首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recruitment of activated T cells to mucosal surfaces, such as the airway epithelium, is important in host defense and for the development of inflammatory diseases at these sites. We therefore asked whether the CXC chemokines IFN-induced protein of 10 kDa (IP-10), monokine induced by IFN-gamma (Mig), and IFN-inducible T-cell alpha-chemoattractant (I-TAC), which specifically chemoattract activated T cells by signaling through the chemokine receptor CXCR3, were inducible in respiratory epithelial cells. The effects of proinflammatory cytokines, including IFN-gamma (Th1-type cytokine), Th2-type cytokines (IL-4, IL-10, and IL-13), and dexamethasone were studied in normal human bronchial epithelial cells (NHBEC) and in two human respiratory epithelial cell lines, A549 and BEAS-2B. We found that IFN-gamma, but not TNF-alpha or IL-1 beta, strongly induced IP-10, Mig, and I-TAC mRNA accumulation mainly in NHBEC and that TNF-alpha and IL-1 beta synergized with IFN-gamma induction in all three cell types. High levels of IP-10 protein (> 800 ng/ml) were detected in supernatants of IFN-gamma/TNF-alpha-stimulated NHBEC. Neither dexamethasone nor Th2 cytokines modulated IP-10, Mig, or I-TAC expression. Since IFN-gamma is up-regulated in tuberculosis (TB), using in situ hybridization we studied the expression of IP-10 in the airways of TB patients and found that IP-10 mRNA was expressed in the bronchial epithelium. In addition, IP-10-positive cells obtained by bronchoalveolar lavage were significantly increased in TB patients compared with normal controls. These results show that activated bronchial epithelium is an important source of IP-10, Mig, and I-TAC, which may, in pulmonary diseases such as TB (in which IFN-gamma is highly expressed) play an important role in the recruitment of activated T cells.  相似文献   

2.
Monokine induced by IFN-gamma (MIG), IFN-inducible T cell alpha chemoattractant (I-TAC), and IFN-gamma-inducible protein of 10 kDa (IP-10) are related members of the CXC chemokine subfamily that bind to a common receptor, CXCR3, and that are produced by different cell types in response to IFN-gamma. We have recently reported that human polymorphonuclear neutrophils (PMN) have the capacity to release IP-10. Herein, we show that PMN also have the ability to produce MIG and to express I-TAC mRNA in response to IFN-gamma in combination with either TNF-alpha or LPS. While IFN-gamma, alone or in association with agonists such as fMLP, IL-8, granulocyte (G)-CSF and granulocyte-macrophage (GM)-CSF, failed to influence MIG, IP-10, and I-TAC gene expression, IFN-alpha, in combination with TNF-alpha, LPS, or IL-1beta, resulted in a considerable induction of IP-10 release by neutrophils. Furthermore, IL-10 and IL-4 significantly suppressed the expression of MIG, IP-10, and I-TAC mRNA and the extracellular production of MIG and IP-10 in neutrophils stimulated with IFN-gamma plus either LPS or TNF-alpha. Finally, supernatants harvested from stimulated PMN induced migration and rapid integrin-dependent adhesion of CXCR3-expressing lymphocytes; these activities were significantly reduced by neutralizing anti-MIG and anti-IP-10 Abs, suggesting that they were mediated by MIG and IP-10 present in the supernatants. Since MIG, IP-10, and I-TAC are potent chemoattractants for NK cells and Th1 lymphocytes, the ability of neutrophils to produce these chemokines might contribute not only to the progression and evolution of the inflammatory response, but also to the regulation of the immune response.  相似文献   

