首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little is known about fatigue and training effects on sarcoplasmic reticulum (SR) function in human muscle, and we therefore investigated this in eight untrained controls (UT), eight endurance-trained (ET), and eight resistance-trained athletes (RT). Muscle biopsies (vastus lateralis) taken at rest and after 50 maximal quadriceps contractions (180 degrees/s, 0.5 Hz) were analyzed for fiber composition, metabolites and maximal SR Ca(2+) release, Ca(2+) uptake, and Ca(2+)-ATPase activity. Fatigue reduced (P < 0.05) Ca(2+) release (42.1 +/- 3.8%, 43.4 +/- 3.9%, 31.3 +/- 6.1%), Ca(2+) uptake (43.0 +/- 5.2%, 34.1 +/- 4.6%, 28.4 +/- 2.8%), and Ca(2+)-ATPase activity (38.6 +/- 4.2%, 48.5 +/- 5.7%, 29.6 +/- 5.0%), in UT, RT, and ET, respectively. These decreases were correlated with fatigability and with type II fiber proportion (P < 0.05). Resting SR measures were correlated with type II proportion (r > or = 0.51, P < 0.05). ET had lower resting Ca(2+) release, Ca(2+) uptake, and Ca(2+)-ATPase (P < 0.05) than UT and RT (P < 0.05), probably because of their lower type II proportion; only minor effects were found in RT. Thus SR function is markedly depressed with fatigue in controls and in athletes, is dependent on fiber type, and appears to be minimally affected by chronic training status.  相似文献   

2.
In this study, we employed single-leg submaximal cycle training, conducted over a 10-wk period, to investigate adaptations in sarcoplasmic reticulum (SR) Ca(2+)-regulatory proteins and processes of the vastus lateralis. During the final weeks, the untrained volunteers (age 21.4 +/- 0.3 yr; means +/- SE, n = 10) were exercising 5 times/wk and for 60 min/session. Analyses were performed on tissue extracted by needle biopsy approximately 4 days after the last training session. Compared with the control leg, the trained leg displayed a 19% reduction (P < 0.05) in homogenate maximal Ca(2+)-ATPase activity (192 +/- 11 vs. 156 +/- 18 micromol. g protein(-1). min(-1)), a 4.3% increase (P < 0.05) in pCa(50), defined as the Ca(2+) concentration at half-maximal activity (6.01 +/- 0.05 vs. 6.26 +/- 0.07), and no change in the Hill coefficient (1.75 +/- 0.15 vs. 1.76 +/- 0.21). Western blot analysis using monoclonal antibodies (7E6 and A52) revealed a 13% lower (P < 0.05) sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) 1 in trained vs. control in the absence of differences in SERCA2a. Training also resulted in an 18% lower (P < 0.05) SR Ca(2+) uptake and a 26% lower (P < 0.05) Ca(2+) release. It is concluded that a downregulation in SR Ca(2+) cycling in vastus lateralis occurs with aerobic-based training, which at least in the case of Ca(2+) uptake can be explained by reduction in Ca(2+)-ATPase activity and SERCA1 protein levels.  相似文献   

3.
We investigated the hypothesis that muscles of different oxidative potential would display differences in sarcoplasmic reticulum (SR) Ca2+ handling responses to repetitive contractile activity and recovery. Repetitive activity was induced in two muscles of high oxidative potential, namely, soleus (SOL) and red gastrocnemius (RG), and in white gastrocnemius (WG), a muscle of low oxidative potential, by stimulation in adult male rats. Measurements of SR properties, performed in crude homogenates, were made on control and stimulated muscles at the start of recovery (R0) and at 25 min of recovery (R25). Maximal Ca2+-ATPase activity (Vmax, micromol x g protein(-1) x min(-1)) at R0 was lower in stimulated SOL (105 +/- 9 vs. 135 +/- 7) and RG (269 +/- 22 vs. 317 +/- 26) and higher (P < 0.05) in WG (795 +/- 32 vs. 708 +/- 34). At R25, Vmax remained lower (P < 0.05) in SOL and RG but recovered in WG. Ca2+ uptake, measured at 2,000 nM, was depressed (P < 0.05) in SOL and RG by 34 and 13%, respectively, in stimulated muscles at R0 and remained depressed (P < 0.05) at R25. In contrast, Ca2+ uptake was elevated (P < 0.05) in stimulated WG at R0 by 9% and remained elevated (P < 0.05) at R25. Ca2+ release, unaltered in SOL and RG at both R0 and R25, was increased (P < 0.05) in stimulated WG at both R0 and R25. We conclude that SR Ca2+-handling responses to repetitive contractile activity and recovery are related to the oxidative potential of muscle.  相似文献   

