首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative study of amyloid properties of the aggregates of smooth muscle titin (SMT) from chicken gizzard was carried out. These aggregates were formed in two solutions: 0.15 M glycine-KOH, pH 7.2–7.4 (SMT(Gly)) and 0.2 M KCl, 10 mM imidazole, pH 7.0 (SMT(KCl)). Electron microscopy data showed that SMT aggregates has an amorphous structure in both cases. The results of atomic-force microscopy demonstrated slight differences in morphology in two types of aggregates. The SMT(Gly) aggregates were represented as branching chains, composed of spherical aggregates approximately 300–500 nm in diameter and up to 35 nm in height. The SMT(KCl) aggregates formed sponge-like structures with strands of 8–10 nm in height. Structural analysis of SMT aggregates by X-ray diffraction revealed the presence of cross-β-sheet structure in the samples under study. In the presence of SMT(Gly) aggregates, thioflavine T fluorescence intensity was higher (~3-fold times) compared with that in the presence of SMT(KCl) aggregates. Congo red-stained SMT(Gly) aggregates had yellow to apple-green birefringence under polarized light, which was not observed for SMT(KCl) aggregates. Dynamic light scattering data showed the similar rate of aggregation for both types of aggregates, though SMT(KCl) aggregates were able to partially disaggregate under increased ionic strength of the solution. The ability of SMT to aggregation followed by disaggregation may be functionally significant in the cell.  相似文献   

2.
In contrast to human platelets, which aggregate poorly in response to ADP unless fibrinogen is present in the external medium, washed rabbit platelets form large aggregates in response to ADP without fibrinogen in the suspending medium. Addition of fibrinogen to the suspending medium of rabbit platelets frequently has little or no effect on the extent of ADP-induced platelet aggregation. We examined washed rabbit platelets by immunocytochemistry during ADP-induced aggregation and deaggregation and during thrombin-induced aggregation when the external medium did not contain added fibrinogen to determine if (a) fibrinogen was expressed on the surface of rabbit platelets that could support aggregation when the platelets were stimulated, or (b) fibrinogen secreted from the alpha granules supports platelet aggregation. Glutaraldehyde-fixed samples were prepared at different times after addition of ADP or thrombin, embedded in Lowicryl K4M, sectioned, incubated with sheep anti-rabbit fibrinogen, washed, reacted with gold-labeled anti-sheep IgG, and prepared for electron microscopy. The alpha granules of rabbit platelets were heavily labeled with immunogold; the platelet membrane was not labeled. During platelet aggregation and deaggregation in response to ADP, fibrinogen was not detectable on the platelet surface. In response to thrombin, large aggregates formed before fibrinogen was secreted from the alpha granules; fibrinogen was detectable focally at sites of granule discharge by 30-60 sec and fibrin formed by 3 min. Therefore, stimulated washed rabbit platelets can adhere to each other without large amounts of fibrinogen taking part in the close platelet-to-platelet contact, since aggregation occurs before detectable secretion, and large areas where the platelets are in contact are devoid of fibrinogen between the adherent membranes. Adhesion mechanisms not involving fibrinogen may support the aggregation of washed rabbit platelets.  相似文献   

3.
In this paper, a therapeutic immunoglobulin (Antibody A) has been characterized in two solutions: (1) 0.1% acetic acid containing 50 mM magnesium chloride, a solution in which the immunoglobulin is stable, and (2) 10 mM sodium phosphate buffer pH approximately 7. The protein solutions were characterized by microscopy, asymmetrical flow field-flow fractionation (FFF), light scattering, circular dichroism, fluorescence and fluorescence lifetime spectroscopy. The results show that Antibody A dissolved in 0.1% acetic acid containing 50 mM magnesium chloride exists as 88% monomer, 2% low molecular weight aggregates and 10% high molecular weight aggregates (>1 million Dalton). In phosphate buffer, Antibody A formed micrometre-sized aggregates that were best characterized by fluorescence microscopy. The aggregation of Antibody A in phosphate buffer was shown to be concomitant with conformational changes in amino acid residue side chains. The aggregates formed in phosphate buffer were easily disrupted during FFF analysis, indicating that they are formed by weak interactions. The combination of microscopy, asymmetrical flow field-flow fractionation (FFF) and spectroscopy allowed a reliable assessment of protein self association and aggregation.  相似文献   

