes by o-iodosobenzoate, p-chloromercuribenzoate, N-ethylmaleimide and iodoacetate. 4. Mixed-substrate experiments support the hypothesis that the enzyme responsible for the sulphation of l-tyrosine methyl ester and tyramine is separate from that responsible for the sulphation of p-nitrophenol. However, p-nitrophenol is a potent inhibitor of the sulphation of both tyrosyl derivatives whereas these latter compounds have no effect on the sulphation of p-nitrophenol.  相似文献   

14.
Ruminococcus albus is a typical ruminal bacterium digesting cellulose and hemicellulose. Cellobiose 2-epimerase (CE; EC 5.1.3.11), which converts cellobiose to 4-O-β-d-glucosyl-d-mannose, is a particularly unique enzyme in R. albus, but its physiological function is unclear. Recently, a new metabolic pathway of mannan involving CE was postulated for another CE-producing bacterium, Bacteroides fragilis. In this pathway, β-1,4-mannobiose is epimerized to 4-O-β-d-mannosyl-d-glucose (Man-Glc) by CE, and Man-Glc is phosphorolyzed to α-d-mannosyl 1-phosphate (Man1P) and d-glucose by Man-Glc phosphorylase (MP; EC 2.4.1.281). Ruminococcus albus NE1 showed intracellular MP activity, and two MP isozymes, RaMP1 and RaMP2, were obtained from the cell-free extract. These enzymes were highly specific for the mannosyl residue at the non-reducing end of the substrate and catalyzed the phosphorolysis and synthesis of Man-Glc through a sequential Bi Bi mechanism. In a synthetic reaction, RaMP1 showed high activity only toward d-glucose and 6-deoxy-d-glucose in the presence of Man1P, whereas RaMP2 showed acceptor specificity significantly different from RaMP1. RaMP2 acted on d-glucose derivatives at the C2- and C3-positions, including deoxy- and deoxyfluoro-analogues and epimers, but not on those substituted at the C6-position. Furthermore, RaMP2 had high synthetic activity toward the following oligosaccharides: β-linked glucobioses, maltose, N,N′-diacetylchitobiose, and β-1,4-mannooligosaccharides. Particularly, β-1,4-mannooligosaccharides served as significantly better acceptor substrates for RaMP2 than d-glucose. In the phosphorolytic reactions, RaMP2 had weak activity toward β-1,4-mannobiose but efficiently degraded β-1,4-mannooligosaccharides longer than β-1,4-mannobiose. Consequently, RaMP2 is thought to catalyze the phosphorolysis of β-1,4-mannooligosaccharides longer than β-1,4-mannobiose to produce Man1P and β-1,4-mannobiose.  相似文献   

15.
A soluble enzyme system from suspension cultures of Acer pseudoplatanus L. converts d-glucose 6-phosphate to myoinositol. A Mg2+-dependent phosphatase, present in the crude extract, hydrolyzes the product of the cyclization, myoinositol monophosphate, to free myoinositol. Further purification of the enzyme system by precipitation with (NH4)2SO4 followed by diethylaminoethyl cellulose chromatography eliminates the phosphatase and makes it necessary to add alkaline phosphatase to the reaction mixture in order to assay for free myoinositol. Gel filtration on Sephadex G-200 increases the specific activity of the cycloaldolase to 8.8 × 10−4 units per milligram protein (1 unit = 1 micromole of myoinositol formed per minute). The cycloaldolase has an absolute requirement for nicotinamide adenine dinucleotide and a maximum activity at pH 8 with 0.1 mm nicotinamide adenine dinucleotide. The reaction rate is linear for 2.5 hours when d-glucose 6-phosphate is below 4 mm and has a Km of 1.77 mm. The diethylaminoethyl cellulose-purified enzyme is stable for 6 to 8 weeks in the frozen state.  相似文献   