4.
The study investigated the hypothesis that three consecutive days of prolonged cycle exercise would result in a sustained reduction in the Ca(2+)-cycling properties of the vastus lateralis in the absence of changes in the sarcoplasmic (endoplasmic) reticulum Ca(2+)-ATPase (SERCA) protein. Tissue samples were obtained at preexercise (Pre) and postexercise (Post) on day 1 (E1) and day 3 (E3) and during recovery day 1 (R1), day 2 (R2), and day 3 (R3) in 12 active but untrained volunteers (age 19.2 +/- 0.27 yr; mean +/- SE) and analyzed for changes (nmol.mg protein(-1).min(-1)) in maximal Ca(2+)-ATPase activity (V(max)), Ca(2+) uptake and Ca(2+) release (phase 1 and phase 2), and SERCA isoform expression (SERCA1a and SERCA2a). At E1, reductions (P < 0.05) from Pre to Post in V(max) (150 +/- 7 vs. 121 +/- 7), Ca(2+) uptake (7.79 +/- 0.28 vs. 5.71 +/- 0.33), and both phases of Ca(2+) release (phase 1, 20.3 +/- 1.3 vs. 15.2 +/- 1.1; phase 2, 7.70 +/- 0.60 vs. 4.99 +/- 0.48) were found. In contrast to V(max), which recovered at Pre E3 and then remained stable at Post E3 and throughout recovery, Ca(2+) uptake remained depressed (P < 0.05) at E3 Pre and Post and at R1 as did phase 2 of Ca(2+) release. Exercise resulted in an increase (P < 0.05) in SERCA1a (14% at R2) but not SERCA2a. It is concluded that rapidly adapting mechanisms protect V(max) following the onset of regular exercise but not Ca(2+) uptake and Ca(2+) release.  相似文献   

5.
The effects of exercise and diet on sarcoplasmic reticulum Ca(2+)-cycling properties in female vastus lateralis muscle were investigated in two groups of women following four different conditions. The conditions were 4 days of a low-carbohydrate (Lo CHO) and glycogen-depleting exercise plus a Lo CHO diet (Ex + Lo CHO) (experiment 2) and 4 days of normal CHO (Norm CHO) and glycogen-depleting exercise plus Norm CHO (Ex + Norm CHO) (experiment 1). Peak aerobic power (Vo2peak)) was 38.1 +/- 1.4 (SE); n = 9 and 35.6 +/- 1.4 ml.kg(-1).min(-1); n = 9, respectively. Sarcoplasmic reticulum properties measured in vitro in homogenates (micromol.g protein(-1).min(-1)) indicated exercise-induced reductions (P < 0.05) in maximal Ca(2+)-ATPase activity (0 > 30, 60 min > fatigue), Ca(2+) uptake (0 > 30 > 60 min, fatigue), and Ca(2+) release, both phase 1 (0, 30 > 60 min, fatigue) and phase 2 (0 > 30, 60 min, fatigue; 30 min > fatigue) in Norm CHO. Exercise was without effect in altering the Hill slope (n(H)), defined as the slope of relationship between Ca(2+)-ATPase activity and Ca(2+) concentration. No differences were observed between Norm CHO and Ex+Norm CHO. Compared with Norm CHO, Lo CHO resulted in a lower (P < 0.05) Ca(2+) uptake, phase 1 Ca(2+) release (30 min), and n(H). Ex + Lo CHO resulted in a greater (P < 0.05) Ca(2+) uptake and n(H) compared with Lo CHO. The results demonstrate that Lo CHO alone can disrupt SR Ca(2+) cycling and that, with the exception of Ca(2+) release, a glycogen-depleting session of exercise before Lo CHO can reverse the effects.  相似文献   