3.
CXCR3, known to have four ligands (IFN-gamma inducible protein 10 (gamma IP-10), monokine induced by IFN-gamma (Mig), I-TAC, and 6Ckine), is predominantly expressed on memory/activated T lymphocytes. We recently reported that GM-CSF induces CXCR3 expression on CD34(+) hemopoietic progenitors, in which gamma IP-10 and Mig induce chemotaxis and adhesion. Here we further report that stimulation with GM-CSF causes phosphorylation of Syk protein kinase, but neither Casitas B-lineage lymphoma (Cbl) nor Cbl-b in CD34(+) hemopoietic progenitors can be blocked by anti-CD116 mAb. Specific Syk blocking generated by PNA antisense completely inhibits GM-CSF-induced CXCR3 expression in CD34(+) progenitors at both mRNA and protein as well as at functional levels (chemotaxis and adhesion). Cbl and Cbl-b blocking have no such effects. Thus, GM-CSF binds to its receptor CD116, and consequently activates Syk phosphorylation, which leads to induce CXCR3 expression. gamma IP-10 and Mig can induce Syk, Cbl, and Cbl-b phosphorylation in CD34(+) progenitors by means of CXCR3. gamma IP-10 or Mig has induced neither chemotaxis nor adhesion in GM-CSF-stimulated Cbl-b-blocked CD34(+) hemopoietic progenitors, whereas SDF-1alpha induces both chemotaxis and adhesion in these cells. Interestingly, gamma IP-10 and Mig can induce chemotaxis and adhesion in GM-CSF-stimulated Syk- or Cbl-blocked CD34(+) hemopoietic progenitors. Thus, Cbl-b, but not Syk and Cbl phosphorylation, is essential for gamma IP-10- and Mig-induced chemotaxis and adhesion in CD34(+) hemopoietic progenitors. This study provides a useful insight into novel signaling transduction pathways of the functions of CXCR3/gamma IP-10 and Mig, which may be especially important in the cytokine/chemokine environment for mobilization, homing, and recruitment during proliferation, differentiation, and maturation of hemopoietic progenitor cells.  相似文献   

4.
Previous studies have shown that the CXC chemokine, IFN-gamma-inducible T cell alpha chemoattractant (I-TAC), was chemotactic for IL-2-activated human T lymphocytes, which express abundant CXCR3. However, because most memory T lymphocytes are also CXCR3(+), the ability of I-TAC to promote the migration of normal human blood T cells across HUVEC monolayers in Transwell chambers was examined. I-TAC induced a marked (4- to 6-fold) increase in transendothelial migration (TEM) of T cells across unstimulated HUVEC from 5.6 to 28% of input T cells and was substantially more active than IFN-gamma-inducible protein-10, another CXCR3 ligand. I-TAC significantly enhanced TEM of T cells across TNF-alpha, but not across IFN-gamma or IFN-gamma plus TNF-alpha-activated HUVEC. IFN-gamma or IFN-gamma plus TNF-alpha-activated HUVEC produced substantial amounts of I-TAC, in contrast to TNF-alpha-treated EC. Both CD4(+) and CD8(+) T cells migrated in response to I-TAC to a similar extent, while memory T cells migrated several fold better than naive T cells. Blockade of LFA-1 strongly inhibited I-TAC-induced T cell TEM across unstimulated HUVEC, and approximately 50-60% of the TEM across cytokine-activated HUVEC. However, blocking both LFA-1 and very late Ag-4 abolished I-TAC induced T cell TEM. In vivo significant levels of I-TAC were detected in arthritic synovial fluid. Thus, I-TAC is one of the most potent chemoattractants of normal human blood CD4 and CD8 T cell TEM and is likely a major mediator of blood memory T lymphocyte migration to inflammation.  相似文献   

5.
CXC chemokine receptor 3 (CXCR3), predominately expressed on memory/activated T lymphocytes, is a receptor for both IFN-gamma-inducible protein-10 (gamma IP-10) and monokine induced by IFN-gamma (Mig). We report a novel finding that CXCR3 is also expressed on eosinophils. gamma IP-10 and Mig induce eosinophil chemotaxis via CXCR3, as documented by the fact that anti-CXCR3 mAb blocks gamma IP-10- and Mig-induced eosinophil chemotaxis. gamma IP-10- and Mig-induced eosinophil chemotaxis are up- and down-regulated by IL-2 and IL-10, respectively. Correspondingly, CXCR3 protein and mRNA expressions in eosinophils are up- and down-regulated by IL-2 and IL-10, respectively, as detected using flow cytometry, immunocytochemical assay, and a real-time quantitative RT-PCR technique. gamma IP-10 and Mig act eosinophils to induce chemotaxis via the cAMP-dependent protein kinase A signaling pathways. The fact that gamma IP-10 and Mig induce an increase in intracellular calcium in eosinophils confirms that CXCR3 exists on eosinophils. Besides induction to chemotaxis, gamma IP-10 and Mig also activate eosinophils to eosinophil cationic protein release. These results indicate that CXCR3-gamma IP-10 and -Mig receptor-ligand pairs as well as the effects of IL-2 and IL-10 on them may be especially important in the cytokine/chemokine environment for the pathophysiologic events of allergic inflammation, including initiation, progression, and termination in the processes.  相似文献   

6.
CXCR3 chemokines exert potent biological effects on both immune and vascular cells. The dual targets suggest their important roles in cardiac allograft vasculopathy (CAV) and rejection. Therefore, we investigated expression of IFN-inducible protein 10 (IP-10), IFN-inducible T cell alpha chemoattractant (I-TAC), monokine induced by IFN (Mig), and their receptor CXCR3 in consecutive endomyocardial biopsies (n = 133) from human cardiac allografts and corresponding normal donor hearts (n = 11) before transplantation. Allografts, but not normal hearts, contained IP-10, Mig, and I-TAC mRNA. Persistent elevation of IP-10 and I-TAC was associated with CAV. Allografts with CAV had an IP-10-GAPDH ratio 3.7 +/- 0.8 compared with 0.8 +/- 0.2 in those without CAV (p = 0.004). Similarly, I-TAC mRNA levels were persistently elevated in allografts with CAV (6.7 +/- 1.9 in allografts with vs 1.5 +/- 0.3 in those without CAV, p = 0.01). In contrast, Mig mRNA was induced only during rejection (2.4 +/- 0.9 with vs 0.6 +/- 0.2 without rejection, p = 0.015). In addition, IP-10 mRNA increased above baseline during rejection (4.1 +/- 2.3 in rejecting vs 1.8 +/- 1.2 in nonrejecting biopsies, p = 0.038). I-TAC did not defer significantly with rejection. CXCR3 mRNA persistently elevated after cardiac transplantation. Double immunohistochemistry revealed differential cellular distribution of CXCR3 chemokines. Intragraft vascular cells expressed high levels of IP-10 and I-TAC, while Mig localized predominantly in infiltrating macrophages. CXCR3 was localized in vascular and infiltrating cells. CXCR3 chemokines are induced in cardiac allografts and differentially associated with CAV and rejection. Differential cellular distribution of these chemokines in allografts indicates their central roles in multiple pathways involving CAV and rejection. This chemokine pathway may serve as a monitor and target for novel therapies to prevent CAV and rejection.  相似文献   

7.
IFN-gamma-inducible protein 10 (IP-10, CXCL10), a chemokine secreted from cells stimulated with type I and II IFNs and LPS, is a chemoattractant for activated T cells. Expression of IP-10 is seen in many Th1-type inflammatory diseases, where it is thought to play an important role in recruiting activated T cells into sites of tissue inflammation. To determine the in vivo function of IP-10, we constructed an IP-10-deficient mouse (IP-10(-/-)) by targeted gene disruption. Immunological analysis revealed that IP-10(-/-) mice had impaired T cell responses. T cell proliferation to allogeneic and antigenic stimulation and IFN-gamma secretion in response to antigenic challenge were impaired in IP-10(-/-) mice. In addition, IP-10(-/-) mice exhibited an impaired contact hypersensitivity response, characterized by decreased ear swelling and reduced inflammatory cell infiltrates. T cells recovered from draining lymph nodes also had a decreased proliferative response to Ag restimulation. Furthermore, IP-10(-/-) mice infected with a neurotropic mouse hepatitis virus had an impaired ability to control viral replication in the brain. This was associated with decreased recruitment of CD4(+) and CD8(+) lymphocytes into the brain, reduced levels of IFN-gamma and the IFN-gamma-induced chemokines monokine induced by IFN-gamma (Mig, CXCL9) and IFN-inducible T cell alpha chemoattractant (I-TAC, CXCL11) in the brain, decreased numbers of virus-specific IFN-gamma-secreting CD8(+) cells in the spleen, and reduced levels of demyelination in the CNS. Taken together, our data suggest a role for IP-10 in both effector T cell generation and trafficking in vivo.  相似文献   

