首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Zhang C  Zhang J  Xie G  Wang L  Perc M 《PloS one》2011,6(10):e26724
We study the evolution of cooperation in the spatial prisoner's dilemma game where players are allowed to establish new interactions with others. By employing a simple coevolutionary rule entailing only two crucial parameters, we find that different selection criteria for the new interaction partners as well as their number vitally affect the outcome of the game. The resolution of the social dilemma is most probable if the selection favors more successful players and if their maximally attainable number is restricted. While the preferential selection of the best players promotes cooperation irrespective of game parametrization, the optimal number of new interactions depends somewhat on the temptation to defect. Our findings reveal that the "making of new friends" may be an important activity for the successful evolution of cooperation, but also that partners must be selected carefully and their number limited.  相似文献   

2.
The current study examined the economics of cooperation in controlled-payoffgames by using captive blue jays, Cyanocitta cristata. Thisinvestigation used a special feeding apparatus to test for thestability of cooperative choice in a series of iterated games.The jays experienced experimentally determined game theoreticalpayoff matrices, which determined the distribution of food tothemselves and their opponent, depending on their decision tocooperate or defect. The experiment tested four game matrices,called the cooperate only, defect only, prisoner's dilemma,and opponent control treatments. This study found little cooperationin the defect only and prisoner's dilemma treatments. Cooperationoccurred significantly more often in the opponent control treatment.These findings suggest that the jays attend to short-term consequences;they do not cooperate in the absence of an immediate benefit(defect only), even if a long-term benefit may exist (prisoner'sdilemma). The opponent control treatment suggests that cooperationcan occur when an individual's benefits depend completely onthe actions of others; therefore, generosity is cheap. Thisstudy, therefore, agrees with recent studies in proposing alternativemodels of cooperation.  相似文献   

3.
Social dilemmas and the evolutionary conundrum of cooperation are traditionally studied through various kinds of game theoretical models such as the prisoner's dilemma, public goods games, snowdrift games or by-product mutualism. All of them exemplify situations which are characterized by different degrees of conflicting interests between the individuals and the community. In groups of interacting individuals, cooperators produce a common good benefitting the entire group at some cost to themselves, whereas defectors attempt to exploit the resource by avoiding the costly contributions. Based on synergistic or discounted accumulation of cooperative benefits a unifying theoretical framework was recently introduced that encompasses all games that have traditionally been studied separately (Hauert, Michor, Nowak, Doebeli, 2005. Synergy and discounting of cooperation in social dilemmas. J. Theor. Biol., in press.). Within this framework we investigate the effects of spatial structure with limited local interactions on the evolutionary fate of cooperators and defectors. The quantitative effects of space turn out to be quite sensitive to the underlying microscopic update mechanisms but, more general, we demonstrate that in prisoner's dilemma type interactions spatial structure benefits cooperation-although the parameter range is quite limited-whereas in snowdrift type interactions spatial structure may be beneficial too, but often turns out to be detrimental to cooperation.  相似文献   

4.
Tanimoto J 《Bio Systems》2008,92(1):82-90
This paper reports an intelligent agent equipped with two-layer finite state machines (FSMs) that can communicate by turning lighting on and off, leading to social cooperation that solves the dilemma situation, modeled by a one-shot 2x2 game. This communication between two gaming agents can be observed in hero- and leader-type dilemma games, where alternating reciprocity, repeating cooperation (C)-defeat (D) after D-C, is the equal pareto optimum instead of a sequence of mutual cooperation that is the equal pareto optimum for a prisoner's dilemma (PD) game.  相似文献   

5.
Most of the work in evolutionary game theory starts with a model of a social situation that gives rise to a particular payoff matrix and analyses how behaviour evolves through natural selection. Here, we invert this approach and ask, given a model of how individuals behave, how the payoff matrix will evolve through natural selection. In particular, we ask whether a prisoner's dilemma game is stable against invasions by mutant genotypes that alter the payoffs. To answer this question, we develop a two-tiered framework with goal-oriented dynamics at the behavioural time scale and a diploid population genetic model at the evolutionary time scale. Our results are two-fold: first, we show that the prisoner's dilemma is subject to invasions by mutants that provide incentives for cooperation to their partners, and that the resulting game is a coordination game similar to the hawk-dove game. Second, we find that for a large class of mutants and symmetric games, a stable genetic polymorphism will exist in the locus determining the payoff matrix, resulting in a complex pattern of behavioural diversity in the population. Our results highlight the importance of considering the evolution of payoff matrices to understand the evolution of animal social systems.  相似文献   