6.
The objective of this study was to investigate the hypothesis that alterations in sarcoplasmic reticulum (SR) Ca(2+)-cycling properties would occur in skeletal muscle in patients with moderate to severe chronic obstructive pulmonary disease (COPD). To investigate this hypothesis, tissue samples were obtained from the vastus lateralis of 8 patients with COPD [age 65.6 +/- 3.2 yr; forced expiratory volume in 1 s (FEV(1))/forced vital capacity (FVC) = 44 +/- 2%; mean +/- SE] and 10 healthy age-matched controls (CON, age 67.5 +/- 2.5 yr; FEV(1)/FVC = 77 +/- 2%), and homogenates were analyzed for a wide range of SR properties. Compared with CON, COPD displayed (in mumol.g protein(-1).min(-1)) a 16% lower maximal Ca(2+)-ATPase activity [maximal velocity (V(max)), 158 +/- 10 vs. 133 +/- 7, P < 0.05] and a 17% lower Ca(2+) uptake (4.65 +/- 0.039 vs. 3.85 +/- 0.26, P < 0.05) that occurred in the absence of differences in Ca(2+) release. The lower V(max) in COPD was also accompanied by an 11% lower (P < 0.05) Ca(2+) sensitivity, as measured by the Hill coefficient (defined as the relationship between Ca(2+)-ATPase activity and free cytosolic Ca(2+) concentration for 10-90% V(max)). For the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) isoforms, SERCA1a was 16% higher (P < 0.05) and SERCA2a was 14% lower (P < 0.05) in COPD. It is concluded that moderate to severe COPD results in abnormalities in SR Ca(2+)-ATPase properties that cannot be explained by changes in the SERCA isoform phenotypes. The reduced catalytic properties of SERCA in COPD suggest a disturbance in Ca(2+) cycling, possibly resulting in impairment in Ca(2+)-mediated mechanical function and/or second messenger regulated processes.  相似文献   

7.
Parallel activation of heart mitochondria NADH and ATP production by Ca(2+) has been shown to involve the Ca(2+)-sensitive dehydrogenases and the F(0)F(1)-ATPase. In the current study we hypothesize that the response time of Ca(2+)-activated ATP production is rapid enough to support step changes in myocardial workload ( approximately 100 ms). To test this hypothesis, the rapid kinetics of Ca(2+) activation of mV(O(2)), [NADH], and light scattering were evaluated in isolated porcine heart mitochondria at 37 degrees C using a variety of optical techniques. The addition of Ca(2+) was associated with an initial response time (IRT) of mV(O(2)) that was dose-dependent with a minimum IRT of 0.27 +/- 0.02 s (n = 41) at 535 nm Ca(2+). The IRTs for NADH fluorescence and light scattering in response to Ca(2+) additions were similar to mV(O(2)). The Ca(2+) IRT for mV(O(2)) was significantly shorter than 1.6 mm ADP (2.36 +/- 0.47 s; p < or = 0.001, n = 13), 2.2 mm P(i) (2.32 +/- 0.29, p < or = 0.001, n = 13), or 10 mm creatine (15.6.+/-1.18 s, p < or = 0.001, n = 18) under similar experimental conditions. Calcium effects were inhibited with 8 microm ruthenium red (2.4 +/- 0.31 s; p < or = 0.001, n = 16) and reversed with EGTA (1.6 +/- 0.44; p < or = 0.01, n = 6). Estimates of Ca(2+) uptake into mitochondria using optical Ca(2+) indicators trapped in the matrix revealed a sufficiently rapid uptake to cause the metabolic effects observed. These data are consistent with the notion that extramitochondrial Ca(2+) can modify ATP production, via an increase in matrix Ca(2+) content, rapidly enough to support cardiac work transitions in vivo.  相似文献   

