共查询到20条相似文献,搜索用时 0 毫秒
1.
Figlewicz DP Zavosh A Sexton T Neumaier JF 《American journal of physiology. Endocrinology and metabolism》2004,286(6):E1004-E1010
The central nervous system (CNS) protein "tub" has been identified from the genetically obese "tubby" mouse. Although the native function of tub in situ is not understood, cell-based studies suggest that one of its roles may be as an intracellular signaling target for insulin. In normal animals, insulin acts at the hypothalamic arcuate nucleus (ARC) to regulate energy balance. Here we used a Herpes Simplex viral expression system to evaluate whether tub overexpression in the ARC of normal rats enhances this action of insulin. In chow-fed rats, tub overexpression had no effect on insulin action. In rats fed a high-fat diet snack in addition to chow, simulating the diet of Westernized societies, the body weight regulatory action of insulin was impaired, and tub overexpression further impaired insulin action. Thus an excess of tub at the ARC does not enhance the in vivo effectiveness of insulin and is not able to compensate for the "downstream" consequences of a high-fat diet to impair CNS body weight regulatory mechanisms. 相似文献
2.
Youngren JF Keen S Kulp JL Tanner CJ Houmard JA Goldfine ID 《American journal of physiology. Endocrinology and metabolism》2001,280(3):E528-E533
Exercise training improves insulin action in skeletal muscle, but the mechanisms of this effect are not completely understood. In particular, the role of the insulin receptor (IR) is unclear. We examined the IR and an enzyme indicative of oxidative capacity in muscle in relation to improved insulin action in 20 previously sedentary individuals before and after a 7-day program of moderate-intensity cycle ergometry. After training, insulin sensitivity increased 33% (6.20 +/- 0.91 vs. 8.22 +/- 1.12 min. microU(-1). ml(-1) mean +/- SE, pre- vs. posttraining, respectively, P < 0.05). The mitochondrial marker enzyme cytochrome c oxidase (COX) increased in vastus lateralis biopsies by 21% (P < 0.05). After training, IR autophosphorylation, determined by ELISA, was significantly increased by approximately 40% at insulin concentrations from 1 to 100 nM (P < 0.05). The training-induced improvements in IR autophosphorylation were significantly correlated with changes in muscle COX content (r = 0.65, P < 0.05). These studies indicate that, in this model of increased physical activity, improvements in IR function are an early adaptation to exercise in humans, are correlated with increases in muscle oxidative capacity, and likely contribute to the beneficial effects of exercise training on insulin action. 相似文献
3.
There is a growing prevalence of robotic systems for surgical laparoscopy. We previously developed quantitative measures to assess robotic surgical proficiency, and used augmented feedback to enhance training to reduce applied grip force and increase speed. However, there is also a need to understand the physiological demands of the surgeon during robotic surgery, and if training can reduce these demands. Therefore, the goal of this study was to use clinical biomechanical techniques via electromyography (EMG) to investigate the effects of real-time augmented visual feedback during short-term training on muscular activation and fatigue. Twenty novices were trained in three inanimate surgical tasks with the da Vinci Surgical System. Subjects were divided into five feedback groups (speed, relative phase, grip force, video, and control). Time- and frequency-domain EMG measures were obtained before and after training. Surgical training decreased muscle work as found from mean EMG and EMG envelopes. Grip force feedback further reduced average and total muscle work, while speed feedback increased average muscle work and decreased total muscle work. Training also increased the median frequency response as a result of increased speed and/or reduced fatigue during each task. More diverse motor units were recruited as revealed by increases in the frequency bandwidth post-training. We demonstrated that clinical biomechanics using EMG analysis can help to better understand the effects of training for robotic surgery. Real-time augmented feedback during training can further reduce physiological demands. Future studies will investigate other means of feedback such as biofeedback of EMG during robotic surgery training. 相似文献
4.
