首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hexaploid wheat (Triticum aestivum L.) has very low constitutive glutathione S-transferase (GST) activity when assayed with the chloroacetamide herbicide dimethenamid as a substrate, which may account for its low tolerance to dimethenamid in the field. Treatment of seeds with the herbicide safener fluxofenim increased the total GST activity extracted from T. aestivum shoots 9-fold when assayed with dimethenamid as a substrate, but had no effect on glutathione levels. Total GST activity in crude protein extracts from T. aestivum, Triticum durum, and Triticum tauschii was separated into several component GST activities by anion-exchange fast-protein liquid chromatography. These activities (isozymes) differed with respect to their activities toward dimethenamid or 1-chloro-2,4-dinitrobenzene as substrates and in their levels of induction by safener treatment. A safener-induced GST isozyme was subsequently purified by anion-exchange and affinity chromatography from etiolated shoots of the diploid wheat species T. tauschii (a progenitor of hexaploid wheat) treated with the herbicide safener cloquintocet-mexyl. The isozyme bound to a dimethenamid-affinity column and had a subunit molecular mass of 26 kD based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme (designated GST TSI-1) was recognized by an antiserum raised against a mixture of maize (Zea mays) GSTs. Amino acid sequences obtained from protease-digested GST TSI-1 had significant homology with the safener-inducible maize GST V and two auxin-regulated tobacco (Nicotiana tabacum) GST isozymes.  相似文献   

2.
为了探讨 NADH-细胞色素 b5还原酶基因突变引起遗传性高铁血红蛋白血症的分子病理机制 ,研究突变型 ( b5R)蛋白结构和功能的关系 ,用基因重组技术将野生型和突变型 ( C2 0 3Y) b5Rc DNA克隆于 p GEX- 2 T载体 ,在大肠杆菌 BL2 1中诱导表达 .Western印迹鉴定所表达的蛋白为GST- b5R融合蛋白 .应用谷胱甘肽 - Sepharose 4B亲和层析 ,还原型谷胱甘肽洗脱得到纯化的GST- b5R和 GST- b5RC2 0 3Y融合蛋白 .比较 GST- b5R和 GST- b5RC2 0 3Y酶活性及稳定性 ,发现野生型和突变型的酶活性基本相同 .但与野生型酶相比 ,突变型酶对热的稳定性较差 ,对胰蛋白酶更加敏感 .结果提示 ,C2 0 3Y突变可引起蛋白质二级结构改变而导致酶的稳定性下降 .  相似文献   

3.
A glutathione S-transferase (GST) was purified from the larval cattle tick, Boophilus microplus (Acari: Ixodidae), by glutathione-affinity chromatography. The purified enzyme appeared as a single band on SDS-PAGE and has a molecular mass of 25.8 kDa determined by mass spectrometry. The N-terminus of the purified enzyme was sequenced. The full-length cDNA of the enzyme was isolated by RT-PCR using degenerate oligonucleotides derived from the N-terminal amino acid sequence. The cDNA contains an open reading frame encoding a 223-amino-acid protein with the N-terminus identical to the purified GST. Comparison of the deduced amino acid sequence with GSTs from other species revealed that the enzyme is closely related to the mammalian mu class GST.  相似文献   

4.
Glutathione S-transferases (GST) catalyzing the conjugation of reduced glutathione to a vast range of xenobiotics including insecticides were characterized in the whitefly Bemisia tabaci. GST activities were determined in susceptible and resistant strains of B. tabaci towards artificial substrates, i.e. 1-chloro-2,4-dinitrobenzene (CDNB) in a photometric microplate assay and monochlorobimane (MCB) in a fluoroemtric microplate assay and characterized by their Michaelis-Menten kinetics. The inhibitory potential of ethacrynic acid was very effective with IC50-values between 0.9 and 5.8 microM depending on substrate and strain. The inhibitory effect of dicumarol was 10 times lower. Glutathione-affinity chromatography purified GST enzymes of two different B. tabaci strains appeared as a single band on SDS-PAGE and had a molecular mass of 23.5 kDa determined by MALDI mass spectrometry. The N-terminus of the purified enzyme was sequenced by Edman degradation. The nearly full-length cDNA of the enzyme was isolated by RT-PCR using a degenerate primer derived from the N-terminal amino acid sequence and contained an open reading frame encoding a 194-amino-acid protein. Comparison of the deduced amino acid sequence with GSTs from other species revealed that the enzyme is closely related to insect class sigma GSTs.  相似文献   

