首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescence labeling with the marker carbazole-9-carboxylic acid [2-(2-aminooxyethoxy)ethoxy]amide was shown to be a promising approach toward the accurate determination of carbonyls in cellulosic materials. Combined with gel permeation chromatography in DMAc/LiCl with fluorescence/multiple-angle laser light scattering/refractive index detection, the method yields carbonyl profiles relative to the molecular weight of the cellulosic material. The derivatization procedure can be carried out either homogeneously in DMAc/LiCl or advantageously as heterogeneous derivatization in aqueous buffer. The heterogeneous carbonyl group determination, offering shorter reaction times and increased simplicity as compared to the homogeneous approach, was comprehensively validated. The carbonyl content in numerous dissolving pulps of different provenience has been determined, including pulps with carbonyl contents additionally increased by oxidative treatment. The method was also applied to follow bleaching sequences and oxidative treatments of pulps.  相似文献   

2.
A novel method for accurate determination of the carboxyl content in cellulosic materials by fluorescence labeling with 9H-fluoren-2-yl-diazomethane (FDAM) has been developed. The procedure can readily be implemented into a GPC system with RI and MALLS detectors, requiring additional fluorescence detection. The labeling conditions were optimized by means of sugar acid model compounds and were transferred to the cellulose case. Kinetics of the labeling and the influence of reaction parameters were comprehensively studied. For the first time, carboxyl profiles of cellulosics, i.e., the carboxyl content relative to the molecular weight distribution, were obtained.  相似文献   

3.
Most of the mechanically active proteins are organized into tandems of identical repeats, (D)N, or heterogeneous tandems, D1-D2-...-DN. In current atomic force microscopy experiments, conformational transitions of protein tandems can be accessed by employing constant stretching force f (force-clamp) and by analyzing the recorded unfolding times of individual domains. Analysis of unfolding data for homogeneous tandems relies on the assumption that unfolding times are independent and identically distributed, and involves inference of the (parent) probability density of unfolding times from the histogram of the combined unfolding times. This procedure cannot be used to describe tandems characterized by interdomain interactions, or heteregoneous tandems. In this article, we introduce an alternative approach that is based on recognizing that the observed data are ordered, i.e., first, second, third, etc., unfolding times. The approach is exemplified through the analysis of unfolding times for a computer model of the homogeneous and heterogeneous tandems, subjected to constant force. We show that, in the experimentally accessible range of stretching forces, the independent and identically distributed assumption may not hold. Specifically, the uncorrelated unfolding transitions of individual domains at lower force may become correlated (dependent) at elevated force levels. The proposed formalism can be used in atomic force microscopy experiments to infer the unfolding time distributions of individual domains from experimental histograms of ordered unfolding times, and it can be extended to analyzing protein tandems that exhibit interdomain interactions.  相似文献   

4.
The kinetics of deoxyhemoglobin S gelation have been investigated using photolytic dissociation of the carbon monoxide complex to initiate the process. Measurements over a wide range of times, 10(-3)-10(4) show that both the concentration dependence of the tenth-time (i.e., the time required to complete one-tenth the reaction) and the time dependence of the process decrease as gelation speeds up. In slowly gelling samples, where single domains of polymers are formed in the small sample volumes employed with this technique (1-2 x 10(-9) cm3), there is a marked increase in the variability of the tenth-times. These results are explained by a mechanism in which gelation is initiated by homogeneous nucleation of polymers in the bulk solution phase, followed by heterogeneous nucleation on the surface of existing polymers. At the lowest concentrations, homogeneous nucleation is so improbable that stochastic behavior is observed in the small sample volumes, and heterogeneous nucleation is the dominant pathway for polymer formation, thereby accounting for the high time dependence. At the highest concentrations homogeneous nucleation becomes much more probable, and the time dependence decreases. The decrease in concentration dependence of the tenth-time with increasing concentration results from a decrease in size of both the homogeneous and heterogeneous critical nuclei. The model rationalizes the major observations on the kinetics of gelation of deoxyhemoglobin S, and is readily testable by further experiments.  相似文献   