We assessed the effects of combined metformin treatment and exercise training on body composition, on insulin concentration following glucose loading, on insulin-stimulated glucose transport in skeletal muscle, and on muscle glycogen content. Male Sprague-Dawley rats were treated for 35 days with or without metformin (320 mg/kg/day) and/or treadmill exercise training (20 min at 20 m/min, 5 days/wk). Because metformin reduces food intake, pair-fed controls were included. Metformin, training, and pair-feeding all decreased food intake, body weight, and insulin concentration following glucose loading. Metformin and training reduced intra-abdominal fat, but pair feeding did not. In isolated strips derived from soleus, epitrochlearis and extensor carpi ulnaris muscles, metformin increased insulin-stimulated transport of [3H]-2-deoxyglucose by 90%, 89% and 125%, respectively (P < 0.02) and training increased [3H]-2-deoxyglucose transport in the extensor carpi ulnaris muscle only (66%, P < 0.05). Pair-feeding did not alter [3H]-2-deoxyglucose transport. Training increased gastrocnemius muscle glycogen by 100% (P < 0.001). Metformin and pair-feeding did not alter muscle glycogen. We conclude that metformin reverses the maturation-induced impairment of insulin responsiveness in Sprague-Dawley rats by increasing insulin-stimulated glucose transport in skeletal muscle and that this effect is not secondary to reduced food intake. We also conclude that metformin and exercise training may increase insulin sensitivity by different mechanisms, with training causing increased glucose transport only in some muscles and also causing increased muscle glycogen storage. 相似文献
5.
6.
Jordan A Guenette Benjamin C Sporer Meaghan J Macnutt Harvey O Coxson A William Sheel John R Mayo Donald C McKenzie 《Journal of applied physiology》2007,103(3):875-882
Noninvasive imaging techniques have been used to assess pulmonary edema following exercise but results remain equivocal. Most studies examining this phenomenon have used male subjects while the female response has received little attention. Some suggest that women, by virtue of their smaller lungs, airways, and diffusion surface areas may be more susceptible to pulmonary limitations during exercise. Accordingly, the purpose of this study was to determine if intense normobaric hypoxic exercise could induce pulmonary edema in women. Baseline lung density was obtained in eight highly trained female cyclists (mean +/- SD: age = 26 +/- 7 yr; height = 172.2 +/- 6.7 cm; mass = 64.1 +/- 6.7 kg; Vo(2max) = 52.2 +/- 2.2 ml.kg(-1).min(-1)) using computed tomography (CT). CT scans were obtained at the level of the aortic arch, the tracheal carina, and the superior end plate of the tenth thoracic vertebra. While breathing 15% O(2), subjects then performed five 2.5-km cycling intervals [mean power = 212 +/- 31 W; heart rate (HR) = 94.5 +/- 2.2%HRmax] separated by 5 min of recovery. Throughout the intervals, subjects desaturated to 82 +/- 4%, which was 13 +/- 2% below resting hypoxic levels. Scans were repeated 44 +/- 8 min following exercise. Mean lung density did not change from pre (0.138 +/- 0.014 g/ml)- to postexercise (0.137 +/- 0.011 g/ml). These findings suggest that pulmonary edema does not occur in highly trained females following intense normobaric hypoxic exercise. 相似文献
7.
LysB3, GluB29] insulin: a novel insulin analog with enhanced beta-cell protective action 总被引:6,自引:0,他引:6
Insulin receptor substrate (IRS)-2 has been implicated in the promotion of beta-cell survival. Here we tested the hypothesis that the novel analog [LysB3, GluB29] insulin (insulin glulisine, IG) might mediate an enhanced beta-cell protective effect due to its unique property of preferential IRS-2 phosphorylation. We assessed IRS activation by IG and its anti-apoptotic activity against cytokines or palmitic acid in comparison to insulin, insulin analogs, and insulin-like growth factor (IGF)-I using INS-1 cells. IG induced a prominent IRS-2 activation without significant IRS-1 stimulation. The marked cytokine- and fatty acid-induced apoptosis was strongly (55-60%) inhibited by IG both at the level of caspase 3 activation and nucleosomal release, with only 15% inhibition of apoptosis by regular insulin. At 1nM, insulin, insulin aspart, and insulin lispro were much less effective compared to IG. In conclusion, the prominent anti-apoptotic activity of insulin glulisine might serve to counteract autoimmune- and lipotoxicity-induced beta-cell destruction. 相似文献
8.
