首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
鼻咽癌相关基因NGX6对鼻咽癌细胞周期的影响   总被引:9,自引:0,他引:9  
为了探讨鼻咽癌(NPC)候选抑瘤基因NGX6对NPC细胞的细胞周期进程及细胞周期素的影响,阐明它的作用机制,通过建立稳定表达NGX6的鼻咽癌HNE1细胞株,采用细胞免疫组织化学,流式细胞仪检测与分析细胞周期及细胞周期素的改变,用western blot验证它对细胞周期的影响。结果显示稳定表达NGX6的HNE1细胞较对照组细胞周期中G0/G1期比值明显增加,而S期比例减少。细胞凋亡率无明显变化。流式细胞仪检测发现cyclinD1、A和E的表达明显减少,以cyclinD1的改变最为明显。Western blot检测也发现cyclinD1的表达明显下调。以上结果说明NGX6主要通过下调cyclinD1的表达,延缓细胞周期的G1→S的进程,从而抑制NPC细胞的过度增殖。  相似文献   

2.
Few naturally-occurring plasmids are maintained in mammalian cells. Among these are genomes of gamma-herpesviruses, including Epstein-Barr virus (EBV) and Kaposi''s Sarcoma-associated herpesvirus (KSHV), which cause multiple human malignancies 1-3. These two genomes are replicated in a licensed manner, each using a single viral protein and cellular replication machinery, and are passed to daughter cells during cell division despite their lacking traditional centromeres 4-8.Much work has been done to characterize the replications of these plasmid genomes using methods such as Southern blotting and fluorescence in situ hybridization (FISH). These methods are limited, though. Quantitative PCR and Southern blots provide information about the average number of plasmids per cell in a population of cells. FISH is a single-cell assay that reveals both the average number and the distribution of plasmids per cell in the population of cells but is static, allowing no information about the parent or progeny of the examined cell.Here, we describe a method for visualizing plasmids in live cells. This method is based on the binding of a fluorescently tagged lactose repressor protein to multiple sites in the plasmid of interest 9. The DNA of interest is engineered to include approximately 250 tandem repeats of the lactose operator (LacO) sequence. LacO is specifically bound by the lactose repressor protein (LacI), which can be fused to a fluorescent protein. The fusion protein can either be expressed from the engineered plasmid or introduced by a retroviral vector. In this way, the DNA molecules are fluorescently tagged and therefore become visible via fluorescence microscopy. The fusion protein is blocked from binding the plasmid DNA by culturing cells in the presence of IPTG until the plasmids are ready to be viewed.This system allows the plasmids to be monitored in living cells through several generations, revealing properties of their synthesis and partitioning to daughter cells. Ideal cells are adherent, easily transfected, and have large nuclei. This technique has been used to determine that 84% of EBV-derived plasmids are synthesized each generation and 88% of the newly synthesized plasmids partition faithfully to daughter cells in HeLa cells. Pairs of these EBV plasmids were seen to be tethered to or associated with sister chromatids after their synthesis in S-phase until they were seen to separate as the sister chromatids separated in Anaphase10. The method is currently being used to study replication of KSHV genomes in HeLa cells and SLK cells. HeLa cells are immortalized human epithelial cells, and SLK cells are immortalized human endothelial cells. Though SLK cells were originally derived from a KSHV lesion, neither the HeLa nor SLK cell line naturally harbors KSHV genomes11. In addition to studying viral replication, this visualization technique can be used to investigate the effects of the addition, removal, or mutation of various DNA sequence elements on synthesis, localization, and partitioning of other recombinant plasmid DNAs.  相似文献   