8.
To investigate the hypothesis that intrinsic changes in sarcoplasmic reticulum (SR) Ca(2+)-sequestration function can be implicated in postcontractile depression (PCD) of force in humans, muscle tissue was obtained from the vastus lateralis and determinations of maximal Ca(2+) uptake and maximal Ca(2+)-ATPase activity were made on homogenates obtained before and after the induction of PCD. Eight untrained females, age 20.6+/-0.75 yr (mean +/- SE), performed a protocol consisting of 30 min of isometric exercise at 60% maximal voluntary contraction and at 50% duty cycle (5-s contraction and 5-s relaxation) to induce PCD. Muscle mechanical performance determined by evoked activation was measured before (0 min), during (15 and 30 min), and after (60 min) exercise. The fatiguing protocol resulted in a progressive reduction (P<0.05) in evoked force, which by 30 min amounted to 52% for low frequency (10 Hz) and 20% for high frequency (100 Hz). No force restoration occurred at either 10 or 100 Hz during a 60-min recovery period. Maximal SR Ca(2+)-ATPase activity (nmol x mg protein(-1) x min(-1)) and maximal SR Ca(2+) uptake (nmol. mg protein(-1) x min(-1)) were depressed (P<0.05) by 15 min of exercise [192+/-45 vs. 114+/-8.7 and 310+/-59 vs. 205+/-47, respectively; mean +/- SE] and remained depressed at 30 min of exercise. No recovery in either measure was observed during the 60-min recovery period. The coupling ratio between Ca(2+)-ATPase and Ca(2+) uptake was preserved throughout exercise and during recovery. These results illustrate that during PCD, Ca(2+) uptake is depressed and that the reduction in Ca(2+) uptake is due to intrinsic alterations in the Ca(2+) pump. The role of altered Ca(2+) sequestration in Ca(2) release, cytosolic-free calcium, and PCD remains to be determined.  相似文献   

9.
肾上腺髓质素对大鼠损伤性心肌肌浆网功能的改善   总被引:3,自引:0,他引:3  
Li XF  Yang Y  Gao LR  Qi YF  Li ZQ  Tang CS 《生理学报》2001,53(5):364-368
通过观察下述五个指标,评价肾上腺髓质素(adrenomedullin,Adm)对大鼠损伤性心肌肌浆网功能的改善程度左心室压力最大变化速率(±dp/dtmax)、肌浆网钙摄取和释放及钙泵活性.皮下注射异丙肾上腺素(isoproterenol,ISO,69μmol/kg体重)制备大鼠心肌损伤坏死模型.摘取心脏后用Adm灌流,观察左心室压力最大变化速率(±dp/dtmax);制备并提纯心肌肌浆网(sarcoplasmicreticulum,SR)膜,测定SRCa2+摄取和释放速率、SR钙泵活性和钙通道蛋白~3H-ryanodine受体的最大结合量.结果发现,5×10-5mol/LAdm灌流能使ISO损伤的大鼠心脏左室±dp/dtmax分别增加16.9%(2?135±281vs1?980±302)和29.2%(1?375±267vs1?064±355,均P<0.05);SRCa2+摄取和释放率分别增加23.0%(15.0±1.4vs12.2±1.2)和43.5%(6.6±1.0vs4.6±0.6,均P<0.01);SRCa2+-ATPase活性和~3H-ryanodine受体最大结合量(Bmax)分别增加24.2%(P<0.01)和42.2%(P<0.05).提示Adm对ISO诱导的大鼠心肌损伤具有保护作用,其机制可能与Adm增加SRCa2+-ATPase活性、增加~3H-ryanodine所致SRCa2+摄取和释放升高有关.外源性给予Adm对损伤心肌可能具有临床治疗作用.  相似文献   

10.
Prolonged exhaustive submaximal exercise in humans induces marked metabolic changes, but little is known about effects on muscle Na+-K+-ATPase activity and sarcoplasmic reticulum Ca2+ regulation. We therefore investigated whether these processes were impaired during cycling exercise at 74.3 +/- 1.2% maximal O2 uptake (mean +/- SE) continued until fatigue in eight healthy subjects (maximal O2 uptake of 3.93 +/- 0.69 l/min). A vastus lateralis muscle biopsy was taken at rest, at 10 and 45 min of exercise, and at fatigue. Muscle was analyzed for in vitro Na+-K+-ATPase activity [maximal K+-stimulated 3-O-methylfluorescein phosphatase (3-O-MFPase) activity], Na+-K+-ATPase content ([3H]ouabain binding sites), sarcoplasmic reticulum Ca2+ release rate induced by 4 chloro-m-cresol, and Ca2+ uptake rate. Cycling time to fatigue was 72.18 +/- 6.46 min. Muscle 3-O-MFPase activity (nmol.min(-1).g protein(-1)) fell from rest by 6.6 +/- 2.1% at 10 min (P <0.05), by 10.7 +/- 2.3% at 45 min (P <0.01), and by 12.6 +/- 1.6% at fatigue (P <0.01), whereas 3[H]ouabain binding site content was unchanged. Ca2+ release (mmol.min(-1).g protein(-1)) declined from rest by 10.0 +/- 3.8% at 45 min (P <0.05) and by 17.9 +/- 4.1% at fatigue (P < 0.01), whereas Ca2+ uptake rate fell from rest by 23.8 +/- 12.2% at fatigue (P=0.05). However, the decline in muscle 3-O-MFPase activity, Ca2+ uptake, and Ca2+ release were variable and not significantly correlated with time to fatigue. Thus prolonged exhaustive exercise impaired each of the maximal in vitro Na+-K+-ATPase activity, Ca2+ release, and Ca2+ uptake rates. This suggests that acutely downregulated muscle Na+, K+, and Ca2+ transport processes may be important factors in fatigue during prolonged exercise in humans.  相似文献   