Wijsman CA Rozing MP Streefland TC le Cessie S Mooijaart SP Slagboom PE Westendorp RG Pijl H van Heemst D;Leiden Longevity Study group 《Aging cell》2011,10(1):114-121
Insulin resistance is a risk factor for various age-related diseases. In the Leiden Longevity study, we recruited long-lived siblings and their offspring. Previously, we showed that, compared to controls, the offspring of long-lived siblings had a better glucose tolerance. Here, we compared groups of offspring from long-lived siblings and controls for the relation between insulin and glucose in nonfasted serum (n = 1848 subjects) and for quantitation of insulin action using a two-step hyperinsulinemic-euglycemic clamp (n = 24 subjects). Groups of offspring and controls were similar with regard to sex distribution, age, and body mass index. We observed a positive bi-phasic linear relationship between ln (insulin) levels and nonfasted glucose with a steeper slope from 10.7mU L(-1) insulin onwards in controls compared to offspring (P = 0.02). During the clamp study, higher glucose infusion rate was required to maintain euglycemia during high-dose insulin infusion (P = 0.036) in offspring, reflecting higher whole-body insulin sensitivity. After adjustment for sex, age, and fat mass, the insulin-mediated glucose disposal rate (GDR) was higher in offspring than controls (42.5 ± 2.7 vs. 33.2 ± 2.7 micromol kg(-1) min(-1) , mean ± SE, P = 0.025). The insulin-mediated suppression of endogenous glucose production and lipolysis did not differ between groups (all P > 0.05). Furthermore, GDR was significantly correlated with the mean age of death of the parents. In conclusion, offspring from long-lived siblings are marked by enhanced peripheral glucose disposal. Future research will focus on identifying the underlying biomolecular mechanisms, with the aim to promote health in old age. 相似文献
9.
Movassat J Bailbé D Lubrano-Berthelier C Picarel-Blanchot F Bertin E Mourot J Portha B 《American journal of physiology. Endocrinology and metabolism》2008,294(1):E168-E175
The adult Goto-Kakizaki (GK) rat is characterized by impaired glucose-induced insulin secretion in vivo and in vitro, decreased beta-cell mass, decreased insulin sensitivity in the liver, and moderate insulin resistance in muscles and adipose tissue. GK rats do not exhibit basal hyperglycemia during the first 3 wk after birth and therefore could be considered prediabetic during this period. Our aim was to identify the initial pathophysiological changes occurring during the prediabetes period in this model of type 2 diabetes (T2DM). To address this, we investigated beta-cell function, insulin sensitivity, and body composition in normoglycemic prediabetic GK rats. Our results revealed that the in vivo secretory response of GK beta-cells to glucose is markedly reduced and the whole body insulin sensitivity is increased in the prediabetic GK rats in vivo. Moreover, the body composition of suckling GK rats is altered compared with age-matched Wistar rats, with an increase of the number of adipocytes before weaning despite a decreased body weight and lean mass in the GK rats. None of these changes appeared to be due to the postnatal nutritional environment of GK pups as demonstrated by cross-fostering GK pups with nondiabetic Wistar dams. In conclusion, in the GK model of T2DM, beta-cell dysfunction associated with increased insulin sensitivity and the alteration of body composition are proximal events that might contribute to the establishment of overt diabetes in adult GK rats. 相似文献
10.
Alastair N H Hodges A William Sheel John R Mayo Donald C McKenzie 《Journal of applied physiology》2007,103(1):111-118
The purpose of this study was to examine the effects of exercise on extravascular lung water as it may relate to pulmonary gas exchange. Ten male humans underwent measures of maximal oxygen uptake (Vo2 max) in two conditions: normoxia (N) and normobaric hypoxia of 15% O2 (H). Lung density was measured by quantified MRI before and 48.0 +/- 7.4 and 100.7 +/- 15.1 min following 60 min of cycling exercise in N (intensity = 61.6 +/- 9.5% Vo2 max) and 55.5 +/- 9.8 and 104.3 +/- 9.1 min following 60 min cycling exercise in H (intensity = 65.4 +/- 7.1% hypoxic Vo2 max), where Vo2 max = 65.0 +/- 7.5 ml x kg(-1) x min(-1) (N) and 54.1 +/- 7.0 ml x kg(-1) x min(-1) (H). Two subjects demonstrated mild exercise-induced arterial hypoxemia (EIAH) [minimum arterial oxygen saturation (SaO2 min) = 94.5% and 93.8%], and seven subjects demonstrated moderate EIAH (SaO2 min = 91.4 +/- 1.1%) as measured noninvasively during the Vo2 max test in N. Mean lung densities, measured once preexercise and twice postexercise, were 0.177 +/- 0.019, 0.181 +/- 0.019, and 0.173 +/- 0.019 g/ml (N) and 0.178 +/- 0.021, 0.174 +/- 0.022, and 0.176 +/- 0.019 g/ml (H), respectively. No significant differences (P > 0.05) were found in lung density following exercise in either condition or between conditions. Transient interstitial pulmonary edema did not occur following sustained steady-state cycling exercise in N or H, indicating that transient edema does not result from pulmonary capillary leakage during sustained submaximal exercise. 相似文献
11.