4.
To investigate the effect of chemical chaperones on the production and aggregation of flag-tagged cartilage oligomeric matrix protein-Angiopoietin1 (FCA1) in recombinant Chinese hamster ovary (CHO) cells, CHO cells were cultivated in serum-free media with various chemical chaperones, 1 mM 4-phenylbutyrate (4-PBA), 200 mM proline, 3% glycerol, 2% dimethyl sulfoxide (DMSO), and without chemical chaperone as control. The addition of chemical chaperones enhanced FCA1 production and specific FCA1 productivity, q(FCA)(1). For example, the q(FCA)(1) at 200 mM proline was fourfold higher than that at control. Unlike q(FCA)(1), the aggregation of FCA1 was strongly affected by which chemical chaperone was added. The addition of 2% DMSO and 200 mM proline significantly reduced the proportion of aggregates, but the addition of 1 mM 4-PBA and 3% glycerol was hardly effective. The proportions of aggregates were 29.5 and 55.6% at 2% DMSO and 200 mM proline, respectively, whereas it was 79.6% at control. The exact mechanism how chemical chaperones affected the aggregation of FCA1 was not investigated in this study, and therefore, more extensive works will be needed to clarify why different chemical chaperones behaved differently in reducing the aggregation of FCA1. Among chemical chaperones tested, DMSO was the most effective one in regard to enhancing the production and reducing the aggregation of FCA1 in CHO cells.  相似文献   

5.
Cellular aggregation, which occurs in both prokaryotes and eukaryotes, is controlled by the hydrophobicity as well as the electrokinetic potential of the cell surface and substratum. It is known that the Mycobacterium genus form aggregates, but the influence of sugar on the cellular aggregation has not been reported for this genus. The mutant strain Mycobacterium sp. MB-3683 that transforms sterol to androstenedione (AD), a steroidal precursor used by the pharmaceutical industries, was employed in this study. This strain was cultivated in a synthetic medium on three sugars (glycerol, glucose and fructose) at different concentrations, and at 144 h microbial growth, cellular aggregation, hydrophobicity, lipid content, fatty acid composition, and width of cellular walls were measured. It was observed that at different sugar concentrations, similar growth and pH were obtained. However, in fructose, the aggregation level was significantly high, followed by glycerol and glucose (fructose < glycerol < glucose). These results were confirmed using electron microscopy and the aggregate area quantified by image analysis. Hydrophobicity was the highest in fructose and the lowest in glucose. The total lipids, in contrast to cellular hydrophobicity, were higher in glucose than glycerol. Although, the hydrophilic-lipophilic balance (HLB) of principal fatty acids isolated was similar regardless of sugar used. In glycerol and fructose, the paraffins were observed, which are responsible for the high cellular hydrophobicity detected above. The width of cell wall of the organisms grown on glucose and fructose was similar, but in glycerol the walls were very thin. There is a correspondence between cell wall width and lipid content.  相似文献   

6.
Correlated measurement of platelet release and aggregation in whole blood   总被引:3,自引:0,他引:3  
We have used a technique for the simultaneous measurement of platelet activation and aggregation in whole blood using two-color immunofluorescence and flow cytometry to study the relationship between the release reaction and aggregation. A monoclonal antibody specific for the alpha granule membrane protein GMP-140 was used to measure the release reaction, and a monoclonal antibody specific for platelet membrane glycoprotein Ib (GPIb) was used to identify platelets and platelet aggregates. Aggregates were identified as particles expressing both levels of GPIb and size larger than that of resting single platelets. Anticoagulated whole blood was incubated with platelet agonists. At various times samples of the blood were removed and immediately fixed with paraformaldehyde. Blood that had been anticoagulated with ethylenediamine tetraacetic acid showed progressive release of platelets but little or no aggregation. However, blood anticoagulated with citrate or heparin showed correlated release and aggregation. The degree of aggregation was greater in heparin than in citrate. The expression of GPIb and GMP-140 increased in direct proportion to the size of the aggregates. Aggregates were observed varying in apparent diameter up to approximately 20 microns. During prolonged incubation there was progressive disaggregation of adenosine diphosphate (ADP)-induced aggregates. After disaggregation the proportion of GMP-140 negative single platelets increased, indicating that both released and nonreleased platelets participated in the aggregation. There was little or no disaggregation of phorbol myristate acetate (PMA)-induced aggregates. The relatively small size and reversibility of platelet aggregates that we have observed in whole blood may be relevant to phenomena occurring in vivo and in extracorporeal circulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Regulated secretory proteins are thought to be sorted in the trans-Golgi network (TGN) via selective aggregation. The factors responsible for this aggregation are unknown. We show here that two widespread regulated secretory proteins, chromogranin B and secretogranin II (granins), remain in an aggregated state when TGN vesicles from neuroendocrine cells (PC12) are permeabilized at pH 6.4 in 1-10 mM calcium, conditions believed to exist in this compartment. Permeabilization of immature secretory granules under these conditions allowed the recovery of electron dense cores. The granin aggregates in the TGN largely excluded glycosaminoglycan chains which served as constitutively secreted bulk flow markers. The low pH, high calcium milieu was sufficient to induce granin aggregation in the RER. In the TGN of pituitary GH4C1 cells, the proportion of granins conserved as aggregates was higher upon hormonal treatment known to increase secretory granule formation. Our data suggest that a decrease in pH and an increase in calcium are sufficient to trigger the selective aggregation of the granins in the TGN, segregating them from constitutive secretory proteins.  相似文献   

8.
Here we describe the use of electrospray differential mobility analysis (ES-DMA), also known as gas-phase electrophoretic mobility molecular analysis (GEMMA), as a method for measuring low-order soluble aggregates of proteins in solution. We demonstrate proof of concept with IgG antibodies. In ES-DMA, aqueous solutions of the antibody protein are electrosprayed and the various aerosolized species are separated according to their electrophoretic mobility using a differential mobility analyzer. In this way, complete size distributions of protein species present from 3 to 250 nm can be obtained with the current set up, including distinct peaks for IgG monomers to pentamers. The sizes of the IgG and IgG aggregates measured by DMA were found to be in good agreement with those calculated from simple models, which take the structural dimensions of IgG from protein crystallographic data. The dependence of IgG aggregation on the solution concentration and ionic strength was also examined, and the portion of aggregates containing chemically crosslinked antibodies was quantified. These results indicate that ES-DMA holds potential as a measurement tool to study protein aggregation phenomena such as those associated with antibody reagent manufacturing and protein therapeutics.  相似文献   

9.
Parallel temperature initial rates (PTIR) from chromatographic separation of aggregating protein solutions are combined with continuous simultaneous multiple sample light scattering (SMSLS) to make quantitative deductions about protein aggregation kinetics and mechanisms. PTIR determines the rates at which initially monomeric proteins are converted to aggregates over a range of temperatures, under initial-rate conditions. Using SMSLS for the same set of conditions provides time courses of the absolute Rayleigh scattering ratio, IR(t), from which a potentially different measure of aggregation rates can be quantified. The present report compares these measures of aggregation rates across a range of solution conditions that result in different aggregation mechanisms for anti-streptavidin (AS) immunoglobulin gamma-1 (IgG1). The results illustrate how the two methods provide complementary information when deducing aggregation mechanisms, as well as cases where they provide new mechanistic details that were not possible to deduce in previous work. Criteria are presented for when the two techniques are expected to give equivalent results for quantitative rates, the potential limitations when solution non-idealities are large, as well as a comparison of the temperature dependence of AS-IgG1 aggregation rates with published data for other antibodies.  相似文献   