8.
Exocrinopathy and pancreatitis-like injury were developed in C57BL/6 (B6) mice infected with LP-BM5 murine leukemia virus, which is known to induce murine acquired immunodeficiency syndrome (MAIDS). The role of chemokines, especially CXCL10/interferon (IFN)-gamma-inducible protein 10 (IP-10), a chemokine to attract CXCR3+ T helper 1-type CD4+ T cells, has not been investigated thoroughly in the pathogenesis of pancreatitis. B6 mice were inoculated intraperitoneally with LP-BM5 and then injected every week with either an antibody against IP-10 or a control antibody. Eight weeks after infection, we analyzed the effect of IP-10 neutralization. Anti-IP-10 antibody treatment did not change the generalized lymphadenopathy and hepatosplenomegaly of mice with MAIDS. The treatment significantly reduced the number of IP-10- and CXCR3-positive cells in the mesenteric lymph nodes (mLNs) but not the phenotypes and gross numbers of cells. In contrast, IP-10 neutralization reduced the number of mononuclear cells infiltrating into the pancreas. Anti-IP-10 antibody treatment did not change the numbers of IFN-gamma+ and IL10+ cells in the mLN but significantly reduced their numbers, especially IFN-gamma+ and IL-10+ CD4+ T cells and IFN-gamma+ Mac-1+ cells, in the pancreas. IP-10 neutralization ameliorated the pancreatic lesions of mice with MAIDS probably by blocking the cellular infiltration of CD4+ T cells and IFN-gamma+ Mac-1+ cells into the pancreas at least at 8 wk after infection, suggesting that IP-10 and these cells might play a key role in the development of chronic autoimmune pancreatitis.  相似文献   

9.
Myasthenia gravis (MG) and its animal model, experimental autoimmune MG (EAMG), are autoimmune disorders in which the acetylcholine receptor (AChR) is the major autoantigen. Microarray technology was used to identify new potential drug targets for treatment of myasthenia that would reduce the need for the currently used nonspecific immunosuppression. The chemokine IFN-gamma-inducible protein 10 (IP-10; CXCL10), a CXC chemokine, and its receptor, CXCR3, were found to be overexpressed in lymph node cells of EAMG rats. Quantitative real-time PCR confirmed these findings and revealed up-regulated mRNA levels of another chemoattractant that activates CXCR3, monokine induced by IFN-gamma (Mig; CXCL9). TNF-alpha and IL-1beta, which act synergistically with IFN-gamma to induce IP-10, were also up-regulated. These up-regulations were observed in immune response effector cells, namely, lymph node cells, and in the target organ of the autoimmune attack, the muscle of myasthenic rats, and were significantly reduced after suppression of EAMG by mucosal tolerance induction with an AChR fragment. The relevance of IP-10/CXCR3 signaling in myasthenia was validated by similar observations in MG patients. A significant increase in IP-10 and CXCR3 mRNA levels in both thymus and muscle was observed in myasthenic patients compared with age-matched controls. CXCR3 expression in PBMC of MG patients was markedly increased in CD4(+), but not in CD8(+), T cells or in CD19(+) B cells. Our results demonstrate a positive association of IP-10/CXCR3 signaling with the pathogenesis of EAMG in rats as well as in human MG patients.  相似文献   

10.
BACKGROUND: Atherosclerotic lesions are mainly composed of macrophages and T lymphocytes. Specific T helper type 1 (Th1) cytokines and interferon gamma (IFN-gamma) inducible chemokines have been shown to be present in these lesions, modulating the local immunologic response. To explore whether this increase in Th1 activity could also be detected in circulating cells indicating a systemic activation, we studied the peripheral expression of Th1 cytokines and chemokines in patients with coronary artery disease and controls. METHODS AND RESULTS: Fifty patients with coronary artery disease (25 with unstable angina and 25 with stable angina) and 10 controls were studied. Serum interleukin (IL)-12 and IFN-gamma and the expression of IFN-gamma inducible chemokines IP-10, Mig and their receptor CXCR3 in peripheral cells were analyzed. Serum IL-12 and intracellular expression of IFN-gamma were significantly elevated in patients with unstable angina. An enhanced expression of IFN-gamma chemokines IP-10, Mig and CXCR3 in patients with stable angina was also observed. CONCLUSIONS: This study demonstrates an increased systemic inflammatory activity in patients with coronary heart disease with a predominant Th1 response, particularly in patients with unstable angina, suggesting an important role played by this polarization in plaque formation and rupture.  相似文献   