5.
A continuous distribution approach, instead of the traditional mono- and multiexponential analysis, for determining quencher concentration in a heterogeneous system has been developed. A mathematical model of phosphorescence decay inside a volume with homogeneous concentration of phosphor and heterogeneous concentration of quencher was formulated to obtain pulse-response fitting functions for four different distributions of quencher concentration: rectangular, normal (Gaussian), gamma, and multimodal. The analysis was applied to parameter estimates of a heterogeneous distribution of oxygen tension (PO2) within a volume. Simulated phosphorescence decay data were randomly generated for different distributions and heterogeneity of PO2 inside the excitation/emission volume, consisting of 200 domains, and then fit with equations developed for the four models. Analysis using a monoexponential fit yielded a systematic error (underestimate) in mean PO2 that increased with the degree of heterogeneity. The fitting procedures based on the continuous distribution approach returned more accurate values for parameters of the generated PO2 distribution than did the monoexponential fit. The parameters of the fit (M = mean; sigma = standard deviation) were investigated as a function of signal-to-noise ratio (SNR = maximum signal amplitude/peak-to-peak noise). The best-fit parameter values were stable when SNR > or = 20. All four fitting models returned accurate values of M and sigma for different PO2 distributions. The ability of our procedures to resolve two different heterogeneous compartments was also demonstrated using a bimodal fitting model. An approximate scheme was formulated to allow calculation of the first moments of a spatial distribution of quencher without specifying the distribution. In addition, a procedure for the recovery of a histogram, representing the quencher concentration distribution, was developed and successfully tested.  相似文献   

6.
Interest in cellular glycosphingolipid (GSL) function has necessitated the development of a rapid and sensitive method to both analyze and characterize the full complement of structures present in various cells and tissues. An optimized method to characterize oligosaccharides released from glycosphingolipids following ceramide glycanase digestion has been developed. The procedure uses the fluorescent compound anthranilic acid (2-aminobenzoic acid; 2-AA) to label oligosaccharides prior to analysis using normal-phase high-performance liquid chromatography. The labeling procedure is rapid, selective, and easy to perform and is based on the published method of Anumula and Dhume [Glycobiology 8 (1998) 685], originally used to analyze N-linked oligosaccharides. It is less time consuming than a previously published 2-aminobenzamide labeling method [Anal. Biochem. 298 (2001) 207] for analyzing GSL-derived oligosaccharides, as the fluorescent labeling is performed on the enzyme reaction mixture. The purification of 2-AA-labeled products has been improved to ensure recovery of oligosaccharides containing one to four monosaccharide units, which was not previously possible using the Anumula and Dhume post-derivatization purification procedure. This new approach may also be used to analyze both N- and O-linked oligosaccharides.  相似文献   