Invited review: Effects of acute exercise and exercise training on insulin resistance. 总被引:12,自引:0,他引:12
Erik J Henriksen 《Journal of applied physiology》2002,93(2):788-796
Insulin resistance of skeletal muscle glucose transport is a key defect in the development of impaired glucose tolerance and Type 2 diabetes. It is well established that both an acute bout of exercise and chronic endurance exercise training can have beneficial effects on insulin action in insulin-resistant states. This review summarizes the present state of knowledge regarding these effects in the obese Zucker rat, a widely used rodent model of obesity-associated insulin resistance, and in insulin-resistant humans with impaired glucose tolerance or Type 2 diabetes. A single bout of prolonged aerobic exercise (30-60 min at approximately 60-70% of maximal oxygen consumption) can significantly lower plasma glucose levels, owing to normal contraction-induced stimulation of GLUT-4 glucose transporter translocation and glucose transport activity in insulin-resistant skeletal muscle. However, little is currently known about the effects of acute exercise on muscle insulin signaling in the postexercise state in insulin-resistant individuals. A well-established adaptive response to exercise training in conditions of insulin resistance is improved glucose tolerance and enhanced skeletal muscle insulin sensitivity of glucose transport. This training-induced enhancement of insulin action is associated with upregulation of specific components of the glucose transport system in insulin-resistant muscle and includes increased protein expression of GLUT-4 and insulin receptor substrate-1. It is clear that further investigations are needed to further elucidate the specific molecular mechanisms underlying the beneficial effects of acute exercise and exercise training on the glucose transport system in insulin-resistant mammalian skeletal muscle. 相似文献
12.
Resta TC Kanagy NL Walker BR 《American journal of physiology. Lung cellular and molecular physiology》2001,280(1):L88-L97
Female rats develop less severe pulmonary hypertension (PH) in response to chronic hypoxia compared with males, thus implicating a potential role for ovarian hormones in mediating this gender difference. Considering that estrogen upregulates endothelial nitric oxide (NO) synthase (eNOS) in systemic vascular tissue, we hypothesized that estrogen inhibits hypoxic PH by increasing eNOS expression and activity. To test this hypothesis, we examined responses to the endothelium-derived NO-dependent dilator ionomycin and the NO donors S-nitroso-N-acetylpenicillamine and spermine NONOate in U-46619-constricted, isolated, saline-perfused lungs from the following groups: 1) normoxic rats with intact ovaries, 2) chronic hypoxic (CH) rats with intact ovaries, 3) CH ovariectomized rats given 17 beta-estradiol (E(2)beta), and 4) CH ovariectomized rats given vehicle. Additional experiments assessed pulmonary eNOS levels in each group by Western blotting. Our findings indicate that E(2)beta attenuated chronic hypoxia-induced right ventricular hypertrophy, pulmonary arterial remodeling, and polycythemia. Furthermore, although CH augmented vasodilatory responsiveness to ionomycin and increased pulmonary eNOS expression, these responses were not potentiated by E(2)beta. Finally, responses to S-nitroso-N-acetylpenicillamine and spermine NONOate were similarly attenuated in all CH groups compared with normoxic control groups. We conclude that the inhibitory influence of E(2)beta on chronic hypoxia-induced PH is not associated with increased eNOS expression or activity. 相似文献
13.