3.
Several microscopy techniques are available today that can detect a specific protein within the cell. During the last decade live cell imaging using fluorochromes like Green Fluorescent Protein (GFP) directly attached to the protein of interest has become increasingly popular 1. Using GFP and similar fluorochromes the subcellular localisations and movements of proteins can be detected in a fluorescent microscope. Moreover, also the subnuclear localisation of a certain region of a chromosome can be studied using this technique. GFP is fused to the Lac Repressor protein (LacR) and ectopically expressed in the cell where tandem repeats of the lacO sequence has been inserted into the region of interest on the chromosome2. The LacR-GFP will bind to the lacO repeats and that area of the genome will be visible as a green dot in the fluorescence microscope. Yeast is especially suited for this type of manipulation since homologous recombination is very efficient and thereby enables targeted integration of the lacO repeats and engineered fusion proteins with GFP 3. Here we describe a quantitative method for live cell analysis of fission yeast. Additional protocols for live cell analysis of fission yeast can be found, for example on how to make a movie of the meiotic chromosomal behaviour 4. In this particular experiment we focus on subnuclear organisation and how it is affected during gene induction. We have labelled a gene cluster, named Chr1, by the introduction of lacO binding sites in the vicinity of the genes. The gene cluster is enriched for genes that are induced early during nitrogen starvation of fission yeast 5. In the strain the nuclear membrane (NM) is labelled by the attachment of mCherry to the NM protein Cut11 giving rise to a red fluorescent signal. The Spindle Pole body (SPB) compound Sid4 is fused to Red Fluorescent Protein (Sid4-mRFP) 6. In vegetatively growing yeast cells the centromeres are always attached to the SPB that is embedded in the NM 7. The SPB is identified as a large round structure in the NM. By imaging before and 20 minutes after depletion of the nitrogen source we can determine the distance between the gene cluster (GFP) and the NM/SPB. The mean or median distances before and after nitrogen depletion are compared and we can thus quantify whether or not there is a shift in subcellular localisation of the gene cluster after nitrogen depletion.  相似文献   

4.
Three-dimensional (3D) tumor spheroids are utilized in cancer research as a more accurate model of the in vivo tumor microenvironment, compared to traditional two-dimensional (2D) cell culture. The spheroid model is able to mimic the effects of cell-cell interaction, hypoxia and nutrient deprivation, and drug penetration. One characteristic of this model is the development of a necrotic core, surrounded by a ring of G1 arrested cells, with proliferating cells on the outer layers of the spheroid. Of interest in the cancer field is how different regions of the spheroid respond to drug therapies as well as genetic or environmental manipulation. We describe here the use of the fluorescence ubiquitination cell cycle indicator (FUCCI) system along with cytometry and image analysis using commercial software to characterize the cell cycle status of cells with respect to their position inside melanoma spheroids. These methods may be used to track changes in cell cycle status, gene/protein expression or cell viability in different sub-regions of tumor spheroids over time and under different conditions.  相似文献   

5.
The bone marrow is the principal site where HSCs and more mature blood cells lineage progenitors reside and differentiate in an adult organism. HSCs constitute a minute cell population of pluripotent cells capable of generating all blood cell lineages for a life-time1. The molecular dissection of HSCs homeostasis in the bone marrow has important implications in hematopoiesis, oncology and regenerative medicine. We describe the labeling protocol with fluorescent antibodies and the electronic gating procedure in flow cytometry to score hematopoietic progenitor subsets and HSCs distribution in individual mice (Fig. 1). In addition, we describe a method to extensively enrich hematopoietic progenitors as well as long-term (LT) and short term (ST) reconstituting HSCs from pooled bone marrow cell suspensions by magnetic enrichment of cells expressing c-Kit. The resulting cell preparation can be used to sort selected subsets for in vitro and in vivo functional studies (Fig. 2).Both trabecular osteoblasts2,3 and sinusoidal endothelium4 constitute functional niches supporting HSCs in the bone marrow. Several mechanisms in the osteoblastic niche, including a subset of N-cadherin+ osteoblasts3 and interaction of the receptor tyrosine kinase Tie2 expressed in HSCs with its ligand angiopoietin-15 concur in determining HSCs quiescence. "Hibernation" in the bone marrow is crucial to protect HSCs from replication and eventual exhaustion upon excessive cycling activity6. Exogenous stimuli acting on cells of the innate immune system such as Toll-like receptor ligands7 and interferon-α6 can also induce proliferation and differentiation of HSCs into lineage committed progenitors. Recently, a population of dormant mouse HSCs within the lin- c-Kit+ Sca-1+ CD150+ CD48- CD34- population has been described8. Sorting of cells based on CD34 expression from the hematopoietic progenitors-enriched cell suspension as described here allows the isolation of both quiescent self-renewing LT-HSCs and ST-HSCs9. A similar procedure based on depletion of lineage positive cells and sorting of LT-HSC with CD48 and Flk2 antibodies has been previously described10. In the present report we provide a protocol for the phenotypic characterization and ex vivo cell cycle analysis of hematopoietic progenitors, which can be useful for monitoring hematopoiesis in different physiological and pathological conditions. Moreover, we describe a FACS sorting procedure for HSCs, which can be used to define factors and mechanisms regulating their self-renewal, expansion and differentiation in cell biology and signal transduction assays as well as for transplantation.  相似文献   