11.
Human airway epithelial cells (HAEC) constitutively express the CXC chemokine receptor CXCR3, which regulates epithelial cell movement. In diseases such as chronic obstructive pulmonary disease and asthma, characterized by denudation of the epithelial lining, epithelial cell migration may contribute to airway repair and reconstitution. This study compared the potency and efficacy of three CXCR3 ligands, I-TAC/CXCL11, IP-10/CXCL10, and Mig/CXCL9, as inducers of chemotaxis in HAEC and examined the underlying signaling pathways involved. Studies were performed in cultured HAEC from normal subjects and the 16-HBE cell line. In normal HAEC, the efficacy of I-TAC-induced chemotaxis was 349 ± 88% (mean ± SE) of the medium control and approximately one-half the response to epidermal growth factor, a highly potent chemoattractant. In normal HAEC, Mig, IP-10, and I-TAC induced chemotaxis with similar potency and a rank order of efficacy of I-TAC = IP-10 > Mig. Preincubation with pertussis toxin completely blocked CXCR3-induced migration. Of interest, intracellular [Ca2+] did not rise in response to I-TAC, IP-10, or Mig. I-TAC induced a rapid phosphorylation (5–10 min) of two of the three MAPKs, i.e., p38 and ERK1/2. Pretreatment of HAEC with the p38 inhibitor SB 20358 or the PI3K inhibitor wortmannin dose-dependently inhibited the chemotactic response to I-TAC. In contrast, the ERK1/2 inhibitor U0126 had no effect on chemotaxis. These data indicate that in HAEC, CXCR3-mediated chemotaxis involves a G protein, which activates both the p38 MAPK and PI3K pathways in a calcium-independent fashion. G protein-coupled receptor; mitogen-activated protein kinase; phosphatidylinositol 3-kinase; cytoskeleton  相似文献   

12.
Innate inflammatory events promoting antiviral defense in the liver against murine cytomegalovirus (MCMV) infection have been characterized. However, the mechanisms that regulate the selective recruitment of inflammatory T lymphocytes to the liver during MCMV infection have not been defined. The studies presented here demonstrate the expression of monokine induced by gamma interferon (IFN-gamma; Mig/CXCL9) and IFN-gamma-inducible protein 10 (IP-10/CXCL10) in liver leukocytes and correlate their production with the infiltration of MCMV-specific CD8 T cells into the liver. Antibody-mediated neutralization of CXCL9 and CXCL10 and studies using mice deficient in CXCR3, the primary known receptor for these chemokines, revealed that CXCR3-dependent mechanisms promote the infiltration of virus-specific CD8 T cells into the liver during acute infection with MCMV. Furthermore, CXCR3 functions augmented the hepatic accumulation of CD8 T-cell IFN-gamma responses to MCMV. Evaluation of protective functions demonstrated enhanced pathology that overlapped with transient increases in virus titers in CXCR3-deficient mice. However, ultimate viral clearance and survival were not compromised. Thus, CXCR3-mediated signals support the accumulation of MCMV-specific CD8 T cells that contribute to, but are not exclusively required for, protective responses in a virus-infected tissue site.  相似文献   