16.
Serine hydroxymethyltransferase from mammalian and bacterial sources is a pyridoxal-5′-phosphate-containing enzyme, but the requirement of pyridoxal-5′-phosphate for the activity of the enzyme from plant sources is not clear. The specific activity of serine hydroxymethyltransferase isolated from mung bean (Vigna radiata) seedlings in the presence and absence of pyridoxal-5′-phosphate was comparable at every step of the purification procedure. The mung bean enzyme did not show the characteristic visible absorbance spectrum of a pyridoxal-5′-phosphate protein. Unlike the enzymes from sheep, monkey, and human liver, which were converted to the apoenzyme upon treatment with l-cysteine and dialysis, the mung bean enzyme similarly treated was fully active. Additional evidence in support of the suggestion that pyridoxal-5′-phosphate may not be required for the mung bean enzyme was the observation that pencillamine, a well-known inhibitor of pyridoxal-5′-phosphate enzymes, did not perturb the enzyme spectrum or inhibit the activity of mung bean serine hydroxymethyltransferase. The sheep liver enzyme upon interaction with O-amino-d-serine gave a fluorescence spectrum with an emission maximum at 455 nm when excited at 360 nm. A 100-fold higher concentration of mung bean enzyme-O-amino-d-serine complex did not yield a fluorescence spectrum. The following observations suggest that pyridoxal-5′-phosphate normally present as a coenzyme in serine hydroxymethyltransferase was probably replaced in mung bean serine hydroxymethyltransferase by a covalently bound carbonyl group: (a) inhibition by phenylhydrazine and hydroxylamine, which could not be reversed by dialysis and or addition of pyridoxal-5′ phosphate; (b) irreversible inactivation by sodium borohydride; (c) a spectrum characteristic of a phenylhydrazone upon interaction with phenylhydrazine; and (d) the covalent labeling of the enzyme with substrate/product serine and glycine upon reduction with sodium borohydride. These results indicate that in mung bean serine hydroxymethyltransferase, a covalently bound carbonyl group has probably replaced the pyridoxal-5′-phosphate that is present in the mammalian and bacterial enzymes.  相似文献   

17.
By the use of the proteolytic substrates benzoyl-dl-arginine-p-nitroanilide and benzoyl-l-arginine ethyl ester the enzyme arachain has been purified 325-fold from acetone powders of ungerminated peanuts. The pH optimum for the hydrolysis of benzoyl-dl-arginine-p-nitroanilide was 8.1 in tris buffer, and for benzoyl-l-arginine ethyl ester was 7.5 using N - 2 - hydroxyethylpiperazine - N′ - 2 - ethanesulfonic acid buffer. The purest fraction showed one main band with one to three minor bands on disc gel electrophoresis. The major protein component had an S20,w of 6.20. The energy of activation for the hydrolysis of benzoyl-dl-arginine-p-nitroanilide was calculated to be 16 kilocalories. The Michaelis constant for benzoyl-dl-arginine-p-nitroanilide was 10 micromolar and for benzoyl-l-arginine ethyl ester was 110 micromolar. The enzyme showed essentially no activity with casein, dimethyl casein, or bovine serum albumin as substrates. A large number of peptides were hydrolyzed by the enzyme, only l-leucyl-l-tyrosine being resistant of the peptides tested. The results suggest that arachain is not a “trypsin-like” protease but is a peptide hydrolase.  相似文献   

18.
The control of sulphate reduction in bacteria   总被引:2,自引:2,他引:0  
1. An enzyme from Escherichia coli 9723 that reduces adenosine 3′-phosphate 5′-sulphatophosphate to inorganic sulphite is described. Extracts of E. coli K12 and Bacillus subtilis 1379 contain a similar enzyme. 2. This reductase and sulphite reductase (EC 1.8.1.2) of E. coli 9723, E. coli K12 and of B. subtilis are repressed by growth in the presence of l-cystine. Cysteine synthase (EC 4.2.1.22) is unaffected. 3. Growth of E. coli 9723 on inorganic sulphite represses the sulphate-activating enzymes (EC 2.7.7.4 and 2.7.1.25) almost completely but has little effect on sulphite reductase. Growth on 0·042–0·056mm-l-cystine gives a similar result. 4. Such differential repression by cyst(e)ine prevents E. coli, when growing on sulphite, from synthesizing unnecessary enzymes.  相似文献   