7.
Synthesis of the N-linked oligosaccharides of Saccharomyces cerevisiae glycoproteins has been studied in vivo by labeling with [2-3H]mannose and gel filtration analysis of the products released by endoglycosidase H. Both small oligosaccharides, Man8-14GlcNAc, and larger products, Man greater than 20GlcNAc, were labeled. The kinetics of continuous and pulse-chase labeling demonstrated that Glc3Man9GlcNAc2, the initial product transferred to protein, was rapidly (t1/2 congruent to 3 min) trimmed to Man8GlcNAc2 and then more slowly (t1/2 = 10-20 min) elongated to larger oligosaccharides. No oligosaccharides smaller than Man8GlcNAc2 were evident with either labeling procedure. In confirmation of the trimming reaction observed in vivo, 3H-labeled Man9-N-acetylglucosaminitol from bovine thyroglobulin and [14C]Man9GlcNAc2 from yeast oligosaccharide-lipid were converted in vitro by broken yeast cells to 3H-labeled Man8-N-acetylglucosaminitol and [14C]Man8GlcNAc2. Man8GlcNAc and Man9GlcNAc from yeast invertase and from bovine thyroglobulin were purified by gel filtration and examined by high field 1H-NMR analysis. Invertase Man8GlcNAc (B) and Man9GlcNAc (C) were homogeneous compounds, which differed from the Man9GlcNAc (A) of thyroglobulin by the absence of a specific terminal alpha 1,2-linked mannose residue. The Man9GlcNAc of invertase (C) had an additional terminal alpha 1,6-linked mannose and appeared identical in structure with that isolated from yeast containing the mnn1 and mnn2 mutations (Cohen, R. E., Zhang, W.-j., and Ballou, C. E. (1982) J. Biol. Chem. 257, 5730-5737). It is concluded that Man8GlcNAc2, formed by removal of glucose and a single mannose from Glc3Man9GlcNAc2, is the ultimate product of trimming and the minimal precursor for elongation of the oligosaccharides on yeast glycoproteins. The results suggest that removal of a particular terminal alpha 1,2-linked mannose from Man9GlcNAc2 by a highly specific alpha-mannosidase exposes the nascent Man-alpha 1,6-Man backbone for elongation with additional alpha 1,6-linked mannose residues, according to the following scheme: (formula, see text).  相似文献   

8.
The composition and sequence of 2-acetamido-2-deoxy-beta-D-glucose (GlcNAc) and 2-amino-2-deoxy-beta-D-glucose (GlcN) residues in partially N-deacetylated chitosans, prepared under homogeneous and heterogeneous conditions, have been determined by 1H-n.m.r. spectroscopy. It was necessary to depolymerise the chitosan slightly by treatment with nitrous acid before spectroscopy. A sequence-dependent deshielding of H-1 of the GlcNAc residues made it possible to determine the proportions of the four possible diads. Chitosan prepared by N-deacetylation under homogeneous conditions gave values for the diad frequencies that were roughly consistent with a random distribution of the N-acetyl groups. Samples prepared under heterogeneous conditions have a frequency of the GlcNAc-GlcNAc diad slightly higher than for a random (Bernoullian) distribution. The chitosans, prepared under both homogeneous and heterogeneous conditions, with a degree of acetylation of 50% were soluble at neutral pH.  相似文献   

9.
A cytochrome c kinetic folding intermediate was studied by hydrogen exchange (HX) pulse labeling. Advances in the technique and analysis made it possible to define the structured and unstructured regions, equilibrium stability, and kinetic opening and closing rates, all at an amino acid-resolved level. The entire N-terminal and C-terminal helices are formed and docked together at their normal native positions. They fray in both directions from the interaction region, due to a progression in both unfolding and refolding rates, leading to the surprising suggestion that helix propagation may proceed very slowly in the condensed milieu. Several native-like beta turns are formed. Some residues in the segment that will form the native 60s helix are protected but others are not, suggesting energy minimization to some locally non-native conformation in the transient intermediate. All other regions are unprotected, presumably dynamically disordered. The intermediate resembles a partially constructed native state. It is early, on-pathway, and all of the refolding molecules pass through it. These and related results consistently point to distinct, homogeneous, native-like intermediates in a stepwise sequential pathway, guided by the same factors that determine the native structure. Previous pulse labeling efforts have always assumed EX2 exchange during the labeling pulse, often leading to the suggestion of heterogeneous intermediates in alternative parallel pathways. The present work reveals a dominant role for EX1 exchange in the high pH labeling pulse, which will mimic heterogeneous behavior when EX2 exchange is assumed. The general problem of homogeneous versus heterogeneous intermediates and pathways is discussed.  相似文献   