6.
Understanding the evolutionary origin and persistence of cooperative behavior is a fundamental biological problem. The standard "prisoner's dilemma," which is the most widely adopted framework for studying the evolution of cooperation through reciprocal altruism between unrelated individuals, does not allow for varying degrees of cooperation. Here we study the continuous iterated prisoner's dilemma, in which cooperative investments can vary continuously in each round. This game has been previously considered for a class of reactive strategies in which current investments are based on the partner's previous investment. In the standard iterated prisoner's dilemma, such strategies are inferior to strategies that take into account both players' previous moves, as is exemplified by the evolutionary dominance of "Pavlov" over "tit for tat." Consequently, we extend the analysis of the continuous prisoner's dilemma to a class of strategies in which current investments depend on previous payoffs and, hence, on both players' previous investments. We show, both analytically and by simulation, that payoff-based strategies, which embody the intuitively appealing idea that individuals invest more in cooperative interactions when they profit from these interactions, provide a natural explanation for the gradual evolution of cooperation from an initially noncooperative state and for the maintenance of cooperation thereafter.  相似文献   

7.
Efficiency in evolutionary games: Darwin, Nash and the secret handshake   总被引:5,自引:0,他引:5  
This paper considers any evolutionary game possessing several evolutionarily stable strategies, or ESSs, with differing payoffs. A mutant is introduced which will "destroy" any ESS which yields a lower payoff than another. This mutant possesses a costless signal and also conditions on the presence of this signal in each opponent. The mutant then can protect itself against a population playing an inefficient ESS by matching this against these non-signalers. At the same time, the mutants can achieve the more efficient ESS against the signaling mutant population itself. This construction is illustrated by means of the simplest possible example, a co-ordination game. The one-shot prisoner's dilemma is used to illustrate how a superior outcome which is not induced by an ESS may be temporarily but not permanently attained. In the case of the repeated prisoner's dilemma, the present argument seems to render the "evolution of co-operation" ultimately inevitable.  相似文献   

8.
Liu Y  Chen X  Zhang L  Wang L  Perc M 《PloS one》2012,7(2):e30689
Holding on to one's strategy is natural and common if the later warrants success and satisfaction. This goes against widespread simulation practices of evolutionary games, where players frequently consider changing their strategy even though their payoffs may be marginally different than those of the other players. Inspired by this observation, we introduce an aspiration-based win-stay-lose-learn strategy updating rule into the spatial prisoner's dilemma game. The rule is simple and intuitive, foreseeing strategy changes only by dissatisfied players, who then attempt to adopt the strategy of one of their nearest neighbors, while the strategies of satisfied players are not subject to change. We find that the proposed win-stay-lose-learn rule promotes the evolution of cooperation, and it does so very robustly and independently of the initial conditions. In fact, we show that even a minute initial fraction of cooperators may be sufficient to eventually secure a highly cooperative final state. In addition to extensive simulation results that support our conclusions, we also present results obtained by means of the pair approximation of the studied game. Our findings continue the success story of related win-stay strategy updating rules, and by doing so reveal new ways of resolving the prisoner's dilemma.  相似文献   

9.
The repeated prisoner's dilemma game has been widely used in analyses of the evolution of reciprocal altruism. Recently it was shown that no pure strategy could be evolutionarily stable in the repeated prisoner's dilemma. Here I show that if there is always some probability that individuals will make a mistake, then a pure strategy can be evolutionarily stable provided that it is "strong perfect equilibria" against itself. To be a strong perfect equilibrium against itself, a strategy must be the best response to itself after every possible sequence of behavior. I show that both unconditional defection and a modified version of tit-for-tat have this property.  相似文献   

10.
Recent studies have shown that constraints on available resources may play an important role in the evolution of cooperation, especially when individuals do not posses the capacity to recognize other individuals, memory or other developed abilities, as it is the case of most unicellular organisms, algae or even plants. We analyze the evolution of cooperation in the case of a limiting resource, which is necessary for reproduction and survival. We show that, if the strategies determine a prisoner's dilemma, the outcome of the interactions may be modified by the limitation of resources allowing cooperators to invade the entire population. Analytic expressions for the region of cooperation are provided. Furthermore we derive expressions for the connection between fitness, as understood in evolutionary game theory, and resource exchanges, which may be of help to link evolutionary game theoretical results with resource based models.  相似文献   

11.
In the standard model for reciprocal collaboration, the repeated prisoner's dilemma (PD), it has proved difficult to establish collaboration in larger groups, necessitating the introduction of additional mechanisms such as reputation or assortedness. The problem is corroborated because current multiperson PDs model simultaneous player action, known as a common goods situation, whereas multiperson collaboration could be easier to obtain in a PD with alternate player action, a private goods situation. Here we present such a game, called a dependency game, and show that stable collaboration can be obtained in a 255 player simulation if only players are allowed to remember three previous benefactors, so they can play advanced tit-for-tat. