首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a study on the effects of cross-linking on the adhesive properties of bio-inspired 3,4-dihydroxyphenylalanine (DOPA). DOPA has a unique catechol moiety found in adhesive proteins in marine organisms, such as mussels and polychaete, which results in strong adhesion in aquatic conditions. Incorporation of this functional group in synthetic polymers provides the basis for pressure-sensitive adhesives for use in a broad range of environments. A series of cross-linked DOPA-containing polymers were prepared by adding divinyl cross-linking agent ethylene glycol dimethacrylate (EGDMA) to monomer mixtures of dopamine methacrylamide (DMA) and 2-methoxyethyl acrylate (MEA). Samples were prepared using a solvent-free microwave-assisted polymerization reaction and compared to a similar series of cross-linked MEA materials. Cross-linking with EGDMA tunes the viscoelastic properties of the adhesive material and has the advantage of not reacting with the catechol group that is responsible for the excellent adhesive performance of this material. Adhesion strength was measured by uniaxial indentation tests, which indicated that 0.001 mol % of EGDMA-cross-linked copolymer showed the highest work of adhesion in dry conditions, but non-cross-linked DMA was the highest in wet conditions. The results suggest that there is an optimal cross-linking degree that displays the highest adhesion by balancing viscous and elastic behaviors of the polymer but this appears to depend on the conditions. This concentration of cross-linker is well below the theoretical percolation threshold, and we propose that subtle changes in polymer viscoelastic properties can result in significant improvements in adhesion of DOPA-based materials. The properties of lightly cross-linked poly(DMA-co-MEA) were investigated by measurement of the frequency dependence of the storage modulus (G') and loss modulus (G'). The frequency-dependence of G' and magnitude of G' showed gradual decreases with the fraction of EGDMA. Loosely cross-linked DMA copolymers, containing 0% and 0.001 mol % of EGDMA-cross-linked copolymers, displayed rheological behavior appropriate for pressure-sensitive adhesives characterized by a higher G' at high frequencies and lower G' at low frequencies. Our results indicate that dimethacrylate cross-linking of DMA copolymers can be used to enhance the adhesive properties of this unique material.  相似文献   

2.
In this work, living/controlled radical polymerization (LRP) is compared with conventional free radical polymerization in the creation of highly and weakly cross-linked imprinted poly(methacrylic acid-co-ethylene glycol dimethacrylate) networks. It elucidates, for the first time, the effect of LRP on the chain level and begins to explain why the efficiency of the imprinting process is improved using LRP. Imprinted polymers produced via LRP exhibited significantly higher template affinity and capacity compared with polymers prepared using conventional methods. The use of LRP in the creation of highly cross-linked imprinted polymers resulted in a fourfold increase in binding capacity without a decrease in affinity; whereas weakly cross-linked gels demonstrated a nearly threefold increase in binding capacity at equivalent affinity when LRP was used. In addition, by adjusting the double bond conversion, we can choose to increase either the capacity or the affinity in highly cross-linked imprinted polymers, thus allowing the creation of imprinted polymers with tailorable binding parameters. Using free radical polymerization in the creation of polymer chains, as the template-monomer ratio increased, the average molecular weight of the polymer chains decreased despite a slight increase in the double bond conversion. Thus, the polymer chains formed were shorter but greater in number. Using LRP neutralized the effect of the template. The addition of chain transfer agent resulted in slow, uniform, simultaneous chain growth, resulting in the formation of longer more monodisperse chains. Reaction analysis revealed that propagation time was extended threefold in the formation of highly cross-linked polymers when LRP techniques were used. This delayed the transition to the diffusion-controlled stage of the reaction, which in turn led to the observed enhanced binding properties, decreased polydispersity in the chains, and a more homogeneous macromolecular architecture.  相似文献   

3.
Zoospores of the oomycete Saprolegnia ferax release adhesive material from K‐bodies at the onset of attachment to substrates. To understand more fully how K‐bodies function in adhesion, enzyme activity was investigated cytochemically in secondary zoospores. Presence of catalase, a marker enzyme for microbodies, was explored in the diaminobenzidine (DAB) reaction. Although pH 9.2 DAB‐staining characteristic of catalase activity was detected in the granular matrix regions of K‐bodies, reaction controls indicated that the reaction was due to oxidative enzyme activity other than catalase. Because polyphenol oxidase (PPO) is another metal‐containing enzyme capable of oxidizing DAB, activity of this enzyme was tested with a more specific substrate, dihydroxyphenylalanine (DOPA). In the DOPA procedure, reaction product was exclusively localized within K‐bodies, indicating the presence of PPO. Results with three methods of reaction controls (elimination of substrate, addition of a PPO enzyme inhibitor, and heat‐inactivation of enzymes) all supported the presence of PPO in K‐bodies. This study highlights potential roles for K‐body PPO in stabilization of adhesion bodies by: cross‐linking matrix phenolic proteins or glycoproteins as K‐bodies discharge adhesives onto substrates, or polymerizing phenolics protective against microbial attacks of the adhesion pad.  相似文献   

4.
Y Minami  H Sakai 《FEBS letters》1986,195(1-2):68-72
It has been revealed that neurofilaments stimulate polymerization of tubulin and thereby cause gelation. Addition of a very small amount of MAPs to the reaction mixture of tubulin and neurofilaments resulted in promotion of gelation. This could not be ascribed to MAP-induced cross-linking between microtubules and neurofilaments because further increases in the MAP concentration (still substoichiometric amount) resulted in total suppression of gelation. It is concluded that MAPs promote microtubule assembly independently of neurofilaments, and lower the concentration of tubulin available for neurofilament-induced polymerization, then preventing network formation.  相似文献   

5.
In this study, we synthesized and characterized a series of macromers based on poly( N-isopropylacrylamide) that undergo thermally induced physical gelation and, following chemical modification, can be chemically cross-linked. Macromers with number average molecular weights typically ranging from 2000-3500 Da were synthesized via free radical polymerization from, in addition to N-isopropylacrylamide, pentaerythritol diacrylate monostearate, a bifunctional monomer containing a long hydrophobic chain, acrylamide, a hydrophilic monomer, and hydroxyethyl acrylate, a hydrophilic monomer used to provide hydroxyl groups for further chemical modification. Results indicated that the hydrophobic-hydrophilic balance achieved by varying the relative concentrations of comonomers used during synthesis was an important parameter in controlling the transition temperature of the macromers in solution and stability of the resultant gels. Storage moduli of the macromers increased over 4 orders of magnitude once gelation occurred above the transition temperature. Furthermore, chemical cross-linking of these macromers resulted in gels with increased stability compared to uncross-linked controls. These results demonstrate the feasibility of synthesizing poly( N-isopropylacrylamide)-based macromers that undergo tandem gelation and establish key criteria relating to the transition temperature and stability of these materials. The data suggest that these materials may be attractive substrates for tissue engineering and cellular delivery applications as the combination of mechanistically independent gelation techniques used in tandem may offer superior materials with regard to gelation kinetics and stability.  相似文献   

6.
Lipoxygenase was found to catalyze the oxidative polymerization of phenolic lipids containing a (Z,Z)-pentadiene in the side chain, the model compounds of urushiol and its analog, yielding methanol-soluble and insoluble polymers. The structural analysis of the resulted polymers suggested that the polymerization occurred at both the phenol and the unsaturated side chain. The key step of the polymerization was the generation of the hydroperoxide at the unsaturated side chain by lipoxygenase. The decomposition of hydroperoxide and concomitant dehydrogenation of phenol ring catalyzed by lipoxygenase might produce radicals that could be coupled to form cross-linked polymers. This lipoxygenase-mediated reaction implies a new mechanism for contact allergy of urushiol and its analogs.  相似文献   

7.
Xu G  Narayan M  Scheraga HA 《Biochemistry》2005,44(28):9817-9823
Bovine pancreatic ribonuclease B (RNase B) differs from RNase A by the presence of an oligosaccharide moiety covalently attached to Asn 34. Oxidative folding studies of RNase B were carried out at different temperatures using DTT(ox) as the oxidizing agent, and the results were compared with those for RNase A. The oxidative folding rates of RNase B are between 1.7 and 1.3 times faster than those of RNase A at the temperatures that were investigated. The folding pathways of RNase B were determined to be similar to those of RNase A in that two structured intermediates, each lacking one native disulfide bond, were found to populate the regeneration pathways at 25 degrees C and pH 8.3. The thermodynamic stabilities of these two glycosylated intermediates, and their rates of formation from their unstructured precursors in the rate-determining step, were found to be higher than those of their unglycosylated counterparts from RNase A. Thus, the underlying cause for the faster rate of oxidative regeneration of native RNase B appears to be both thermodynamic and kinetic due to the higher stability, and faster rate of formation, of the intermediates of RNase B compared to those of RNase A.  相似文献   

8.
Turbidity, structure, and rheological features during gelation via the Ugi multicomponent condensation reaction of semidilute solutions of alginate have been investigated at different polymer and cross-linker concentrations and reaction temperatures. The gelation time of the system decreased with increasing polymer and cross-linker concentrations, and a temperature rise resulted in a faster gelation. At the gel point, a power law frequency dependence of the dynamic storage modulus (G' proportional, variant omega(n)(')) and loss modulus (G' ' proportional, variant omega(n)(' ')) was observed for all gelling systems with n' = n' ' = n. By varying the cross-linker density at a fixed polymer concentration (2.2 wt %), the power law exponent is consistent with that predicted (0.7) from the percolation model. The value of n decreases with increasing polymer concentration, whereas higher temperatures give rise to higher values of n. The elastic properties of the gels continue to grow over a long time in the postgel region, and at later stages in the gelation process, a solidlike response is observed. The turbidity of the gelling system increases as the gel evolves, and this effect is more pronounced at higher cross-linker concentration. The small-angle neutron scattering results reveal large-scale inhomogeneities of the gels, and this effect is enhanced as the cross-linker density increases. The structural, turbidity, and rheological features were found to change over an extended time after the formation of the incipient gel. It was demonstrated that temperature, polymer, and cross-linker concentrations could be utilized to tune the physical properties of the Ugi gels such as structure, transparency, and viscoelasticity.  相似文献   

9.
A covalently linked actin dimer is identified in solutions of actin prepared from an acetone powder from skeletal muscle. This actin dimer acts as an actin nucleating factor (ANF), decreasing the half-time for spontaneous actin polymerization. ANF reacts with antibodies to both the N- and C-terminal portions of actin on Western blots and migrates during reduced polyacrylamide gel electrophoresis like actin cross-linked with N, N'-p-phenylenebismaleimide. The origin of the cross-linked dimer appears to be related to the presence of carbonyl groups in purified actin. A large number of carbonyls (approximately 0.3/actin) are introduced into actin during the prolonged treatment with acetone in the preparation of the muscle acetone powder from which actin is extracted. Actin extracted from acetone powder prepared by a single acetone wash and actin prepared from bovine spleen, which is not washed with acetone, both contain fewer carbonyl groups (approximately 0.05 carbonyl/actin). ANF forms spontaneously in solutions of polymer actin containing 0.3 carbonyl/actin. We speculate that a reaction between a carbonyl on one actin polymer subunit and a lysine on a neighboring subunit is responsible for ANF formation. The presence of cross-linked actin dimers in commonly used skeletal muscle actin preparations could certainly affect studies of actin polymerization and, particularly, studies of the nucleation reaction. The physiological relevance of ANF is not clear, but given the large cellular concentration of actin, similar reactions yielding ANF could occur in vivo when increased levels of reactive oxygen species are present.  相似文献   

10.
Independently, superoxide (O2-) and nitric oxide (NO) are biologically important signaling molecules. When co-generated, these radicals react rapidly to form powerful oxidizing and nitrating intermediates. Although this reaction was once thought to be solely cytotoxic, herein we demonstrate using MCF7, macrophage, and endothelial cells that when nanomolar levels of NO and O2- were produced concomitantly, the effective NO concentration was established by the relative fluxes of these two radicals. Differential regulation of sGC, pERK, HIF-1alpha, and p53 were used as biological dosimeters for NO concentration. Introduction of intracellular- or extracellular-generated O2- during NO generation resulted in a concomitant increase in oxidative intermediates with a decrease in steady-state NO concentrations and a proportional reduction in the levels of sGC, ERK, HIF-1alpha, and p53 regulation. NO responses were restored by addition of SOD. The intermediates formed from the reactions of NO with O2- were non-toxic, did not form 3-nitrotyrosine, nor did they elicit any signal transduction responses. H2O2 in bolus or generated from the dismutation of O2- by SOD, was cytotoxic at high concentrations and activated p53 independent of NO. This effect was completely inhibited by catalase, suppressed by NO, and exacerbated by intracellular catalase inhibition. We conclude that the reaction of O2- with NO is an important regulatory mechanism, which modulates signaling pathways by limiting steady-state levels of NO and preventing H2O2 formation from O2-.  相似文献   

11.
Proteins containing the post-translationally modified amino acid L-3,4-dihydroxyphenylalanine (DOPA) undergo autosclerotization as a means of assuring cohesive resilience in many structural matrices found in nature. To explore the chemical mechanism of sclerotization, we examined the oxidation products of relatively simple analogs of a peptidyl DOPA residue, such as N-acetylDOPA ethyl ester and N-acetyldopamide, together with those of several oligopeptides. Oxidation, induced by either of two catecholoxidases or by sodium periodate, resulted in the Lewis base catalyzed formation of derivatives of the unusual amino acid 3,4-dihydroxy-alpha,beta-dehydroDOPA (delta DOPA). The N-acetyl delta DOPA ethyl ester representative of this group of derivatives was characterized by NMR and uv spectroscopy. A variety of peptides developed analogous uv spectra upon oxidation. A similar reaction was observed upon oxidation of 3,4-dihydroxyphenylpropanoic (dihydrocaffeic) acid, but not after oxidation of N-acetyldopamine. Evidence is presented that this conversion is the result of a rearrangement of the DOPA quinone moiety to its delta DOPA tautomer, and that this tautomerization can be a dominant fate for peptidyl DOPA quinone, provided a Lewis base catalyst is available and competing reactions are minimized. Formation of delta DOPA in natural or synthetic polymers would increase the variety of crosslinks available to sclerotizing matrices. delta DOPA has been found in naturally occurring oligopeptides isolated by other workers from several marine species.  相似文献   

12.
蛋白质的氧化重折叠   总被引:7,自引:0,他引:7  
经过近几十年来广泛而深入的研究,蛋白质氧化重折叠的机制已得到相当详细的阐明。1在已研究过的蛋白质中,大多数蛋白质都是沿着多途径而非单一、特定的途径进行氧化重折叠,这与折叠能量景观学说是一致的。2正是氨基酸残基间的天然相互作用而不是非天然的相互作用控制蛋白质的折叠过程。这一结论与含非天然二硫键的折叠中间体在牛胰蛋白酶抑制剂(BPTI)折叠中所起的重要作用并非相互排斥,因为后者仅仅是进行链内二硫键重排的化学反应所必需,与控制肽链折叠无直接关系。3根据对BPTI的研究,二硫键曾被认为仅仅具有稳定蛋白质天然结构的作用,既不决定折叠途径也不决定其三维构象。这一观点不适用于其它蛋白质。对凝乳酶原的研究表明,天然二硫键的形成是恢复天然构象的前提。天然二硫键的形成与肽键的正确折叠相辅相成,更具有普遍意义。4在氧化重折叠的早期,二硫键的形成基本上是一个随机过程,随着肽链的折叠二硫键的形成越来越受折叠中间体构象的限制。提高重组蛋白质的复性产率是生物技术领域中的一个巨大的挑战。除了分子聚集外,在折叠过程中所形成的二硫键错配分子是导致低复性率的另一个主要原因。氧化重折叠机制的阐明为解决此问题提供了有益的启示。如上所述,在折叠的后期,二硫键的形成决定于折叠中间体的构象,类天然、有柔性的结构有利于天然二硫键形成和正确折叠,具有这类结构的分子为有效的折叠中间体,最终都能转变为天然产物;而无效折叠中间体往往具有稳定的结构,使巯基、二硫键内埋妨碍二硫键重排,并因能垒的障碍不利于进一步折叠。因此,降低无效折叠中间体的稳定性使之转变为有效折叠中间体是提高含二硫键蛋白质复性率的一条基本原则,实验证明,碱性pH、低温、降低蛋白质稳定性的试剂、蛋白质二硫键异构酶、改变蛋白质一级结构是实现这一原则的有效手段。此外,这里还就氧化重折叠的基础和应用研究的前景进行了讨论。  相似文献   

13.
Peroxynitrite (ONOO(-)/ONOOH), the product of the diffusion-limited reaction of nitric oxide (*NO) with superoxide (O(-*)(2)), has been implicated as an important mediator of tissue injury during conditions associated with enhanced *NO and O(-*)(2) production. Although several groups of investigators have demonstrated substantial oxidizing and cytotoxic activities of chemically synthesized peroxynitrite, others have proposed that the relative rates of *NO and production may be critical in determining the reactivity of peroxynitrite formed in situ (Miles, A. M., Bohle, D. S., Glassbrenner, P. A., Hansert, B., Wink, D. A., and Grisham, M. B. (1996) J. Biol. Chem. 271, 40-47). In the present study, we examined the mechanisms by which excess O(-*)(2) or *NO production inhibits peroxynitrite-mediated oxidation reactions. Peroxynitrite was generated in situ by the co-addition of a chemical source of *NO, spermineNONOate, and an enzymatic source of O(-*)(2), xanthine oxidase, with either hypoxanthine or lumazine as a substrate. We found that the oxidation of the model compound dihydrorhodamine by peroxynitrite occurred via the free radical intermediates OH and NO(2), formed during the spontaneous decomposition of peroxynitrite and not via direct reaction with peroxynitrite. The inhibitory effect of excess O(-*)(2) on the oxidation of dihydrorhodamine could not be ascribed to the accumulation of the peroxynitrite scavenger urate produced from the oxidation of hypoxanthine by xanthine oxidase. A biphasic oxidation profile was also observed upon oxidation of NADH by the simultaneous generation of *NO and O(-*)(2). Conversely, the oxidation of glutathione, which occurs via direct reaction with peroxynitrite, was not affected by excess production of *NO. We conclude that the oxidative processes initiated by the free radical intermediates formed from the decomposition of peroxynitrite are inhibited by excess production of *NO or O(-*)(2), whereas oxidative pathways involving a direct reaction with peroxynitrite are not altered. The physiological implications of these findings are discussed.  相似文献   

14.
Metal-catalysed oxidation (MCO) reactions result in the formation of reactive oxygen species (ROS) in biological systems. These ROS cause oxidative stress that contributes to a number of pathological processes leading to a variety of diseases. Tyrosine is one residue that is very susceptible to oxidative modification and the formation of dityrosine (DT) and 3,4-dihydroxyphenylalanine (DOPA) have been widely reported in a number of diseases. However, the mechanisms of MCO of tyrosine in biological systems are poorly understood and require further investigation. In this study we investigated the mechanism of DT and DOPA formation by MCO using N-acetyl tyrosine ethyl ester as a model for tyrosine in proteins and peptides. The results showed that DT formation could be observed upon Cu2+/H2O2 oxidation at pH 7.4. Our results indicate that it is unlikely to be via Fenton chemistry since Cu+/H2O2 oxidative conditions did not lead to the formation of DT.  相似文献   

15.
Azide-modified cellulose and alkyne-modified poly(N-isopropylacrylamide-co-hydroxylethyl methacrylate) P(NIPAAm-co-HEMA) were synthesized. The two components were cross-linked once mixed together in the presence of Cu(I) catalyst, a type of Huisgen’s 1,3-dipolar azide–alkyne cycloaddition which is also defined as “click” chemistry, leading to the in situ formation of a series of novel thermosensitive P(NIPAAm-co-HEMA)/cellulose hydrogels. The gelation process was examined via rheology. The resulted hydrogels was studied via scanning electron microscope (SEM), equilibrium swelling ratio, swelling kinetics and temperature response kinetics. The obtained data presented that the formed hydrogels exhibited favorable thermosensitive properties upon temperature changes.  相似文献   

16.
K. Na  K.-H. Park 《Biotechnology letters》2000,22(19):1553-1556
High molecular weight N-isopropylacrylamide copolymers with small amounts of acrylic acid (typically 2–5 mol% in feed) were synthesized by free radical polymerization in benzene and then conjugated with adhesion molecules of Gly-Arg-Gly-Asp-Ser (GRGDS) peptides. Aqueous polymer solutions (5, 6, 8 and 10% w/v) in culture medium (pH 7.4, ionic strength; 0.15 M) with 3T3-L1 fibroblast cells were mixed and poured in Millicells, which supported the gel formation without a significant gel induction time at 36 °C (gelation temperature). The initially formed gel was translucent and became more opaque as the temperature increased. The interaction between fibroblast cells and an artificial matrix of GRGDS containing p(NiPAAm-co-AAc) copolymer gel resulted in effective cell attachment, proliferation and growth. This study supported that specific attachment is the result of the interaction between the integrin families on the fibroblast and the RGD sequence on the p(NiPAAm-co-AAc) copolymer gel.  相似文献   

17.
Marine adhesive proteins: natural composite thermosets   总被引:4,自引:0,他引:4  
Marine environments are severely challenging for the performance and durability of synthetic adhesives. Factors commonly associated with adhesive failure are weak boundary layers (water, oxides), adhesive erosion and swelling. For many permanently attached marine organisms such as barnacles, mussels, oysters, etc., however, underwater adhesion is 'business-as-usual'. Knowledge about the chemistry and bioprocessing of these marine adhesives will provide profound insights for the evolution of a new generation of environmentally safe, water-resistant adhesives. Despite their apparent structural diversity, marine adhesives are essentially analogous to composite thermosets, that is, the adhesive consists of fibre, filler and catalyst molecules that are dispersed in a cross-linked resin rendering it resistant to heat and solvents. The fibres and fillers in these composites are variable. e.g. collagen, fibroin, chitin present as fibres, and sand, shell, air and water present as fillers. The precured resins of seven organisms including members of the Mollusca, Annelida, and Platyhelminthes have now been isolated and partially sequenced. These are proteins with basic isoelectric points, high levels of the amino acid 3,4-dihydroxyphenyl-L-alanine (DOPA), and an extended, flexible conformation. The DOPA functional group in particular is thought to play a key role in (a) the chemisorption of these polymers to surface underwater, and (b) covalent cross-linking or setting of the adhesive, the latter reaction catalysed by the enzyme catecholoxidase. Much more needs to be done to explore the details of the adhesive processing and delivery strategies used by these organisms.  相似文献   