10.
11.
Labeling of platelet surface proteins with 125I by the iodogen method   总被引:3,自引:0,他引:3  
A procedure for the 125I-iodination of platelet suspensions is described. The procedure utilizes Iodogen, a solid-phase oxidizing agent similar to chloramine-T. Platelets were labeled under a variety of conditions, including in the presence of 0.1% albumin, and showed between 7 and 28% incorporation of 125I. Best labeling results were obtained at low platelet concentrations (3-5 x 10(8) platelets/ml), short reaction times (15 min), and with 2-ml glass vials coated with 100 micrograms of Iodogen. Analysis of the labeled platelet proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by autoradiography revealed that the same major protein bands were labeled by this procedure as were labeled by the lactoperoxidase procedure. At low platelet concentrations, the Iodogen procedure gives twice the amount of iodine incorporation.  相似文献   

12.
Methods for chemical modifications of proteins have been crucial for the advancement of proteomics. In particular, site-specific covalent labeling of proteins with fluorophores and other moieties has permitted the development of a multitude of assays for proteome analysis. A common approach for such a modification is solvent-accessible cysteine labeling using thiol-reactive dyes. Cysteine is very attractive for site-specific conjugation due to its relative rarity throughout the proteome and the ease of its introduction into a specific site along the protein's amino acid chain. This is achieved by site-directed mutagenesis, most often without perturbing the protein's function. Bottlenecks in this reaction, however, include the maintenance of reactive thiol groups without oxidation before the reaction, and the effective removal of unreacted molecules prior to fluorescence studies. Here, we describe an efficient, specific, and rapid procedure for cysteine labeling starting from well-reduced proteins in the solid state. The efficacy and specificity of the improved procedure are estimated using a variety of single-cysteine proteins and thiol-reactive dyes. Based on UV/vis absorbance spectra, coupling efficiencies are typically in the range 70-90%, and specificities are better than approximately 95%. The labeled proteins are evaluated using fluorescence assays, proving that the covalent modification does not alter their function. In addition to maleimide-based conjugation, this improved procedure may be used for other thiol-reactive conjugations such as haloacetyl, alkyl halide, and disulfide interchange derivatives. This facile and rapid procedure is well suited for high throughput proteome analysis.  相似文献   

13.
Turnover of phospholipids in the yeast Saccharomyces cerevisiae generates intracellular glycerophosphocholine (GPC). Here we show that GPC can be reacylated in an acyl-CoA-dependent reaction by yeast microsomal membranes. The lysophosphatidylcholine that is formed in this reaction is efficiently further acylated to phosphatidylcholine (PC) by yeast microsomes, thus providing a new pathway for PC biosynthesis that can either recycle endogenously generated GPC or utilize externally provided GPC. Genetic and biochemical evidence suggests that this new enzymatic activity, which we call GPC acyltransferase (GPCAT), is not mediated by any of the previously known acyltransferases in yeast. The GPCAT activity has an apparent V(max) of 8.7 nmol/min/mg protein and an apparent K(m) of 2.5 mM. It has a neutral pH optimum, similar to yeast glycerol-3-phosphate acyltransferase, but differs from the latter in being more heat stable. The GPCAT activity is sensitive to N-ethylmaleimide, phenanthroline, and Zn(2+) ions. In vivo experiments showed that PC is efficiently labeled when yeast cells are fed with [(3)H]choline-GPC, and that this reaction occurs also in pct1 knockout strains, where de novo synthesis of PC by the CDP-choline pathway is blocked. This suggests that GPCAT can provide an alternative pathway for PC biosynthesis in vivo.  相似文献   