11.
To investigate cardiac stunning, we recorded intracellular [Ca(2+)], contractions, and electrical activity in isolated guinea pig ventricular myocytes exposed to simulated ischemia and reperfusion. After equilibration, ischemia was simulated by exposing myocytes to hypoxia, acidosis, hyperkalemia, hypercapnia, lactate accumulation, and substrate deprivation for 30 min at 37 degrees C. Reperfusion was simulated by exposure to Tyrode solution. Field-stimulated myocytes exhibited stunning upon reperfusion. By 10 min of reperfusion, contraction amplitude decreased to 43.0 +/- 5.5% of preischemic values (n = 15, P < 0.05), although action potential configuration and sarcoplasmic reticulum Ca(2+) stores, assessed with caffeine, were normal. Diastolic [Ca(2+)] and Ca(2+) transients (fura 2) were also normal in stunned myocytes. In voltage-clamped cells, peak L-type Ca(2+) current was reduced to 47.4 +/- 4.5% of preischemic values at 10 min of reperfusion (n = 21, P < 0.05). Contractions elicited by Ca(2+)-induced Ca(2+) release and the voltage-sensitive release mechanism were both depressed in reperfusion. Our observations suggest that stunning is associated with reduced L-type Ca(2+) current but that alterations in Ca(2+) homeostasis and release are not directly responsible for stunning.  相似文献   

12.
This study investigated the effects of prolonged exercise, with and without glucose supplementation, on metabolism and sarcoplasmic reticulum (SR) Ca(2+)-handling properties in working vastus lateralis muscle. Fifteen untrained volunteers [peak O(2) consumption (Vo(2peak)) = 3.45 +/- 0.17 l/min; mean +/- SE] cycled at approximately 60% Vo(2peak) on two occasions, during which they were provided with either an artificially sweetened placebo beverage (NG) or a 6% glucose (G) beverage (~1.00 g carbohydrate/kg body mass). Beverage supplementation started at 30 min of exercise and continued every 15 min thereafter. SR Ca(2+) handling, metabolic, and substrate responses were assessed in tissue extracted from the vastus lateralis at rest, after 30 min and 90 min of exercise, and at fatigue in both conditions. Plasma glucose during G was 15-23% higher (P < 0.05) than those observed during NG following 60 min of exercise until fatigue. Cycle time to fatigue was increased (P < 0.05) by approximately 19% during G (137 +/- 7 min) compared with NG (115 +/- 6 min). Prolonged exercise reduced (P < 0.05) maximal Ca(2+)-ATPase activity (-18.4%), SR Ca(2+) uptake (-27%), and both Phase 1 (-22.2%) and Phase 2 (-34.2%) Ca(2+)-release rates during NG. The exercise-induced reductions in SR Ca(2+)-cycling properties were not altered during G. The metabolic responses to exercise were all unaltered by glucose supplementation, since no differences in respiratory exchange ratios, carbohydrate and lipid oxidation rates, and muscle metabolite and glycogen contents were observed between NG and G. These results indicate that the maintenance of blood glucose homeostasis by glucose supplementation is without effect in modifying the muscle metabolic, endogenous glycogen, or SR Ca(2+)-handling responses.  相似文献   

13.
Sarcoplasmic reticulum with calcium transport activity has been isolated from the cross-striated adductor muscle of the scallop, which lives in cold (< or = 20 degrees C) sea water, by using pH 7.0 buffer solution both to homogenize the tissue and to sediment the membrane fraction. The yield of the preparation was 60-100 mg protein from 100 g of the scallop muscle. Ca(2+)-activated ATPase protein of about 100 kDa accounted for 40-50% of the protein preparation. The maximum activities of ATP-dependent, oxalate-facilitated calcium accumulation and Ca(2+)-ATPase were observed at a pH of about 7.0 and temperature of 20-30 degrees C, and their values were about 2 mumol Ca2+/mg of protein/min and about 3 mumol ATP hydrolysis/mg of protein/min, respectively. At 0 degree C, 10-20% of these activities was maintained, while at 37 degrees C, the activities were irreversibly lost. The Ca(2+)-ATPase activity was half-maximally activated at about 0.3 microM [Ca2+]. The ATPase activity exhibited non-Michaelian behavior with respect to ATP, with two different Km values of approximately 10 microM and 0.1-0.3 mM. GTP, CTP, and ITP were also hydrolyzed by the preparation at a rate of 10-30% of that of ATP. The preparation was stored at -80 degrees C with retention of function for about a year.  相似文献   

14.
This study examined the effects of progressive exercise to fatigue in normoxia (N) on muscle sarcoplasmic reticulum (SR) Ca(2+) cycling and whether alterations in SR Ca(2+) cycling are related to the blunted peak mechanical power output (PO(peak)) and peak oxygen consumption (Vo(2 peak)) observed during progressive exercise in hypoxia (H). Nine untrained men (20.7 +/- 0.42 yr) performed progressive cycle exercise to fatigue on two occasions, namely during N (inspired oxygen fraction = 0.21) and during H (inspired oxygen fraction = 0.14). Tissue extracted from the vastus lateralis before exercise and at power output corresponding to 50 and 70% of Vo(2 peak) (as determined during N) and at fatigue was used to investigate changes in homogenate SR Ca(2+)-cycling properties. Exercise in H compared with N resulted in a 19 and 21% lower (P < 0.05) PO(peak) and Vo(2 peak), respectively. During progressive exercise in N, Ca(2+)-ATPase kinetics, as determined by maximal activity, the Hill coefficient, and the Ca(2+) concentration at one-half maximal activity were not altered. However, reductions with exercise in N were noted in Ca(2+) uptake (before exercise = 357 +/- 29 micromol x min(-1) x g protein(-1); at fatigue = 306 +/- 26 micromol x min(-1) x g protein(-1); P < 0.05) when measured at free Ca(2+) concentration of 2 microM and in phase 2 Ca(2+) release (before exercise = 716 +/- 33 micromol x min(-1) x g protein(-1); at fatigue = 500 +/- 53 micromol x min(-1) x g protein(-1); P < 0.05) when measured in vitro in whole muscle homogenates. No differences were noted between N and H conditions at comparable power output or at fatigue. It is concluded that, although structural changes in SR Ca(2+)-cycling proteins may explain fatigue during progressive exercise in N, they cannot explain the lower PO(peak) and Vo(2 peak) observed during H.  相似文献   

15.
To evaluate the effect of intermittent sprint training on sarcoplasmic reticulum (SR) function, nine young men performed a 5 wk high-intensity intermittent bicycle training, and six served as controls. SR function was evaluated from resting vastus lateralis muscle biopsies, before and after the training period. Intermittent sprint performance (ten 8-s all-out periods alternating with 32-s recovery) was enhanced 12% (P < 0.01) after training. The 5-wk sprint training induced a significantly higher (P < 0.05) peak rate of AgNO(3)-stimulated Ca(2+) release from 709 (range 560-877; before) to 774 (596-977) arbitrary units Ca(2+). g protein(-1). min(-1) (after). The relative SR density of functional ryanodine receptors (RyR) remained unchanged after training; there was, however, a 48% (P < 0.05) increase in total number of RyR. No significant differences in Ca(2+) uptake rate and Ca(2+)-ATPase capacity were observed following the training, despite that the relative density of Ca(2+)-ATPase isoforms SERCA1 and SERCA2 had increased 41% and 55%, respectively (P < 0.05). These data suggest that high-intensity training induces an enhanced peak SR Ca(2+) release, due to an enhanced total volume of SR, whereas SR Ca(2+) sequestration function is not altered.  相似文献   

16.
Myocytes from the failing myocardium exhibit depressed and prolonged intracellular Ca(2+) concentration ([Ca(2+)](i)) transients that are, in part, responsible for contractile dysfunction and unstable repolarization. To better understand the molecular basis of the aberrant Ca(2+) handling in heart failure (HF), we studied the rabbit pacing tachycardia HF model. Induction of HF was associated with action potential (AP) duration prolongation that was especially pronounced at low stimulation frequencies. L-type calcium channel current (I(Ca,L)) density (-0.964 +/- 0.172 vs. -0.745 +/- 0.128 pA/pF at +10 mV) and Na(+)/Ca(2+) exchanger (NCX) currents (2.1 +/- 0.8 vs. 2.3 +/- 0.8 pA/pF at +30 mV) were not different in myocytes from control and failing hearts. The amplitude of peak [Ca(2+)](i) was depressed (at +10 mV, 0.72 +/- 0.07 and 0.56 +/- 0.04 microM in normal and failing hearts, respectively; P < 0.05), with slowed rates of decay and reduced Ca(2+) spark amplitudes (P < 0.0001) in myocytes isolated from failing vs. control hearts. Inhibition of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2a revealed a greater reliance on NCX to remove cytosolic Ca(2+) in myocytes isolated from failing vs. control hearts (P < 0.05). mRNA levels of the alpha(1C)-subunit, ryanodine receptor (RyR), and NCX were unchanged from controls, while SERCA2a and phospholamban (PLB) were significantly downregulated in failing vs. control hearts (P < 0.05). alpha(1C) protein levels were unchanged, RyR, SERCA2a, and PLB were significantly downregulated (P < 0.05), while NCX protein was significantly upregulated (P < 0.05). These results support a prominent role for the sarcoplasmic reticulum (SR) in the pathogenesis of HF, in which abnormal SR Ca(2+) uptake and release synergistically contribute to the depressed [Ca(2+)](i) and the altered AP profile phenotype.  相似文献   

17.
Prolactin has recently been shown to directly stimulate 2 components of the active duodenal calcium transport in female rats, i.e., solvent drag-induced and transcellular-active calcium transport. Since the basolateral Na(+)/K(+)- and Ca(2+)-ATPases, respectively, play important roles in these 2 transport mechanisms, the present study aimed to examine the direct actions of prolactin on the activities of both transporters in sexually mature female Wistar rats. The results showed that 200, 400, and 800 ng/mL prolactin produced a significant increase in the total ATPase activity of duodenal crude homogenate in a dose-dependent manner within 60 min (i.e., from a control value of 1.53 +/- 0.13 to 2.29 +/- 0.21 (p < 0.05), 2.68 +/- 0.19 (p < 0.01), and 3.92 +/- 0.33 (p < 0.001) micromol Pi x (mg protein)(-1) x min(-1), respectively). Activity of Na+/K+-ATPase was increased by 800 ng/mL prolactin from 0.17 +/- 0.03 to 1.18 +/- 0.29 micromol Pi x (mg protein)(-1) x min(-1) (p < 0.01). Prolactin at doses of 400 and 600 ng/mL also significantly increased the activities of Ca(2+)-ATPase in crude homogenate from a control value of 0.84 +/- 0.03 to 1.75 +/- 0.29 (p < 0.05), and 2.30 +/- 0.37 (p < 0.001) micromol Pi x (mg protein)(-1) x min(-1). When the crude homogenate was purified for the basolateral membrane, the Na(+)/K(+)-ATPase activities were elevated 10-fold. In the purified homogenate, 800 ng/mL prolactin increased Na(+)/K(+)-ATPase activity from 1.79 +/- 0.38 to 2.63 +/- 0.44 micromol Pi x (mg protein)(-1) x min(-1) (p < 0.05), and Ca(2+)-ATPase activity from 0.08 +/- 0.14 to 2.03 +/- 0.23 micromol Pi x (mg protein)(-1) x min-1 (p < 0.001). Because the apical calcium entry was the first important step for the transcellular active calcium transport, the brush border calcium uptake was also investigated in this study. We found that, 8 min after being directly exposed to 800 ng/mL prolactin, the brush border calcium uptake into the duodenal epithelial cells was increased from 0.31 +/- 0.02 to 0.80 +/- 0.28 nmol x (mg protein)(-1) (p < 0.05). It was concluded that prolactin directly and rapidly enhanced the brush border calcium uptake as well as the activities of the basolateral Na(+)/K(+)- and Ca(2+)-ATPases in the duodenal epithelium of female rats. These findings explained the mechanisms by which prolactin stimulated duodenal active calcium absorption.  相似文献   