13.
It is known that both interleukin-4 (IL-4) and IL-13 are produced by Th2-type cells and share similar biological functions with each other. However, recently accumulated evidences have revealed that IL-4 may be involved in the Th1-type response. Both thymus and activation-regulated chemokine (TARC/CCL17), a ligand for CC chemokine receptor 4 that is mainly expressed on Th2-type cells, and interferon-induced protein of 10kDa (IP-10/CXCL10), a ligand for CXC chemokine receptor 3 that is mainly expressed on Th1-type cells, are produced by keratinocytes after the stimulation with the primary cytokines such as tumor necrotic factor-alpha (TNF-alpha) and/or interferon-gamma (IFN-gamma). In this study, we investigated the regulation of TARC or IP-10 production from HaCaT cells, an immortalized human keratinocyte cell line, after stimulation with TNF-alpha, IFN-gamma, IL-4 and/or IL-13. Without stimulation, HaCaT cells did not produce TARC. When both TNF-alpha and IFN-gamma were added, they increased synergistically (P<0.003). In addition, when HaCaT cells were stimulated with IL-4, but not IL-13, in combination with TNF-alpha and IFN-gamma, the supernatant TARC levels significantly decreased compared to those with both TNF-alpha and IFN-gamma (P<0.009). This inhibition was completely abolished with the addition of neutralizing anti-IL-4 antibody. The supernatant IP-10 levels also increased synergistically by stimulation with TNF-alpha and IFN-gamma for 24h (P<0.001). When IL-4, but not IL-13, was added to the medium and the cells were co-cultured with these cytokines, the IP-10 levels significantly increased compared to those with both TNF-alpha and IFN-gamma (P<0.04). Furthermore, the effects of IL-4 on TARC and IP-10 production in these cells were detected in a dose-dependent manner. These data strongly suggest that IL-4 may act not only as a mediator of Th1-type response but also as a down-regulator of Th2-type response in terms of the regulation of chemokine production by HaCaT cells.  相似文献   

14.
Idiopathic pneumonia syndrome (IPS) is a frequently fatal complication after allogeneic stem cell transplantation (allo-SCT) that responds poorly to standard immunosuppressive therapy. The pathophysiology of IPS involves the secretion of inflammatory cytokines including IFN-gamma and TNF-alpha along with the recruitment of donor T cells to the lung. CXCR3 is a chemokine receptor that is expressed on activated Th1/Tc1 T cell subsets and the expression of its ligands CXCL9 (monokine induced by IFN-gamma (Mig)) and CXCL10 (IFN-gamma-inducible protein 10 (IP-10)) can be induced in a variety of cell types by IFN-gamma alone or in combination with TNF-alpha. We used a lethally irradiated murine SCT model (B6 --> bm1) to evaluate the role of CXCR3 receptor:ligand interactions in the development of IPS. We found that Mig and IP-10 protein levels were significantly elevated in the bronchoalveolar lavage fluid of allo-SCT recipients compared with syngeneic controls and correlated with the infiltration of IFN-gamma-secreting CXCR3(+) donor T cells into the lung. The in vivo neutralization of either Mig or IP-10 significantly reduced the severity of IPS compared with control-treated animals, and an additive effect was observed when both ligands were blocked simultaneously. Complementary experiments using CXCR3(-/-) mice as SCT donors also resulted in a significant decrease in IPS. These data demonstrate that interactions involving CXCR3 and its primary ligands Mig and IP-10 significantly contribute to donor T cell recruitment to the lung after allo-SCT. Therefore, approaches focusing on the abrogation of these interactions may prove successful in preventing or treating lung injury that occurs in this setting.  相似文献   

15.
I-TAC, IP10, and Mig are interferon-gamma inducible CXC chemokines that share the same G-protein-coupled receptor CXCR3, which is preferentially expressed on Th1 lymphocytes. We have explored the structure-function relationship of the CXCR3 ligands, in particular of I-TAC, which has highest affinity for CXCR3 and is the most potent agonist. A potent antagonist for CXCR3 was obtained by NH(2)-terminal truncation of I-TAC. I-TAC (4-73), which lacks the first three residues, has no agonistic activity but competes for the binding of I-TAC to CXCR3-bearing cells and inhibits migration and Ca(2+) changes in such cells in response to stimulation with I-TAC, IP10, and Mig. It does also not induce internalization of CXCR3, which is in support of the lack of agonistic effects. Hybrid chemokines between I-TAC and IP10 were used to identify regions responsible for the higher activity of I-TAC. I-TAC-like IP10 analogs are obtained by substituting the NH(2) terminus (residues 1-8) or N-loop region (residues 12-17) of IP10 with those of I-TAC, suggesting that the differences in function of the CXCR3 ligands can be assigned to distinct regions and that these regions are interchangeable. Structure-activity studies with Mig showed that the extended basic COOH-terminal region, which is not present in I-TAC and IP10, is important for binding and activity.  相似文献   