18.
3,4-Dihydroxyphenyl-L-alanine (DOPA) is an unusual amino acid found in mussel adhesive proteins (MAPs) that is believed to lend adhesive characteristics to these proteins. In this paper, we describe a route for the conjugation of DOPA moieties to poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers. Hydroxyl end groups of PEO-PPO-PEO block copolymers were activated by N,N'-disuccinimidyl carbonate and then reacted with DOPA or its methyl ester with high coupling efficiencies from both aqueous and organic solvents. DOPA-modified PEO-PPO-PEO block copolymers were freely soluble in cold water, and dye partitioning and differential scanning calorimetry analysis of these solutions revealed that the copolymers aggregated into micelles at a characteristic temperature that was dependent on block copolymer composition and concentration in solution. Oscillatory rheometry demonstrated that above a block copolymer concentration of approximately 20 wt %, solutions of DOPA-modified PEO-PPO-PEO block copolymers exhibited sol-gel transitions upon heating. The gelation temperature could be tailored between approximately 23 and 46 degrees C by changing the composition, concentration, and molecular weight of the block copolymer. Rheological measurement of the bioadhesive interaction between DOPA-modified Pluronic and bovine submaxillary mucin indicated that DOPA-modified Pluronic was significantly more bioadhesive than unmodified Pluronic.  相似文献   

19.
The modification and generation of new biomolecules intended to give higher molecular-mass species for biotechnological purposes, can be achieved by enzymatic cross-linking. The versatile peroxidase (VP) from Pleurotus eryngii is a high redox-potential enzyme with oxidative activity on a wide variety of substrates. In this study, VP was successfully used to catalyze the polymerization of low molecular mass compounds, such as lignans and peptides, as well as larger macromolecules, such as protein and complex polysaccharides. Different analytical, spectroscopic, and rheological techniques were used to determine structural changes and/or variations of the physicochemical properties of the reaction products. The lignans secoisolariciresinol and hydroxymatairesinol were condensed by VP forming up to 8 unit polymers in the presence of organic co-solvents and Mn2+. Moreover, 11 unit of the peptides YIGSR and VYV were homogeneously cross-linked. The heterogeneous cross-linking of one unit of the peptide YIGSR and several lignan units was also achieved. VP could also induce gelation of feruloylated arabinoxylan and the polymerization of β-casein. These results demonstrate the efficacy of VP to catalyze homo- and hetero-condensation reactions, and reveal its potential exploitation for polymerizing different types of compounds.  相似文献   

20.
4-Aminobutyrate aminotransferase is inactivated by preincubation with iodosobenzoate at pH 7. The reaction of 2 SH residues/dimer resulted in formation of an oligomeric species of Mr = 100,000 detectable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The subunits cross-linked via a disulfide bond are dissociated by addition of 2-mercaptoethanol which also restores full catalytic activity (Choi, S. Y., and Churchich, J.E. (1985) J. Biol. Chem. 260, 993-997). The substrate 2-oxoglutarate prevents inactivation of the enzyme by iodosobenzoate and the subsequent formation of one disulfide bond, whereas 4-aminobutyrate has no effect on the reactivity of SH groups with iodosobenzoate. Modified 4-aminobutyrate aminotransferase (containing 1 disulfide bond) catalyzes a half-transamination reaction; but it is unable to react with 2-oxoglutarate to generate the aldimine form of the enzyme. The spectroscopic properties (fluorescence yield and polarization of fluorescence) of PMP bound to the modified enzyme are different from those of pyridoxamine phosphate (PMP) bound to the native enzyme. The polarization of fluorescence values of PMP bound to the cross-linked enzyme, excited over the spectral range 310-370 nm, are greater (25%) than those of the cofactor of the native enzyme. An increase in the polarization values implies that the motion of PMP is restricted when the subunits are cross-linked via a disulfide bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号