10.
The time dependence of aggregation in supersaturated lysozyme solutions was studied using pulsed-gradient spin-echo NMR diffusion measurements as a function of lysozyme concentration at pH 6.0 and 298 K in the presence of 0.5 M NaCl. The measurements provide estimates of the weight-averaged diffusion coefficient of the monomeric to intermediate molecular weight lysozyme species present in the solution (very large aggregates and crystals are excluded from the average due to the NMR relaxation-weighting effects inherent in the method). The results show that the average molecular weight of the various lysozyme aggregates changed with sigmoidal kinetics and that these kinetics were strongly influenced by the initial lysozyme concentration. The visualization of the time dependence of the protein aggregation afforded by this method provides a deeper understanding of how the crystallizing conditions (especially the initial protein concentration) are related to the resulting crystals.  相似文献   

11.
Clinical studies suggest that stent design and surface texture are responsible for differences in biocompatibility of metallic endovascular stents. A simple in vitro experimental setup was established to test stent-induced degree of platelet and leukocyte activation and platelet-leukocyte aggregation by flow cytometry. Heparin-coated tantalum stents and gold-coated and uncoated stainless steel stents were tested. Stents were implanted into silicone tubes and exposed to blood from healthy volunteers. Platelet and leukocyte activation and percentage of leukocyte-platelet aggregates were determined in a whole-blood assay by subsequent staining for activation-associated antigens (CD41a, CD42b, CD62p, and fibrinogen binding) and leukocyte antigens (CD14 and CD45) and flow cytometric analysis. Blood taken directly after venous puncture or exposed to the silicone tube alone was used as negative controls. Positive control was in vitro stimulation with thrombin receptor activating peptide (TRAP-6). Low degree of platelet activation and significant increase in monocyte- and neutrophil-platelet aggregation were observed in blood exposed to stents (P < 0.05). In addition, leukocyte activation was induced as measured by increased CD45 and CD14 expression. Heparin coated stents continuously induced less platelet activation and leukocyte-platelet aggregation than uncoated stainless steel stents of the same length and shorter stents of the same structure. Stent surface coating and texture plays a role in platelet and leukocyte activation and leukocyte-platelet aggregation. Using this simple in vitro assay and whole blood and flow cytometry, it seems possible to differentiate stents by their potency to activate platelets and/or leukocytes. This assay could be applied for improving the biocompatibility of coronary stents.  相似文献   

12.
Deng Y  Feng X  Zhou M  Qian Y  Yu H  Qiu X 《Biomacromolecules》2011,12(4):1116-1125
Molecular iodine has been introduced into the alkali lignin (AL) solutions to adjust the π-π aggregation, and the effect of lignin-iodine complexes on the aggregation and assembly characteristics of AL have been investigated by using fluorescence, UV-vis spectroscopy, light scattering, and viscometric techniques. Results show that AL form π-π aggregates (i.e., J-aggregates) in THF driven by the π-π interaction of the aromatic groups in AL, and the π-π aggregates undergo disaggregation in THF-I(2) media because of the formation of lignin-iodine charge-transfer complexes. By using iodine as a probe to investigate the aggregation behaviors and assembly characteristics, it is estimated that about 18 mol % aromatic groups of AL form π-π aggregates in AL molecular aggregates. When molecular iodine is introduced into the AL solutions, lignin-iodine complexes occur with charge-transfer transition from HOMO of the aromatic groups of AL to the LUMO of iodine. The formation of lignin-iodine complexes reduces the affinity of the aromatic groups approaching each other due to the electrostatic repulsion and then eliminates the π-π interaction of the aromatic groups. The disaggregation of the π-π aggregates brings a dissociation behavior of AL chains and a pronounced molecular expansion. This dissociation behavior and molecular expansion of AL in the dipping solutions induce a decrease in the adsorbed amount and an increase in the adsorption rate, when AL is transferred from the dipping solution to the self-assembled adsorbed films. Consequently, the adsorption behavior of AL can be controlled by adjusting the π-π aggregation. Above observations give insight into the occurrence of J-aggregation of the aromatic groups in the AL molecular aggregates and the disaggregation mechanism of AL aggregates induced by the lignin-iodine complexes for the first time. The understanding can provide an academic instruction in the efficient utilization of the alkali lignin from the waste liquor and also leads to further development in expanding functionalities of the aromatic compounds through manipulation of the π-π aggregation.  相似文献   