18.
Components of excitation-contraction (EC)-coupling were compared at 37 degrees C and 22 degrees C to determine whether hypothermia altered the gain of EC coupling in guinea pig ventricular myocytes. Ca(2+) concentration (fura-2) and cell shortening (edge detector) were measured simultaneously. Hypothermia increased fractional shortening (8.3 +/- 1.7 vs. 2.6 +/- 0.3% at 37 degrees C), Ca(2+) transients (157 +/- 33 vs. 35 +/- 5 nM at 37 degrees C), and diastolic Ca(2+) (100 +/- 9 vs. 60 +/- 6 nM at 37 degrees C) in field-stimulated myocytes (2 Hz). In experiments with high-resistance microelectrodes, the increase in contractions and Ca(2+) transients was accompanied by a twofold increase in action potential duration (APD). When voltage-clamp steps eliminated changes in APD, cooling still increased contractions and Ca(2+) transients. Hypothermia increased sarcoplasmic reticulum (SR) Ca(2+) stores (83 +/- 17 at 37 degrees C to 212 +/- 50 nM, assessed with caffeine) and increased fractional SR Ca(2+) release twofold. In contrast, peak Ca(2+) current was much smaller at 22 degrees C than at 37 degrees C (1.3 +/- 0.4 and 3.5 +/- 0.7 pA/pF, respectively). In cells dialyzed with sodium-free pipette solutions to inhibit Ca(2+) influx via reverse-mode Na(+)/Ca(2+) exchange, hypothermia still increased contractions, Ca(2+) transients, SR stores, and fractional release but decreased the amplitude of Ca(2+) current. The rate of SR Ca(2+) release per unit Ca(2+) current, a measure of EC-coupling gain, was increased sixfold by hypothermia. This increase in gain occurred regardless of whether cells were dialyzed with sodium-free solutions. Thus an increase in EC-coupling gain contributes importantly to positive inotropic effects of hypothermia in the heart.  相似文献   

19.
20.
Organic osmolytes are used in animal and plant cells to adapt to hyper- and hypoosmolar stress. We used our RBC-membrane model to investigate the effects of the osmolytes betaine, sorbitol and myo-inositol on Na(+)/K(+)-ATPase, Ca(2+)-ATPase and calmodulin-stimulated Ca(2+)-ATPase (CaM). Our results show that betaine inhibited ATPases by more than 61%: Na(+)/K(+)-ATPase (75 +/- 5.9 vs 27 +/- 2.2), Ca(2+)-ATPase (236 +/- 18.9 vs 62 +/- 4.9), and CaM (450 +/- 18 vs 174 +/- 6.9) (microM pi/min/mg protein, control (0 microM betaine) vs 100 micromol/L betaine). Sorbitol (100 micromol/L) inhibited the Ca(2+)-ATPases by 41% (126 +/- 7.6 vs 74 +/- 4.4) and CaM by 42% (253 +/- 17.7 vs 147 +/- 10.3). Inositol (100 micromol/L) inhibited Na(+)/K(+)-ATPase strongest (37 +/- 1.9 vs 20 +/- 1.0; 47% inhibition) while it showed a lesser effect on the Ca(2+)-ATPases (136 +/- 6.8 vs 102 +/- 5.1; 25% inhibition). All osmolytes inhibited RBC membrane ATPases at concentrations above 50 micromol/L, which corresponds to high normal physiologic range for organic osmolytes in serum. Furthermore, the presence of osmolytes (250 micromol/L) decreased hypoosmotic stress induced hemolysis by 42%. Together these data indicate an important regulatory role of organic osmolytes on human RBC membrane ATPases and a protective function of osmolytes in RBCs against hypoosmotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号