16.
Although gamma interferon (IFN-gamma) is a key mediator of antiviral defenses, it is also a mediator of inflammation. As inflammation can drive lentiviral replication, we sought to determine the relationship between IFN-gamma-related host immune responses and challenge virus replication in lymphoid tissues of simian-human immunodeficiency virus 89.6 (SHIV89.6)-vaccinated and unvaccinated rhesus macaques 6 months after challenge with simian immunodeficiency virus SIVmac239. Vaccinated-protected monkeys had low tissue viral RNA (vRNA) levels, vaccinated-unprotected animals had moderate tissue vRNA levels, and unvaccinated animals had high tissue vRNA levels. The long-term challenge outcome in vaccinated monkeys was correlated with the relative balance between SIV-specific IFN-gamma T-cell responses and nonspecific IFN-gamma-driven inflammation. Vaccinated-protected monkeys had slightly increased tissue IFN-gamma mRNA levels and a high frequency of IFN-gamma-secreting T cells responding to in vitro SIVgag peptide stimulation; thus, it is likely that they could develop effective anti-SIV cytotoxic T lymphocytes in vivo. In contrast, both high tissue IFN-gamma mRNA levels and strong in vitro SIV-specific IFN-gamma T-cell responses were detected in lymphoid tissues of vaccinated-unprotected monkeys. Unvaccinated monkeys had increased tissue IFN-gamma mRNA levels but weak in vitro anti-SIV IFN-gamma T-cell responses. In addition, in lymphoid tissues of vaccinated-unprotected and unvaccinated monkeys, the increased IFN-gamma mRNA levels were associated with increased Mig/CXCL9, IP-10/CXCL10, and CXCR3 mRNA levels, suggesting that increased Mig/CXCL9 and IP-10/CXCL10 expression resulted in recruitment of CXCR3(+) activated T cells. Thus, IFN-gamma-driven inflammation promotes SIV replication in vaccinated-unprotected and unvaccinated monkeys. Unlike all unvaccinated monkeys, most monkeys vaccinated with SHIV89.6 did not develop IFN-gamma-driven inflammation, but they did develop effective antiviral CD8(+)-T-cell responses.  相似文献   

17.
Interferon-gamma-inducible protein-10 (IP-10)/CXCL10 is a CXC chemokine that attracts T lymphocytes and NK cells through activation of CXCR3, the only chemokine receptor identified to date that binds IP-10/CXCL10. We have found that several nonhemopoietic cell types, including epithelial and endothelial cells, have abundant levels of a receptor that binds IP-10/CXCL10 with a Kd of 1-6 nM. Surprisingly, these cells expressed no detectable CXCR3 mRNA. Furthermore, no cell surface expression of CXCR3 was detectable by flow cytometry, and the binding of 125I-labeled IP-10/CXCL10 to these cells was not competed by the other high affinity ligands for CXCR3, monokine induced by IFN-gamma/CXCL9, and I-TAC/CXCL11. Although IP-10/CXCL10 binds to cell surface heparan sulfate glycosaminoglycan (GAG), the receptor expressed by these cells is not GAG, since the affinity of IP-10/CXCL10 for this receptor is much higher than it is for GAG, its binding is not competed by platelet factor 4/CXCL4, and it is present on cells that are genetically incapable of synthesizing GAG. Furthermore, in contrast to IP-10/CXCL10 binding to GAG, IP-10/CXCL10 binding to these cells induces new gene expression and chemotaxis, indicating the ability of this receptor to transduce a signal. These high affinity IP-10/CXCL10-specific receptors on epithelial cells may be involved in cell migration and, perhaps, in the spread of metastatic cells as they exit from the vasculature. (All of the lung cancer cells we examined also expressed CXCR4, which has been shown to play a role in breast cancer metastasis.) CXCR3-negative endothelial cells may also use this receptor to mediate the angiostatic activity of IP-10/CXCL10, which is also expressed by these cells in an autocrine manner.  相似文献   