14.
Inorganic pyrophosphatase as a label in heterogeneous enzyme immunoassay   总被引:4,自引:0,他引:4  
Inorganic pyrophosphatase from Escherichia coli has been employed as a label in heterogeneous enzyme immunoassays. Enzyme-antibody conjugates were prepared with the use of glutaraldehyde and purified by gel permeation chromatography. Enzyme activity was measured by means of a sensitive one-step color reaction between phosphate, molybdate, and malachite green. The sensitivity in terms of absorbance readings was four to eight times higher than that of peroxidase-based assays. The color change (yellow to greenish blue) inherent in the use of pyrophosphatase as the labeling agent is highly suitable for visual analysis. Other merits of pyrophosphatase include the remarkable stability of the enzyme and its substrate, its compatibility with bacteriostatic agents, and its low Michaelis constant. Examples of the use of phosphatase in the assay of human alpha-fetoprotein and immunoglobulin G are presented.  相似文献   

15.
An enzyme system which catalyzes the degradation of glycine to one carbon unit, ammonia, and carbon dioxide and the synthesis of glycine from these three substances has been isolated from rat liver mitochondria. The reversible glycine cleavage system is composed of four protein components named as P-, H-, L-, and T-protein, respectively. A procedure is described for the purification of P-protein which catalyzes the decarboxylation of glycine or its reverse reaction in the presence of H-protein, and for T-protein which participates in the formation of one carbon unit and ammonia or the reverse reaction. The procedure described leads to the isolation of a nearly homogeneous form of T-protein but P-protein still is heterogeneous. The molecular weight of T-protein, estimated by molecular sieve chromatography, is 33,000. Properties of the synthesis and cleavage reactions and the exchange of carboxyl group of glycine with bicarbonate are also presented.  相似文献   

16.
The reactivity of Amberlite (IRA-67) base "heterogeneous" resin in Sonogashira cross-coupling of 8-bromoguanosine 1 with phenylacetylene 3 to give 2 has been examined. Both 1 and 2 coordinate to Pd and Cu ions, which explains why at equivalent catalyst loadings, the homogeneous reaction employing triethylamine base is poor yielding. X-ray photo-electron spectroscopy (XPS) has been used to probe and quantify the active nitrogen base sites of the Amberlite resin, and postreaction Pd and Cu species. The PdCl(2)(PPh(3))(2) precatalyst and CuI cocatalyst degrade to give Amberlite-supported metal nanoparticles (average size ~2.7 nm). The guanosine product 2 formed using the Amberlite Pd/Cu catalyst system is of higher purity than reactions using a homogeneous Pd precatalyst, a prerequisite for use in biological applications.  相似文献   

17.
A monoclonal antibody (mAb KT4), produced against a Pichia anomala killer toxin, was used to study the secretion process of toxin producing cells. The indirect immunofluorescence assay, performed with large concentrations of mAb KT4, showed a homogeneous distribution of the epitope at the cell surface of the P anomala cells. When increasing dilutions of mAb KT4 were employed, a 'punctuated' labeling appeared on the yeast's cell wall which suggested a heterogeneous secretion of the killer toxin. Similar labeling was also observed by immunodetection on live yeast cells held in buffered suspension. These results confirmed that 'punctuated' labeling was not an artefact due to a distortion of the cell's shape by having been dried on glass slides. Indirect immunodetection was performed in electron microscopy on ultra-thin sections of cells embedded in Araldite resin. The labeling thus obtained showed both the presence of the epitope in the cytoplasm and its sensitivity to strong glutaraldehyde fixation. Indirect immunodetection, performed on ultra-thin frozen sections, showed a cytoplasmic and cell wall labelling. However, the amount of gold particles observed in the cell wall was too low to confirm the heterogeneous killer toxin secretion observed in immunofluorescence. In this case, killer cells were fixed with a low concentration of glutaraldehyde which preserved the structure of the epitope complementary with mAb KT4.  相似文献   