6.
从辐照剂量和修复时间两个角度研究了重离子辐照对肿瘤细胞DNA损伤及细胞周期的影响,为重离子治癌的临床应用积累基础数据。不同剂量的80MeV/u^20Ne^10 辐照SMMC—7721细胞样品,利用单细胞凝胶电泳技术(Single Cell Gel Electrophoresis,SCGE)对细胞DNA损伤进行了检测,利用流式细胞技术(Flow Cytometry Methods,FCM)对细胞周期变化进行了分析。80MeV/u^20Ne^10 辐照后4小时内,SMMC—7721细胞的DNA损伤与辐照剂量呈线性关系,在0小时组其线性相关因子r为0.9621,4小时组为0.914;随着修复时间的增加,DNA损伤与辐照剂量不再线性相关,但0.5Gy,1Gy和2Gy三个剂量点的DNA损伤程度极为相近。另外,重离子辐照后SMMC—7721细胞发生S期和G2/M期阻滞现象,其随剂量变化及时间变化的规律不同于X、γ等低LET(Linear Energy Transfer)射线辐照。  相似文献   

7.
抗酶1基因转染对HeLa细胞增殖及细胞周期的抑制作用   总被引:1,自引:0,他引:1  
研究抗酶(antizyme)1对人宫颈癌HeLa细胞增殖与细胞周期的影响,并分析抗酶1对细胞周期蛋白D1(cyclin D1)的表达影响.采用定点突变技术,将抗酶1的frameshift位点缺失,随后将突变基因重组至真核表达载体pEGFP-N1中,鉴定后转染HeLa细胞.通过MTT法检测细胞增殖变化,流式细胞术分析抗酶1对细胞周期的影响.RT-PCR和Western印迹检测抗酶1转染对细胞周期蛋白 D1基因表达的影响.酶切结果显示,抗酶1突变基因成功克隆至pEGFP-N1中.成功转染HeLa细胞后,检测结果显示,抗酶1能够减慢HeLa细胞增殖速度,并使细胞停滞于G0/G1期,细胞周期蛋白D1基因的表达同时受到抑制.实验说明,抗酶1基因能够抑制HeLa细胞增殖,通过降低细胞周期蛋白D1的表达阻滞细胞周期.  相似文献   