13.
There is broad agreement that platelet aggregation is generally dependent on fibrinogen (Fg) binding to the glycoprotein (GP) IIb-IIIa receptor expressed on the activated platelet surface. We therefore compared rates and extents of aggregation and of fibrinogen receptor expression and specific Fg binding to activated platelets, as a function of ADP concentration. Human citrated platelet-rich plasma (diluted 10-fold) was stirred with adenosine diphosphate (ADP) for 10 s or 2 min to measure rates and extent of aggregation, respectively, determined from the decrease in the total number of particles. The number of fibrinogen receptors and bound Fg were measured from mean fluorescence values obtained with FITC-labeled IgM monoclonal antibody PAC1 and the IgG monoclonal antibody, 9F9, respectively, using flow cytometry as presented in part I (Frojmovic et al., 1994). Because flow cytometric and aggregation measurements were routinely determined at room temperature and 37 degrees C, respectively, we also compared and found temperature-independent initial rates of aggregation. The fraction of platelets with fluorescence values above one critical threshold value, corresponding to maximally "activated" platelets (P*), increased with increasing activator concentration and correlated linearly with the fraction of platelets recruited into aggregates for ADP (r > 0.9). Aggregation was not rate-limited by fibrinogen receptor expression or by Fg binding. It appears that each platelet expresses its maximal Fg receptors at a critical ADP concentration, i.e., occupancy of ADP receptors. This, in turn, leads to rapid Fg occupancy and capture of such "quantally activated" platelets into aggregates.  相似文献   

14.
The growing impact of protein aggregation pathologies, together with the current high need for extensive information on protein structures are focusing much interest on the physics underlying the nucleation and growth of protein aggregates and crystals. Sickle Cell Hemoglobin (HbS), a point-mutant form of normal human Hemoglobin (HbA), is the first recognized and best-studied case of pathologically aggregating protein. Here we reanalyze kinetic data on nucleation of deoxy-HbS aggregates by referring them to the (concentration-dependent) temperature T(s) characterizing the occurrence of the phase transition of liquid-liquid demixing (LLD) of the solution. In this way, and by appropriate scaling of kinetic data at different concentrations, so as to normalize their spans, the apparently disparate sets of data are seen to fall on a master curve. Expressing the master curve vs. the parameter epsilon = (T - T(s)) / T(s), familiar from phase transition theory, allows eliciting the role of anomalously large concentration fluctuations associated with the LLD phase transition and also allows decoupling quantitatively the role of such fluctuations from that of microscopic, inter-protein interactions leading to nucleation. Referring to epsilon shows how in a narrow temperature span, that is at T - T(s), nucleation kinetics can undergo orders-of-magnitude changes, unexpected in terms of ordinary chemical kinetics. The same is true for similarly small changes of other parameters (pH, salts, precipitants), capable of altering T(s) and consequently epsilon. This offers the rationale for understanding how apparently minor changes of parameters can dramatically affect protein aggregation and related diseases.  相似文献   