19.
ADP-ribosyl cyclases from both vertebrates and invertebrates were previously shown to produce two isomers of P1,P2 diadenosine 5′,5′"-P1, P2-diphosphate, P18 and P24, from cyclic ADP-ribose (cADPR) and adenine. P18 and P24 are characterized by an unusual N-glycosidic linkage in one of the adenylic mononucleotides (Basile, G., Taglialatela-Scafati, O., Damonte, G., Armirotti, A., Bruzzone, S., Guida, L., Franco, L., Usai, C., Fattorusso, E., De Flora, A., and Zocchi, E. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 14509–14514). P24, but not P18, proved to increase the intracellular Ca2+ concentration ([Ca2+]i) in HeLa cells and to negatively affect mitochondrial function. Here we show that micromolar P24, but not P18, triggers a slow and sustained influx of extracellular Ca2+ through the opening of the purinergic receptor/channel P2X7. On the other hand, P18 inhibits the Ca2+ influx induced by 0.6 mm ATP in HEK293 cells stably transfected with P2X7, with an IC50 of ∼1 μm. Thus, P18 is devoid of intrinsic P2X7 stimulatory activity and behaves as an ATP antagonist. A P2X7-mediated increase of the basal [Ca2+]i has been demonstrated to negatively affect Schwann cell (SC) function in rats with the inherited, peripheral neuropathy Charcot-Marie-Tooth 1A (CMT1A) (Nobbio, L., Sturla, L., Fiorese, F., Usai, C., Basile, G., Moreschi, I., Benvenuto, F., Zocchi, E., De Flora, A., Schenone, A., and Bruzzone S. (2009) J. Biol. Chem. 284, 23146–23158). Preincubation of CMT1A SC with 200 nm P18 restored the basal [Ca2+]i to values similar to those recorded in wild-type SC. These results identify P18 as a new P2X7 antagonist, potentially useful in the treatment of CMT1A.  相似文献   

20.
1. An F-insensitive 3′-nucleotidase was purified from spinach leaf tissue; the enzyme hydrolysed 3′-AMP, 3′-CMP and adenosine 3′-phosphate 5′-sulphatophosphate but not adenosine 5′-nucleotides nor PPi. The pH optimum of the enzyme was 7.5; Km (3′-AMP) was approx. 0.8mm and Km (3′-CMP) was approx. 3.3mm. 3′-Nucleotidase activity was not associated with chloroplasts. Purified Mg2+-dependent pyrophosphatase, free from F-insensitive 3′-nucleotidase, catalysed some hydrolysis of 3′-AMP; this activity was F-sensitive. 2. Adenosine 5′-sulphatophosphate kinase activity was demonstrated in crude spinach extracts supplied with 3′-AMP by the synthesis of the sulphate ester of 2-naphthol in the presence of purified phenol sulphotransferase; purified ATP sulphurylase and pyrophosphatase were also added to synthesize adenosine 5′-sulphatophosphate. Adenosine 5′-sulphatophosphate kinase activity was associated with chloroplasts and was released by sonication. 3. Isolated chloroplasts synthesized adenosine 3′-phosphate 5′-sulphatophosphate from sulphate and ATP in the presence of a 3′-nucleotide; the formation of adenosine 5′-sulphatophosphate was negligible. In the absence of a 3′-nucleotide the synthesis of adenosine 3′-phosphate 5′-sulphatophosphate was negligible, but the formation of adenosine 5′-sulphatophosphate was readily detected. Some properties of the synthesis of adenosine 3′-phosphate 5′-sulphatophosphate by isolated chloroplasts are described. 4. Adenosine 3′-phosphate 5′-sulphatophosphate, synthesized by isolated chloroplasts, was characterized by specific enzyme methods, electrophoresis and i.r. spectrophotometry. 5. Isolated chloroplasts catalysed the incorporation of sulphur from sulphate into cystine/cysteine; the incorporation was enhanced by 3′-AMP and l-serine. It was concluded that adenosine 3′-phosphate 5′-sulphatophosphate is an intermediate in the incorporation of sulphur from sulphate into cystine/cysteine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号