8.
Particle and cell counting is used for a variety of applications including routine cell culture, hematological analysis, and industrial controls1-5. A critical breakthrough in cell/particle counting technologies was the development of the Coulter technique by Wallace Coulter over 50 years ago. The technique involves the application of an electric field across a micron-sized aperture and hydrodynamically focusing single particles through the aperture. The resulting occlusion of the aperture by the particles yields a measurable change in electric impedance that can be directly and precisely correlated to cell size/volume. The recognition of the approach as the benchmark in cell/particle counting stems from the extraordinary precision and accuracy of its particle sizing and counts, particularly as compared to manual and imaging based technologies (accuracies on the order of 98% for Coulter counters versus 75-80% for manual and vision-based systems). This can be attributed to the fact that, unlike imaging-based approaches to cell counting, the Coulter Technique makes a true three-dimensional (3-D) measurement of cells/particles which dramatically reduces count interference from debris and clustering by calculating precise volumetric information about the cells/particles. Overall this provides a means for enumerating and sizing cells in a more accurate, less tedious, less time-consuming, and less subjective means than other counting techniques6.Despite the prominence of the Coulter technique in cell counting, its widespread use in routine biological studies has been prohibitive due to the cost and size of traditional instruments. Although a less expensive Coulter-based instrument has been produced, it has limitations as compared to its more expensive counterparts in the correction for "coincidence events" in which two or more cells pass through the aperture and are measured simultaneously. Another limitation with existing Coulter technologies is the lack of metrics on the overall health of cell samples. Consequently, additional techniques must often be used in conjunction with Coulter counting to assess cell viability. This extends experimental setup time and cost since the traditional methods of viability assessment require cell staining and/or use of expensive and cumbersome equipment such as a flow cytometer.The Moxi Z mini automated cell counter, described here, is an ultra-small benchtop instrument that combines the accuracy of the Coulter Principle with a thin-film sensor technology to enable precise sizing and counting of particles ranging from 3-25 microns, depending on the cell counting cassette used. The M type cassette can be used to count particles from with average diameters of 4 - 25 microns (dynamic range 2 - 34 microns), and the Type S cassette can be used to count particles with and average diameter of 3 - 20 microns (dynamic range 2 - 26 microns). Since the system uses a volumetric measurement method, the 4-25 microns corresponds to a cell volume range of 34 - 8,180 fL and the 3 - 20 microns corresponds to a cell volume range of 14 - 4200 fL, which is relevant when non-spherical particles are being measured. To perform mammalian cell counts using the Moxi Z, the cells to be counted are first diluted with ORFLO or similar diluent. A cell counting cassette is inserted into the instrument, and the sample is loaded into the port of the cassette. Thousands of cells are pulled, single-file through a "Cell Sensing Zone" (CSZ) in the thin-film membrane over 8-15 seconds. Following the run, the instrument uses proprietary curve-fitting in conjunction with a proprietary software algorithm to provide coincidence event correction along with an assessment of overall culture health by determining the ratio of the number of cells in the population of interest to the total number of particles. The total particle counts include shrunken and broken down dead cells, as well as other debris and contaminants. The results are presented in histogram format with an automatic curve fit, with gates that can be adjusted manually as needed.Ultimately, the Moxi Z enables counting with a precision and accuracy comparable to a Coulter Z2, the current gold standard, while providing additional culture health information. Furthermore it achieves these results in less time, with a smaller footprint, with significantly easier operation and maintenance, and at a fraction of the cost of comparable technologies.  相似文献   

9.
Two-color fluorescence in situ hybridization (FISH) with chromosome enumeration DNA probes specific to chromosomes 7, 11, 17, and 18 was applied to CAL-51 breast cancer cells to examine whether the fluorescence intensity of FISH spots was associated with cell cycle progression. The fluorescence intensity of each FISH spot was quantitatively analyzed based on the cell cycle stage determined by image cytometry at the single-cell level. The spot intensity of cells in the G2 phase was larger than that in the G0/1 phase. This increased intensity was not seen during the early and mid S phases, whereas the cells in the late S phase showed significant increases in spot intensity, reaching the same level as that observed in the G2 phase, indicating that alpha satellite DNA in the centromeric region was replicated in the late S phase. Thus, image cytometry can successfully detect small differences in the fluorescence intensities of centromeric spots of homologous chromosomes. This combinational image analysis of FISH spots and the cell cycle with cell image cytometry provides insights into new aspects of the cell cycle. This is the first report demonstrating that image cytometry can be used to analyze the fluorescence intensity of FISH signals during the cell cycle.  相似文献   

10.
11.
一定浓度的甲醛可以引起蛋白质的异常修饰、功能丧失、细胞死亡。虽然甲醛的细胞毒性已见报道,但甲醛影响神经细胞周期及其分子机制等尚不明确.本文采用不同浓度甲醛与神经母细胞瘤细胞系SH-SY5Y共孵育,观察到甲醛对细胞周期的影响取决于甲醛的浓度.当甲醛浓度([FA])≤0.1 mmol/L(细胞培养48 h),细胞周期与对照相比,无显著性差异.当甲醛浓度增加(0.1 mmol/L <[FA]≤0.2 mmol/L),S期和G2/M期细胞比例显著增加;当[FA] = 0.3 mmol/L时,细胞增殖被显著抑制,大量细胞滞留在S期(46.28%),G2/M期细胞仅占16.05%.将细胞同步到G2/M期,用0.1~0.3 mmol/L甲醛孵育,尽管G2/M期细胞都有一定程度的减少,但S期细胞显著增加;将细胞同步化到S期,与0.1 mmol/L甲醛孵育,则G2/M期细胞有一定程度的减少;与0.3 mmol/L甲醛孵育,表现为G2/M细胞显著减少,S期细胞极度增加.在相同条件下,Sprague-Dawley (SD)大鼠原代皮层神经元,也表现出G2/M期细胞比例随甲醛浓度升高而降低,S期细胞比例随之增加的现象.当0.1 mmol/L≤[FA]≤0.2 mmol/L时,细胞出现明显的早期或晚期凋亡;当[FA]≥0.3 mmol/L时,DNA损伤明显,细胞出现凋亡和部分坏死.以上结果提示,低浓度甲醛(0.1 mmol/L≤[FA]≤0.2 mmol/L)主要通过引起DNA超甲基化而抑制S期DNA的合成,高浓度甲醛([FA]≥0.3 mmol/L)则造成DNA的损伤,从而影响细胞周期的进程.  相似文献   

12.
细胞周期是生命活动中一个最重要的过程.以cyclin、CDK、CKI等细胞周期调控蛋白的相互作用推动着细胞周期时相的进展和时相之间的转变.这一过程受到严密的调控机制所监控.在核移植的研究中,对细胞周期进行调控,使细胞阻滞于某一特定时期有非常重要的意义.  相似文献   

13.
14.
利用流式细胞仪研究拟南芥叶发育过程中细胞周期的调控   总被引:1,自引:0,他引:1  
叶的形态建成依赖于细胞不断地分裂增殖和不同类型细胞的特化。在叶发育早期,叶细胞主要通过旺盛的有丝分裂来增加原基中细胞的数目。随着叶片的生长,叶细胞自顶部向基部逐渐退出有丝分裂进入内复制来增加细胞的倍性,同时伴随细胞的扩展和分化。本文介绍利用流式细胞仪研究双子叶模式植物拟南芥叶发育过程中细胞周期调控的方法和具体研究实例。我们发现至少存在3种类型的细胞周期异常的拟南芥叶发育突变体。此外,我们还介绍利用流式细胞仪测定DNA复制效率的方法。  相似文献   

15.
三元基序家族蛋白15 (tripartite motif-containing protein 15,TRIM15)是TRIM家族成员,该家族是一类具有E3泛素连接酶活性的蛋白质.TRIM15在肿瘤中的功能鲜有报导.本研究意在阐释TRIM15在肝细胞癌(hepatocellular carcinoma,HCC)中的作用...  相似文献   