18.
Platelet-activating factor (PAF) is an early product of the inflammatory environment, influencing development and resolution of inflammation. Its production is greater in neutrophils and macrophages, which predominantly synthesize 1-alkyl sn-2 acetyl glycerophosphocholine (GPC) than in nongranulocytes (B cells and endothelial cells), which lack a respiratory burst and synthesize 1-acyl sn-2 acetyl GPC as their major PAF species. This study investigated whether the respiratory burst was responsible for the quantitative and qualitative differences in sn-2 acetyl GPC species generation by neutrophils and macrophages versus those cells lacking the NADPH oxidase complex. The myeloid cell line PLB-985 (capable of differentiation into neutrophils) was used to test this hypothesis, since these cells had previously been generated with a non-functional respiratory burst (X-CGD PLB-985). Differentiated PLB-985 cells underwent a large respiratory burst in response to PMA (phorbol ester), and smaller respiratory bursts in response to A23187 (calcium ionophore), and the bacterial polypeptide fMLP (receptor mediated activation). Concurrently, treated cells were assessed for production of 1-hexadecyl and 1-palmitoyl sn-2 acetyl GPC species by gas chromatography/mass spectrometry. Neither cell type generated these lipid species in response to PMA, but both cell types generated equal levels of sn-2 acetyl GPC in response to A23187, with five times more 1-hexadecyl than 1-palmitoyl species. Upon fMLP activation, X-CGD PLB-985 cells produced significantly less 1-hexadecyl and 1-palmitoyl sn-2 acetyl GPC in comparison to the wild-type PLB-985 cells. These findings suggest phagocytic oxidant production by NADPH oxidase is not essential for sn-2 acetyl GPC generation, but appears important for optimal production of PAF in response to some stimuli.  相似文献   

19.
K Friderici  M Kaehler  F Rottman 《Biochemistry》1976,15(24):5234-5241
Methylation patterns of Novikoff cytoplasmic mRNA were determined as a function of labeling time with L-[methyl-3H]methionine. The 5'-terminal m7G could be released from whole mRNA by treatment with nucleotide pyrophosphatase. Subsequent alkaline phosphatase treatment of this mRNA, followed by KOH digestion, yielded N'mpNp and N'mpNp from cap 1 (m7GpppN'mpN) and cap 2 (m7GpppN'mpN'mpN), respectively. Our results indicate that the relative amounts of labeled cap structures do change with time and that the amount of internal N6-methyladenosine decreases, relative to 5'-cap structures, as the cytoplasmic mRNAs age and the average size decreases. The formation of cap-2 structures by the addition of second 2'-O-methyl group at position N'm appears to be cytoplasmic event. Thus, after very short labeling times, greater than 80% of the labeled methyl groups in cap 2 are found in this position. These results, along with earlier data obtained on L-cell heterogeneous nuclear RNA methylation, are consistent with a model in which the nucleus is the cellular site of three mRNA methylation events producing 5'-terminal m7G, the first 2'-O-methylnucleoside (N'm) found in cap-1 structures and internal N6-methyladenosine. Subsequently, these nuclear methylations are followed by the cytoplasmic methylation at N'm. Analysis of the methynucleoside composition of cap-1 structures, along with comparable "core" structures (m7GpppN'm) generated from cap-2 by removal of N'm, indicates that at any single labeling time the methylnucleoside composition of a given cap-1 and the cap-2 "core" structure is remarkably similar. On the other hand, comparisons of the methylnucleoside composition of the cap structures at different labeling times indicate an increase in Cm in the first 2'-O-methylnucleoside (N'm) with time.  相似文献   

20.
Recently, there has been an increased interest in isotopical labeling of peptides. Although there are several techniques allowing for a complete labeling of all carboxyl groups in peptides, regioselective labeling would be beneficial in many situations. Such labeling requires the use of 18O‐labeled Fmoc amino acids. We have designed a method for such labeling that is an improvement on a technique proposed earlier. The new procedure is suitable for microscale synthesis and could be used in peptide and proteomics laboratories. Although for the majority of tested amino acids our method gives good labeling efficiency, it is time consuming. Therefore, we have decided to use microwave‐assisted procedure. This approach resulted in reduction of reaction time to 15 min and increased reaction efficiency. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号