Nitric oxide bioavailability and not production is first altered during the onset of insulin resistance in sucrose-fed rats 总被引:1,自引:0,他引:1
Blouet C Mariotti F Mathe V Tome D Huneau JF 《Experimental biology and medicine (Maywood, N.J.)》2007,232(11):1458-1464
Although the role of nitric oxide (NO) in peripheral glucose uptake has been thoroughly described, little is known regarding the alterations in NO metabolism during the early onset of insulin resistance. During this study we investigated the alterations in NO synthesis and bioavailability in a model for dietary modulations of insulin sensitivity. For 6 weeks, rats were fed a standard diet (C), a high-sucrose diet inducing insulin resistance (HS), or high-sucrose diets supplemented with cysteine, which endowed protection against the high-sucrose-induced insulin resistance (Ti). Several markers of NO synthesis and bioavailability were assessed and confronted with markers of insulin sensitivity. After 5 weeks, although urinary cGMP excretion did not differ between the groups, insulin resistance in HS rats was associated with both a significant increase in NO oxidation, as determined by plasma nitrotyrosine concentrations, and in the inducible NO synthase (iNOS)/endothelial NO synthase (iNOS/eNOS) mRNA ratio in skeletal muscle compared with C rats. These alterations were prevented in rats fed the cysteine-rich diets. NO production, as assessed by urinary 15NO3* excretion following a [15N2-(guanido)]-arginine intra-venous bolus, independently and significantly correlated with insulin sensitivity but did not significantly differ between C, HS, and Ti rats; neither did the aortic eNOS protein expression or skeletal muscle insulin-induced eNOS activation. Our results indicate that in this model of dietary modulations of insulin sensitivity (i) NO production accounts for part of total inter-individual variation in insulin sensitivity, but (ii) early diet-related changes in insulin sensitivity are accompanied by changes in NO bioavailability. 相似文献
14.
Low heart rate variability (HRV) is associated with an increased susceptibility to ventricular fibrillation (VF). Exercise training can increase HRV (an index of cardiac vagal regulation) and could, thereby, decrease the risk for VF. To test this hypothesis, a 2-min coronary occlusion was made during the last min of a 18-min submaximal exercise test in dogs with healed myocardial infarctions; 20 had VF (susceptible), and 13 did not (resistant). The dogs then received either a 10-wk exercise program (susceptible, n=9; resistant, n=8) or an equivalent sedentary period (susceptible, n=11; resistant, n=5). HRV was evaluated at rest, during exercise, and during a 2-min occlusion at rest and before and after the 10-wk period. Pretraining, the occlusion provoked significantly (P<0.01) greater increases in HR (susceptible, 54.9+/-8.3 vs. resistant, 25.0+/-6.1 beats/min) and greater reductions in HRV (susceptible, -6.3+/-0.3 vs. resistant, -2.8+/-0.8 ln ms2) in the susceptible dogs compared with the resistant animals. Similar response differences between susceptible and resistant dogs were noted during submaximal exercise. Training significantly reduced the HR and HRV responses to the occlusion (HR, 17.9+/-11.5 beats/min; HRV, -1.2+/-0.8, ln ms2) in the susceptible dogs; similar response reductions were noted during exercise. In contrast, these variables were not altered in the sedentary susceptible dogs. Posttraining, VF could no longer be induced in the susceptible dogs, whereas four sedentary susceptible dogs died during the 10-wk control period, and the remaining seven animals still had VF when tested. Atropine decreased HRV but only induced VF in one of eight trained susceptible dogs. Thus exercise training increased cardiac vagal activity, which was not solely responsible for the training-induced VF protection. 相似文献
15.
Evidence that stimulation of glucose metabolism by insulin is not altered in isolated soleus muscle of pregnant rats
下载免费PDF全文

Armelle Leturque Pascale Satabin Pascal Ferré Jean R. Girard 《The Biochemical journal》1981,200(1):181-184
Various concentrations of insulin stimulated to the same extent glucose transport and metabolism in incubated soleus muscle of virgin and 19-day-pregnant rats. This suggests that the resistance to insulin that occurs during pregnancy in vivo does not result from an intrinsic defect in skeletal muscles. 相似文献
16.