16.
目的:为研究顺铂治疗食管鳞癌细胞的靶向作用。方法:本研究使用流式细胞技术双变量分析检测顺铂对食管癌细胞周期进程和癌细胞周期的连接蛋白43(connexin 43,Cx43)表达的影响。结果:顺铂对食管鳞癌细胞周期的影响主要作用于S期的DNA复制,细胞阻滞于S期,G2/M期减少。顺铂诱导食管鳞癌细胞周期S和G2/M期的Cx43表达的大幅度改变。低浓度顺铂(由0~2μmol/L),Cx43表达增强;顺铂渐高浓度(2~12μmol/L),细胞Cx43表达由强逐渐变弱,特别是G2/M期细胞的Cx43表达活跃,易受顺铂影响。结论:我们的研究表明以顺铂处理食管鳞癌细胞,癌细胞周期的S期和G2/M期的Cx43表达与S期的DNA复制一样可作为的潜在治疗靶标。顺铂靶向作用细胞周期S和/或G2/M期细胞的特性可能减少或避免对非分裂细胞的影响。  相似文献   

17.
SYNOPSIS. Using continuous flow cultures based on the chemostat principle, we varied the cell generation times of the ciliate Tetrahymena pyriformis strain GL, from 4.9 to 22.2 hr and studied various parameters of the cell cycle at 28 C. These included: the duration of the periods required for oral morphogenesis, macronuclear division, cell division, G1 S, and G2. The size of individual cells was also measured. Independent of the growth rate, the period of oral morphogenesis occurred during the last 90 min of the cell cycle. In all cases macronuclear and cell divisions took place during the last part of these 90 min, and the final macronuclear separation occurred just before final cell separation. The S-period increased slightly, while the G1 and G2 both increased in roughly the same relative proportion to the increasing generation times. Slowly growing cells (generation time 20.5 hr) were shorter but broader and somewhat larger in volume than quickly growing cells (generation time 4.9 hr).  相似文献   

18.
Study of protein expression during the cell cycle requires preparation of pure fractions of cells at various phases of the cell cycle. This was achieved by the development of methods for cell synchronization. Successful cell synchronization requires knowledge of the duration of all phases of the cell cycle. So, in the present review these interrelated problems are considered together. The first part of this review deals with basic methods employed for analysis of duration of cell cycle phases. The second summarizes data on treatments used for cell synchronization. Methods for calculation of percent of cells at various stages of the cell cycle in fractions of synchronized cells are considered in the third part. The fourth part of this review deals with a method of study of protein expression during the cell cycle by means of immunoblotting of synchronized cell fractions. In the Appendix, basic principles are illustrated with practical examples of analysis of the cell cycle, synchronization, and study of expression of some proteins at various stages of the cell cycle using synchronized XL2 (Xenopus laevis) cells.  相似文献   

19.
Brain tumors are typically comprised of morphologically diverse cells that express a variety of neural lineage markers. Only a relatively small fraction of cells in the tumor with stem cell properties, termed brain tumor initiating cells (BTICs), possess an ability to differentiate along multiple lineages, self-renew, and initiate tumors in vivo. We applied culture conditions originally used for normal neural stem cells (NSCs) to a variety of human brain tumors and found that this culture method specifically selects for stem-like populations. Serum-free medium (NSC) allows for the maintenance of an undifferentiated stem cell state, and the addition of bFGF and EGF allows for the proliferation of multi-potent, self-renewing, and expandable tumorspheres.To further characterize each tumor''s BTIC population, we evaluate cell surface markers by flow cytometry. We may also sort populations of interest for more specific characterization. Self-renewal assays are performed on single BTICs sorted into 96 well plates; the formation of tumorspheres following incubation at 37 °C indicates the presence of a stem or progenitor cell. Multiple cell numbers of a particular population can also be sorted in different wells for limiting dilution analysis, to analyze self-renewal capacity. We can also study differential gene expression within a particular cell population by using single cell RT-PCR.The following protocols describe our procedures for the dissociation and culturing of primary human samples to enrich for BTIC populations, as well as the dissociation of tumorspheres. Also included are protocols for staining for flow cytometry analysis or sorting, self-renewal assays, and single cell RT-PCR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号