18.
The majority of T lymphocytes that infiltrate psoriatic lesions express cutaneous lymphocyte antigen (CLA), a skin homing receptor involved in the influx of memory T cells to cutaneous sites. We investigated CLA expression on normal human peripheral blood mononuclear cells (PBMCs) and evaluated its association with IL-12 receptors, chemokine receptor, CXCR3, and IL-2Ralpha. PBMCs were stimulated in vitro with or without polyclonal activators (mitogen, or superantigens, or anti-CD3+anti-CD28) in the presence or absence of exogenous rhIL-12. The percentage of CLA+ T lymphocytes increased significantly after superantigen stimulation compared to anti-CD3+anti-CD28 or mitogen activation. The majority of activation induced CLA+ T lymphocytes co-expressed IL-12Rbeta1, IL-12Rbeta2, CXCR3, and CD25 in the presence of rhIL-12. Our results indicate that CLA expression on activated T lymphocytes is IL-12 and activation dependent and correlates with the expression of IL-12 receptors, IL-2Ralpha, and CXCR3. Monitoring the levels of Th1 differentiation markers such as CXCR3 and IL-12Rbeta2 along with activation marker, CD25 on skin homing CLA+ T lymphocytes may provide insight into the mechanism of action of immunotherapies directed against Th1 type skin inflammatory diseases.  相似文献   

19.
Peroxisome proliferator-activated receptor-gamma (PPARgamma), a member of the nuclear hormone receptor superfamily originally shown to play an important role in adipocyte differentiation and glucose homeostasis, is now known to regulate inflammatory responses. Given the importance of endothelial cell (EC)-derived chemokines in regulating leukocyte function and trafficking, we studied the effects of PPARgamma ligands on the expression of chemokines induced in ECs by the Th1 cytokine IFN-gamma. Treatment of ECs with PPARgamma activators significantly inhibited IFN-gamma-induced mRNA and protein expression of the CXC chemokines IFN-inducible protein of 10 kDa (IP-10), monokine induced by IFN-gamma (Mig), and IFN-inducible T-cell alpha-chemoattractant (I-TAC), whereas expression of the CC chemokine monocyte chemoattractant protein-1 was not altered. PPARgamma activators decreased IFN-inducible protein of 10 kDa promoter activity and inhibited protein binding to the two NF-kappaB sites but not to the IFN-stimulated response element ISRE site. Furthermore, PPARgamma ligands inhibited the release of chemotactic activity for CXC chemokine receptor 3 (CXCR3)-transfected lymphocytes from IFN-gamma-stimulated ECs. These data suggest that anti-diabetic PPARgamma activators might attenuate the recruitment of activated T cells at sites of Th1-mediated inflammation.  相似文献   

20.
Th1 and Th2 lymphocytes express a different repertoire of chemokine receptors (CCRs). CXCR3, the receptor for I-TAC (interferon-inducible T cell alpha-chemoattractant), Mig (monokine induced by gamma-interferon), and IP10 (interferon-inducible protein 10), is expressed preferentially on Th1 cells, whereas CCR3, the receptor for eotaxin and several other CC chemokines, is characteristic of Th2 cells. While studying responses that are mediated by these two receptors, we found that the agonists for CXCR3 act as antagonists for CCR3. I-TAC, Mig, and IP10 compete for the binding of eotaxin to CCR3-bearing cells and inhibit migration and Ca(2+) changes induced in such cells by stimulation with eotaxin, eotaxin-2, MCP-2 (monocyte chemottractant protein-2), MCP-3, MCP-4, and RANTES (regulated on activation normal T cell expressed and secreted). A hybrid chemokine generated by substituting the first eight NH(2)-terminal residues of eotaxin with those of I-TAC bound CCR3 with higher affinity than eotaxin or I-TAC (3- and 10-fold, respectively). The hybrid was 5-fold more potent than I-TAC as an inhibitor of eotaxin activity and was effective at concentrations as low as 5 nm. None of the antagonists described induced the internalization of CCR3, indicating that they lack agonistic effects and thus qualify as pure antagonists. These results suggest that chemokines that attract Th1 cells via CXCR3 can concomitantly block the migration of Th2 cells in response to CCR3 ligands, thus enhancing the polarization of T cell recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号