Ellen M Evans Susan B Racette Linda R Peterson Dennis T Villareal Jeffrey S Greiwe John O Holloszy 《Journal of applied physiology》2005,98(1):40-45
Previous studies have demonstrated that frail octogenarians have an attenuated capacity for cardiovascular adaptations to endurance exercise training. In the present study, we determined the magnitude of cardiovascular and metabolic adaptations to high-intensity endurance exercise training in healthy, nonfrail elderly subjects. Ten subjects [8 men, 2 women, 80.3 yr (SD2.5)] completed 10-12 mo (108 exercise sessions) of a supervised endurance exercise training program consisting of 2.5 sessions/wk (SD 0.2), 58 min/session (SD 6), at an intensity of 83% (SD 5) of peak heart rate. Primary outcomes were maximal attainable aerobic power [peak aerobic capacity (Vo(2peak))]; serum lipids, oral glucose tolerance, and insulin action during a hyperglycemic clamp; body composition by dual-energy X-ray absorptiometry, and energy expenditure using doubly labeled water and indirect calorimetry. The training program resulted in an increase in Vo(2peak) of 15% (SD 7) [22.9 (SD 3.3) to 26.2 ml.kg(-1).min(-1) (SD 4.0); P < 0.0001]. Favorable lipid changes included reductions in total cholesterol (-8%; P = 0.002) and LDL cholesterol (-10%; P = 0.003), with no significant change in HDL cholesterol or triglycerides. Insulin action improved, as evidenced by a 29% increase in glucose disposal rate relative to insulin concentration during the hyperglycemic clamp. Fat mass decreased by 1.8 kg (SD 1.4) (P = 0.003); lean mass did not change. Total energy expenditure increased by 400 kcal/day because of an increase in physical activity. No change occurred in resting metabolism. In summary, healthy nonfrail octogenarians can adapt to high-intensity endurance exercise training with improvements in aerobic power, insulin action, and serum lipid and lipoprotein risk factors for coronary heart disease; however, the adaptations in aerobic power and insulin action are attenuated compared with middle-aged individuals. 相似文献
17.
The aim of the present investigation was to investigate plasma ghrelin response to acute maximal exercise in elite male rowers. Eight elite male rowers performed a maximal 6000-m rowing ergometer test (mean performance time: 19 mins 52 secs; 1192.1 +/- 16.4 secs), and venous blood samples were obtained before, immediately after, and after 30 mins of recovery. In addition to ghrelin concentration, leptin, insulin, growth hormone, insulin-like growth factor-1 (IGF-1), testosterone, cortisol, and glucose values were measured. Ghrelin was significantly increased immediately after the exercise (+24.4%; P < 0.05) and was not significantly different than baseline after 30 mins of recovery. Leptin was significantly decreased immediately after the exercise (- 15.8%; P < 0.05) and remained significantly decreased after the first 30 mins of recovery. No changes occurred in insulin concentrations. Growth hormone, IGF-1, and testosterone values were significantly increased and decreased to the pre-exercise level immediately after the exercise and after the first 30 mins of recovery, respectively. Cortisol and glucose values were significantly increased immediately after the exercise and remained significantly increased during the first 30 mins of recovery. There were no relationships between plasma ghrelin and other measured blood parameters after the exercise, nor were changes in ghrelin related to changes in other measured blood biochemical values after the exercise. In conclusion, these results suggest that acute negative energy balance induced by specific maximal short-term exercise elicits a metabolic response with opposite changes in ghrelin and leptin concentrations in elite male athletes. 相似文献
18.
Adiponectin gene haplotype is associated with preeclampsia 总被引:2,自引:0,他引:2
We determined whether the polymorphism of the gene encoding adiponectin contributes to susceptibility to preeclampsia. The study involved 133 Finnish women with preeclampsia and 245 healthy control subjects. All women were genotyped for two single nucleotide polymorphisms (SNPs), SNP45 in exon 2 and SNP276 in intron 2, in the adiponectin gene. Chi2 analysis was used to assess genotype and allele frequency differences between the preeclamptic and control groups. In addition, the pair of loci haplotype analysis, using the expectation-maximization (EM) algorithm, was used to examine the estimated haplotype frequencies of the two SNPs, among the two groups. The TT genotype versus the pooled G genotypes in SNP276 was associated with protection against preeclampsia (p = 0.012) at an odds ratio of 0.27 (95% confidence interval [CI]: 0.09-0.80). Also the genotype and allele frequency distributions of SNP276 differed significantly between the preeclampsia group and the control group (p = 0.035 and p = 0.043, respectively). Single-point genotype and allele distributions in SNP45 of the adiponectin gene were not statistically different between the groups. In the haplotype estimation analysis, the pooled G haplotypes versus the TT haplotype were significantly overrepresented in the preeclampsia group (p = 0.042 +/- 0.005). Polymorphisms of the adiponectin gene show a weak, but statistically significant, haplotype association with susceptibility to preeclampsia in Finnish women. 相似文献
19.