15.
The molecular parameters of pronase-treated acid-soluble bovine skin collagen (P-ASC) were determined from low-shear gradient viscosity, electric birefringence, and electron microscopic data in order to determine the shear gradient range in which viscosity studies yield data which can be correctly interpreted by use of the various hydrodynamic equations for prolate ellipsoids of revolution. The P-ASC solutions could be characterized by a single relaxation process in electric briefringence with rotary diffusion coefficient θ of 810 sec?1 and a corresponding molecular length of 2850 Å. Viscosity data were found to be shear gradient dependent and only the extrapolated zero-shear value [η]D = 0 could be used with the viscosity hydrodynamic equations to provide a correct value of molecular length. Intrinsic viscosities obtained at shear gradients >250 sec?1 are nearly 30% lower than the zero-shear value. Untreated acid-soluble collagen (ASC) solutions contain aggregates and these appear, from electric birefringence data, to be of endlinked character. ASC solutions show a much more marked shear gradient dependence than P-ASC. For example, at D~500sec?1,[η] = 22 dl/g, whereas the extrapolated zero-shear value of[η] was found to be 44 dl/g. Thus, the shear gradient dependence of native collagen solutions is much more marked than previously assumed and, in contrast to the usual practice, only viscosities measured near zero shear can be interpreted in terms of molecular parameters for collagen solutions containing aggregates.  相似文献   

16.
One of the clinical manifestations of Alzheimer's disease is the deposition of the 39-43 residue amyloid-beta (A beta) peptide in aggregated fibrils in senile plaques. Characterization of the aggregation behavior of A beta is one of the critical issues in understanding the role of A beta in the disease process. Using solution hydrodynamics, A beta was observed to form three types of species in phosphate-buffered saline: insoluble aggregates with sedimentation coefficients of approximately 50,000 S and molecular masses of approximately 10(9) Da, "soluble aggregates" with sedimentation coefficients of approximately 30 S and masses of approximately 10(6) Da, and monomer. When starting from monomer, the aggregation kinetics of A beta 1-40 (A beta 40) and A beta 1-42 (A beta 42), alone and in combination, reveal large differences in the tendency of these peptides to aggregate as a function of pH and other solution conditions. At pH 4.1 and 7.0-7.4, aggregation is significantly slower than at pH 5 and 6. Under all conditions, aggregation of the longer A beta 42 was more rapid than A beta 40. Oxidation of Met-35 to the sulfoxide in A beta 40 enhances the aggregation rate over that of the nonoxidized peptide. Aggregation was found to be dependent upon temperature and to be strongly dependent on peptide concentration and ionic strength, indicating that aggregation is driven by a hydrophobic effect. When A beta 40 and A beta 42 are mixed together, A beta 40 retards the aggregation of A beta 42 in a concentration-dependent manner. Shorter fragments have a decreasing ability to interfere with A beta 42 aggregation. Conversely, the rate of aggregation of A beta 40 can be significantly enhanced by seeding slow aggregating solutions with preformed aggregates of A beta 42. Taken together, the inhibition of A beta 42 aggregation by A beta 40, the seeding of A beta 40 aggregation by A beta 42 aggregates, and the chemical oxidation of A beta 40 suggest that the relative abundance and rates of production of different-length A beta and its exposure to radical damage may be factors in the accumulation of A beta in plaques in vivo.  相似文献   

17.
Effect of temperature on the velocity of erythrocyte aggregation   总被引:1,自引:0,他引:1  
The velocity of the aggregation of human erythrocytes was examined in the range of 5-43 degrees C with a rheoscope combined with a video camera, an image analyzer and a computer. (1) With increasing temperature, the velocity of erythrocyte aggregation induced by fibrinogen, immunoglobulin G and artificial macromolecules (dextran of 70 kDa and poly(glutamic acid) of 50 kDa) increased. However, the relationship between the velocity of erythrocyte aggregation and the temperature was different among these macromolecules. (2) In 70% autologous plasma, the velocity of erythrocyte aggregation was minimum at 15-18 degrees C, and increased at both higher and lower temperatures. (3) The shape of erythrocyte aggregates in 12 mumol/l fibrinogen (containing 770 mumol/l albumin) and in 70% autologous plasma was dependent on temperature: three-dimensional below 15-18 degrees C and one-dimensional (mainly rouleaux) above 15-18 degrees C. However, the shape of aggregates in 27 mumol/l immunoglobulin G (containing 770 mumol/l albumin) was three-dimensional in all temperature ranges. (4) The temperature dependency of erythrocyte aggregation was discussed in terms of the changes of medium viscosity, of erythrocyte properties and of bridging macromolecules.  相似文献   