5.
I K Kang  S G Suh  K C Gross    J K Byun 《Plant physiology》1994,105(3):975-979
beta-Galactosidase (EC 3.2.1.23) from persimmon fruit was purified 114-fold with a 15% yield using Sephadex G-100 gel filtration, CM-Sephadex ion exchange, and Sephacryl S-200 gel filtration chromatography, with subsequent electroelution from nondenaturing polyacrylamide gel electrophoresis (PAGE) gels. The estimated molecular mass of the native beta-galactosidase by Sephacryl S-200 was 118 kD. After sodium dodecyl sulfate-PAGE of the enzyme electroeluted from native gels, two subunits with estimated molecular masses of 34 and 44 kD were observed, suggesting that the native enzyme was an aggregate of several subunits. Amino acid composition and N-terminal amino acid sequences of the two major subunits were different.  相似文献   

6.
Glutathione S-transferases (GSTs; EC 2.5.1.18) have recently been proposed to form one large group among the auxin-induced proteins. However. the properties and regulation of such auxin-responsive GSTs in the plant still await detailed investigation. In this study, a 2,4-dichloro-phenoxyacetic acid (2,4-D)-inducible GST isozyme from soybean ( Glycine max [L.] Merr. cv. Williams) was purified to near homogeneity by anion-exchange and affinity chromatography on S-hexylglutathione agarose. The native enzyme had a molecular mass of 49 kDa, as determined by gel filtration, and consisted of 26-kDa subunits. The purified GST conjugated glutathione to 1-chloro-2,4-dinitrobenzene and to the herbicide metolachlor, but not to the other GST substrates atrazine. fluorodifen or trans-cinnamic acid. The N-termmal amino acid sequence shared significant homology with the deduced polypeptide sequences of two 2,4-D-inducible genes from tobacco, par A and CNT107 . The levels of the 26-kDa GST subunit protein in soybean hypocotyls were analysed by immunoblotting. At micromolar concentrations, 2,4-D induced a transient increase in net accumulation of GST, whereas indole-3-acetic acid or I-naphthaleneacetic acid did not increase the GST levels. Known inhibitors of polar auxin transport, including 2.3.5-tri-iodobenzoic acid. N-I-naphthylphthalamic acid and analogues thereof, differed widely in their ability to elicit GST protein accumulation. It is concluded that the induction of soybean GST by 2,4-D and by some of the auxin transport inhibitors is not related to auxin activity or to changes in the endogenous auxin levels.  相似文献   

7.
Alkaline invertase from sprouting soybean (Glycine max) hypocotyls was purified to apparent electrophoretic homogeneity by consecutive use of DEAE-cellulose, green 19 dye, and Cibacron blue 3GA dye affinity chromatography. This protocol produced about a 100-fold purification with about a 11% yield. The purified protein had a specific activity of 48 mumol of glucose produced mg-1 protein min-1 (pH 7.0) and showed a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) (58 kDa) and in native PAGE, as indicated by both protein and activity staining. The native enzyme molecular mass was about 240 kDa, suggesting a homotetrameric structure. The purified enzyme exhibited hyperbolic saturation kinetics with a Km (sucrose) near 10 mM and the enzyme did not utilize raffinose, maltose, lactose, or cellibose as a substrate. Impure alkaline invertase preparations, which contained acid invertase activity, on contrast, showed biphasic curves versus sucrose concentration. Combining equal activities of purified alkaline invertase with acid invertase resulted in a biphasic response, but there was a transition to hyperbolic saturation kinetics when the activity ratio, alkaline: acid invertase, was increased above unity. Alkaline invertase activity was inhibited by HgCl2, pridoxal phosphate, and Tris with respective Ki values near 2 microM, 5 microM, and 4 mM. Glycoprotein staining (periodic acid-Schiff method) was negative and alkaline invertase did not bind to two immobilized lectins, concanavalin A and wheat germ agglutinin; hence, the enzyme apparently is not a glycoprotein. The purified alkaline invertase, and a purified soybean acid invertase, was used to raise rabbit polyclonal antibodies. The alkaline invertase antibody preparation was specific for alkaline invertase and cross-reacted with alkaline invertases from other plants. Neither purified soybean alkaline invertases nor the crude enzyme from several plants cross-reacted with the soybean acid invertase antibody.  相似文献   

8.
Human milk glutathione peroxidase (GPx) was purified 4500-fold using acetone precipitation and purification by repetitive ion-exchange and gel filtration chromatography with an overall yield of 34%. Homogeneity was established by gel electrophoresis. Using gel filtration, the molecular weight (mol wt) of the enzyme was estimated to be 92 kdalton (kD). The monomeric molecular weight was estimated to b 23 kD from polyacrylamide gel electrophoresis, indicating that the native enzyme consists of four identical subunits. The molecular weight of each subunit was supported by amino acid analysis. Selenium (Se) content of the purified enzyme was 0.31%, in a stoichiometry of 3.7 g-atoms/mol. Data from these studies reveal that GPx provided approximately 22% of total milk Se, but only 0.025% of the total protein.  相似文献   

9.
菠菜铁型超氧化物歧化酶的纯化及性质   总被引:6,自引:0,他引:6  
用聚丙烯胺梯度凝胶电泳法检测出菠菜SOD同工酶谱带中含3条Fe-SOD活性带,菠菜叶Fe-SOD粗提取液经硫酸铵分部沉淀,DEAE-纤维素-A52和SephadexG-100柱层析,纯化出单一的Fe-SOD活性带,纯化酶的分子量为42.6kD,亚基分子量为21kD。对金属元素的分析表明,该酶每分子含2.6个Fe原子,该酶紫外区最大吸收峰为278nm,等电点为4.6,氨基酸组成和其它来源的Fe-SO  相似文献   

10.
昆虫谷胱甘肽S-转移酶分离纯化的新方法   总被引:4,自引:0,他引:4  
谷胱甘肽S-转移酶(glutathioneS-transferases,GST)是一类具有多种生理功能的同功酶.从蜡螟幼虫(Galeriamelonela)的提取液中分离纯化谷胱甘肽S-转移酶的基本方法如下:首先将冷冻的蜡螟幼虫在磷酸缓冲液中匀桨,经10000g和100000g分级离心;取上清液通过QAE-SephadexA-25离子交换柱层析除去部分色素和杂蛋白;然后采用谷胱甘肽-琼脂糖凝胶亲和层析(GSH-QT4),四溴酚酞二磺酸盐-琼脂糖凝胶亲和层析(BSP-QT4),铜离子-琼脂糖凝胶螯合层析(Cu2+-QT4)及PBE94-Sepharose(PBE94)聚焦层析等层析技术进一步分离纯化.将上述方法获得的色谱峰以CDNB和DCNB为底物检测生物活性.具有生物活性部分的蛋白质,通过SDS-PAGE测定其分子量.实验结果表明,采用GSH-QT4亲和层析法获得的活性峰,在SDS-PAGE图谱上呈现出两条带,分子量为24kD,24.5kD左右;Cu2+-QT6螯合层析法分离的活性峰,呈现出一条带,分子量为24kD左右;PBE94-聚焦层析法分离获得三个活性峰:第一色谱峰,呈现出一条带,分子量为23kD左右  相似文献   

11.
从荞麦生化遗传以及器官衰老机理的研究目的出发,以苦荞叶片为材料,制备出活力较高的铜锌趋氧化物歧化酶。对其理化性质分析表明:该酶在259nm处有一特征吸收峰,分子量约为31kD,含有308个氨基酸残基,同工酶电泳结果显示三条活性带。  相似文献   

12.
为了研究钙蛋白酶系统在细胞发育及其它生理过程的功能 .应用 PCR从鼠钙蛋白酶抑制蛋白 ( calpastatin) c DNA中扩增了保守的具有功能的结构域 ( 40 4 bp) ,克隆于 p GEX- KG载体 .重组质粒 p GEX- Calp4在大肠杆菌中经 IPTG诱导可表达分子量约 4 5 k D融合蛋白 GST- Galp4 .诱导表达后的菌体超声裂解液经谷胱甘肽 - Sepharose4 B亲和层析柱得到纯化的 GST- Calp4融合蛋白 ,纯度达电泳纯 .纯化的 GST- Calp4免疫兔 8周后 ,抗血清的效价达 1∶ 64 .Western- blot分析表明制备的抗血清确实可以与肌细胞中分子量为 1 4 0 k D左右蛋白 (亦即完整 calpastatin)发生特异的免疫交叉反应 ,此表明实验获得了高特异性多克隆抗体  相似文献   

13.
The effects of the dichloroacetamide safener benoxacor on maize (Zea mays L. var Pioneer 3906) growth and glutathione S-transferase (GST) activity were evaluated, and GST isozymes induced by benoxacor were partially separated, characterized, and identified. Protection from metolachlor injury was closely correlated with GST activity, which was assayed with metolachlor as a substrate, as benoxacor concentration increased from 0.01 to 1 [mu]M. GST activity continued to increase at higher benoxacor concentrations (10 and 100 [mu]M), but no further protection was observed. Total GST activity with metolachlor as a substrate increased 2.6- to 3.8-fold in response to 1 [mu]M benoxacor treatment. Total GST activity from maize treated with or without 1 [mu]M benoxacor was resolved by fast protein liquid chromatography anion-exchange chromatography into four major activities, designated activity peaks A, B, C, and D in their order of elution. These GST activity peaks were enhanced to varying degrees by benoxacor. Activity peak B showed the least induction, whereas activity peak A was absent constitutively and thus highly induced by benoxacor. In contrast to earlier reports, there appear to be not one, but at least two, major constitutive isozymes (activity peaks A and D) having activity with metolachlor as substrate; there were at least three such isozymes in benoxacor-treated maize (activity peaks A, C, and D). The elution volumes of activity peaks A, B, C, and D were compared with those of partially purified maize GST I and GST II; also, the reactivity of polypeptides in these activity peaks with antisera to GST I or GST I/III (mixture) was evaluated. Evidence from these experiments indicated that activity peak B contained GST I, and activity peak C contained GST II and GST III. Activity peaks A and D contained unique GSTs that may play a major role in metolachlor metabolism and in the safening activity of benoxacor in maize. Isozymes present in activity peaks A and D were not detected in earlier reports because of the very low activity with the artificial substrate 1-chloro-2,4-dinitrobenzene. Immunoblotting experiments also indicated the presence of numerous unidentified GST subunits, including multiple subunits in chromatography fractions containing single peaks of GST activity; this is indicative of the likely complexity and diversity of the maize GST enzyme family.  相似文献   

14.
Cunninghamella elegans grown on Sabouraud dextrose broth had glutathione S-transferase (GST) activity. The enzyme was purified 172-fold from the cytosolic fraction (120000 x g) of the extract from a culture of C. elegans, using Q-Sepharose ion exchange chromatography and glutathione affinity chromatography. The GST showed activity against 1-chloro-2,4-dinitrobenzene, 1,2-dichloro-4-nitrobenzene, 4-nitrobenzyl chloride, and ethacrynic acid. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel filtration chromatography revealed that the native enzyme was homodimeric with a subunit of M(r) 27000. Comparison by Western blot analysis implied that this fungal GST had no relationship with mammalian alpha-, mu-, and pi-class GSTs, although it showed a small degree of cross-reactivity with a theta-class GST. The N-terminal amino acid sequence of the purified enzyme showed no significant homology with other known GSTs.  相似文献   

15.
Cyclic nucleotide phosphodiesterase from calf myometrium has been purified to a homogeneous state for the first time, as can be evidenced from polyacrylamide gel electrophoresis data. The purification procedure included ion-exchange chromatography on DEAE-cellulose, high pressure liquid chromatography on TSK 545 DEAE and gel filtration through Toyopearl HW-55. The molecular mass of the enzyme as determined by gel filtration and polyacrylamide gel electrophoresis is 110 kD. The purified enzyme hydrolyzes cAMP and cGMP with Km = 30 microM and 18 microM, respectively.  相似文献   

16.
K B Busch  H Fromm 《Plant physiology》1999,121(2):589-597
Succinic semialdehyde dehydrogenase (SSADH) is one of three enzymes constituting the gamma-aminobutyric acid shunt. We have cloned the cDNA for SSADH from Arabidopsis, which we designated SSADH1. SSADH1 cDNA encodes a protein of 528 amino acids (56 kD) with high similarity to SSADH from Escherichia coli and human (>59% identity). A sequence similar to a mitochondrial protease cleavage site is present 33 amino acids from the N terminus, indicating that the mature mitochondrial protein may contain 495 amino acids (53 kD). The native recombinant enzyme and the plant mitochondrial protein have a tetrameric molecular mass of 197 kD. Fractionation of plant mitochondria revealed its localization in the matrix. The purified recombinant enzyme showed maximal activity at pH 9.0 to 9.5, was specific for succinic semialdehyde (K(0.5) = 15 microM), and exclusively used NAD+ as a cofactor (Km = 130 +/- 77 microM). NADH was a competitive inhibitor with respect to NAD+ (Ki = 122 +/- 86 microM). AMP, ADP, and ATP inhibited the activity of SSADH (Ki = 2.5-8 mM). The mechanism of inhibition was competitive for AMP, noncompetitive for ATP, and mixed competitive for ADP with respect to NAD+. Plant SSADH may be responsive to mitochondrial energy charge and reducing potential in controlling metabolism of gamma-aminobutyric acid.  相似文献   

17.
A glutathione S-transferase (GST) from Lactuca sativa was purified to electrophoretic homogeneity approximately 403-fold with a 9.6% activity yield by DEAE-Sephacel and glutathione (GSH)-Sepharose column chromatography. The molecular weight of the enzyme was determined to be approximately 23,000 by SDS-polyacrylamide gel electrophoresis and 48,000 by gel chromatography, indicating a homodimeric structure. The activity of the enzyme was significantly inhibited by ShexylGSH and S-(2,4-dinitrophenyl) glutathione. The enzyme displayed activity towards 1-chloro-2,4-dinitrobenzene, a general GST substrate and high activities towards ethacrynic acid. It also exhibited glutathione peroxidase activity toward cumene hydroperoxide.  相似文献   