Cellular compartmentalization in insulin action: altered signaling by a lipid-modified IRS-1 总被引:1,自引:0,他引:1
下载免费PDF全文

While most receptor tyrosine kinases signal by recruiting SH2 proteins directly to phosphorylation sites on their plasma membrane receptor, the insulin receptor phosphorylates intermediary IRS proteins that are distributed between the cytoplasm and a state of loose association with intracellular membranes. To determine the importance of this distribution to IRS-1-mediated signaling, we constructed a prenylated, constitutively membrane-bound IRS-1 by adding the COOH-terminal 9 amino acids from p21(ras), including the CAAX motif, to IRS-1 (IRS-CAAX) and analyzed its function in 32D cells expressing the insulin receptor. IRS-CAAX migrated more slowly on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than did IRS-1 and demonstrated increased levels of serine/threonine phosphorylation. Insulin-stimulated tyrosyl phosphorylation of IRS-CAAX was slightly decreased, while IRS-CAAX-mediated phosphatidylinositol 3'-kinase (PI3'-kinase) binding and activation were decreased by approximately 75% compared to those for wild-type IRS-1. Similarly, expression of IRS-CAAX desensitized insulin-stimulated [(3)H]thymidine incorporation into DNA by about an order of magnitude compared to IRS-1. By contrast, IRS-CAAX-expressing cells demonstrated increased signaling by mitogen-activated protein kinase, Akt, and p70(S6) kinase in response to insulin. Hence, tight association with the membrane increased IRS-1 serine phosphorylation and reduced coupling between the insulin receptor, PI3'-kinase, and proliferative signaling while enhancing other signaling pathways. Thus, the correct distribution of IRS-1 between the cytoplasm and membrane compartments is critical to the normal balance in the network of insulin signaling. 相似文献
20.
Mooradian AD Haas MJ Chehade J Wong NC 《Experimental biology and medicine (Maywood, N.J.)》2002,227(11):1001-1005
Insulin is known to upregulate apolipoprotein A-I (apoA-I) promoter activity and to increase apoA1 gene expression in vivo. To determine if enhancement of insulin action with insulin sensitizers can also increase the apoA-I expression, we studied the in vivo effect of troglitazone, a potent insulin sensitizer, on the expression of rat hepatic and intestinal apoA-I mRNA using Northern blot analysis. The plasma, hepatic, and intestinal apoA-I content was also measured with immunoblot analysis using a specific anti-rat apoA-I antiserum. Troglitazone, given mixed with rat chow (0.2%) for 18 days, did not increase either plasma or tissue apoA-I mRNA or protein content. Intestinal apoA-I mRNA content relative to glyceraldehyde-3 phosphate dehydrogenase (G(3)PDH) mRNA was significantly lower compared with hepatic tissue content in both control and troglitazone-treated rats. The effect of troglitazone on the rat apoA-I promoter was examined using transient transfection analysis in HepG2 cells transfected with the apoA-I-chloramphenicol acetyl transferase (CAT) reporter plasmid (pAI.474.CAT). CAT activity (percentage acetylation of chloramphenicol as means +/- SEM) was not significantly different in ethanol (vehicle)-treated cells compared with cells treated with troglitazone (50.5% +/- 2.5% in control cells vs 57.7% +/- 8.2% and 53.5% +/- 4.2% in cells treated with 10 and 100 mM troglitazone, respectively). It is concluded that troglitazone doses known to achieve insulin sensitization did not enhance rat apoA-I promoter activity sufficiently to result in an increased apoA-I mRNA or protein expression in the intact rat. However, peroxisome proliferator activator receptor (PPAR) agonists that have significant PPAR alpha activity in addition to their PPAR gamma effects, may well be able to induce apoA-I expression. 相似文献