18.
The repeat length-dependent tendency of the polyglutamine sequences of certain proteins to form aggregates may underlie the cytotoxicity of these sequences in expanded CAG repeat diseases such as Huntington's disease. We report here a number of features of various polyglutamine (polyGln) aggregates and their assembly pathways that bear a resemblance to generally recognized defining features of amyloid fibrils. PolyGln aggregation kinetics displays concentration and length dependence and a lag phase that can be abbreviated by seeding. PolyGln aggregates exhibit classical beta-sheet-rich circular dichroism spectra consistent with an amyloid-like substructure. The fundamental structural unit of all the in vitro aggregates described here is a filament about 3 nm in width, resembling the protofibrillar intermediates in amyloid fibril assembly. We observed these filamentous structures either as isolated threads, as components of ribbonlike sheets, or, rarely, in amyloid-like twisted fibrils. All of the polyGln aggregates described here bind thioflavin T and shift its fluorescence spectrum. Although all polyGln aggregates tested bind the dye Congo red, only aggregates of a relatively long polyGln peptide exhibit Congo red birefringence, and this birefringence is only observed in a small portion of these aggregates. Remarkably, a monoclonal antibody with high selectivity for a generic amyloid fibril conformational epitope is capable of binding polyGln aggregates. Thus, polyGln aggregates exhibit most of the characteristic features of amyloid, but the twisted fibril structure with Congo red birefringence is not the predominant form in the polyGln repeat length range studied here. We also find that polyGln peptides exhibit an unusual freezing-dependent aggregation that appears to be caused by the freeze concentration of peptide and/or buffer components. This is of both fundamental and practical significance. PolyGln aggregation is revealed to be a highly specific process consistent with a significant degree of order in the molecular structure of the product. This ordered structure, or the assembly process leading to it, may be responsible for the cell-specific neuronal degeneration observed in Huntington's and other expanded CAG repeat diseases.  相似文献   

19.
A platelet aggregation model in shear flow taking into account the kinetics of intercellular fibrinogen bond formation limited by aggregated platelets rotation time was considered. For this consideration the average duration of platelets interaction in flow with shear rate value G is shown to be pi/4G. One fibrinogen bond is sufficient to form a solid aggregate between two platelets. The equation for single platelets disappearance rate concerned with intercellular fibrinogen bond formation, stochastic character of bond distribution in collided platelets and hydrodynamically controlled interaction time was obtained. The Hill's approximation for the obtained aggregation rate dependences was suggested and appropriate constants were determined. The qualitative criterion of platelets aggregating systems behavior was introduced.  相似文献   

20.
Therapeutic administration of immunoglobulins (Ig) has the potential to precipitate thrombotic events. This phenomenon may be explained by red blood cell (RBC) aggregation, which can be potentiated by Ig. The contribution of plasma albumin and fibrinogen to Ig-induced RBC aggregation is unclear. We examined RBC aggregation in three settings: 1) patients receiving therapeutic infusions of Ig; 2) patients receiving plasma supplemented in vitro with Ig; and 3) patients receiving RBC suspensions in standard buffer with varying concentrations of albumin, Ig, and fibrinogen. Ig infusion augmented aggregation of RBCs from patients with normal or high plasma levels of albumin but decreased aggregation in those with lower plasma albumin concentrations. In vitro, RBC aggregation was significantly increased only when all three components, fibrinogen, albumin, and Ig, were present at or above normal concentrations in the suspension but was unaffected when any one of the components was absent from the suspension. Our results suggest a three-way interaction among fibrinogen, Ig, and albumin that synergistically induces RBC aggregation in plasma. Understanding these interactions may help predict clinically important phenomena related to RBC aggregation, such as thrombotic complications of Ig infusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号