18.
An ionically unbound and thermostable polyphenol oxidase (PPO) was extracted from the leaf of Musa paradisiaca. The enzyme was purified 2.54-fold with a total yield of 9.5% by ammonium sulfate precipitation followed by Sephadex G-100 gel filtration chromatography. The purified enzyme exhibited a clear single band on native polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS) PAGE. It was found to be monomeric protein with molecular mass of about 40 kD. The zymographic study using crude extract as enzyme source showed a very clear band around 40 kD and a faint band at around 15 kD, which might be isozymes. The enzyme was optimally active at pH 7.0 and 50°C temperature. The enzyme was active in wide range of pH (4.0-9.0) and temperature (30-90°C). From the thermal inactivation studies in the range 60-75°C, the half-life (t(1/2)) values of the enzyme ranged from 17 to 77?min. The inactivation energy (Ea) value of PPO was estimated to be 91.3?kJ mol(-1). It showed higher specificity with catechol (K(m)?=?8?mM) as compared to 4-methylcatechol (K(m)?=?10?mM). Among metal ions and reagents tested, Cu(2+), Fe(2+), Hg(2+), Mn(2+), Ni(2+), protocatechuic acid, and ferrulic acid enhanced the enzyme activity, while K(+), Na(+), Co(2+), kojic acid, ascorbic acid, ethylenediamine tetraacetic acid (EDTA), sodium azide, β-mercaptoethanol, and L-cysteine inhibited the activity of the enzyme.  相似文献   

19.
A 23-kDa protein that was present at higher levels in diapausing 2nd instar larvae than in feeding 2nd instar larvae of Choristoneura fumiferana was purified, and polyclonal antibodies were raised against this protein. The antibodies were subsequently used to screen a cDNA library that was constructed using RNA from 2nd instar larvae. Eight identical cDNA clones were isolated. The cDNA clone had a 665-bp insert and the longest open reading frame coded for a 203-amino acid protein with a predicted molecular mass of 23.37 kDa. The deduced amino acid sequence showed high similarity to glutathione S-transferases and therefore, the cDNA clone was named C. fumiferana glutathione S-transferase (CfGST). Identity of CfGST was confirmed by using affinity-purification as well as enzyme activity assay. CfGST was closer in similarity to insect GST2 members than GST1 members. The apparent Vmax of the purified CfGST towards the substrates glutathione and 1-chloro-2,4-dinitrobenezene (CDNB) were similar. However, the enzyme had a three-fold higher affinity towards CDNB than glutathione. Analyses using Northern blot, immunoblot and immunocytochemistry demonstrated that the fat body was the major tissue where the enzyme was synthesized and stored. Higher levels of CfGST protein were present in diapausing 2nd instar larvae compared to feeding 2nd and 6th instar larvae, suggesting that besides detoxification CfGST may have other roles during insect development that are not readily apparent at present. The CfGST cDNA was expressed in a recombinant baculovirus expression system and an active enzyme was produced.  相似文献   

20.
The adenine nucleotide carrier from maize (Zea mays L. cv B 73) shoot mitochondria was solubilized with Triton X-100 and purified by sequential chromatography on hydroxyapatite and Matrex Gel Blue B in the presence of cardiolipin and asolectin. Sodium dodecyl sulfate-gel electrophoresis of the purified fraction showed a single polypeptide band with an apparent molecular mass of 32 kD. When reconstituted in liposomes, the adenine nucleotide carrier catalyzed a pyridoxal 5'-phosphate-sensitive ATP/ATP exchange. It was purified 168-fold with a recovery of 60% and a protein yield of 0.25% with respect to the mitochondrial extract. Among the various substrates and inhibitors tested, the reconstituted protein transported only ADP, ATP, GDP, and GTP, and was inhibited by atractyloside, bongkrekate, phenylisothiocianate, pyridoxal 5'-phosphate, and mersalyl (but not N-ethylmaleimide). Maximum initial velocity of the reconstituted ATP/ATP exchange was determined to be 2.2 mumol min-1 mg-1 protein at 25 degrees C. The half-saturation constants and the corresponding inhibition constants were 17 microM for ATP, 26 microM for ADP, 59 microM for GTP, and 125 microM for GDP. The activation energy of the ATP/ATP exchange was 48 kilojoule/mol between 0 and 15 degrees C, and 22 kilojoule/mol between 15 and 35 degrees C. Partial amino acid sequences showed that the purified protein was the product of the ANT-G1 gene sequenced previously (B. Bathgate, A. Baker, C.J. Leaver [1989] Eur J Biochem 183: 303-310).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号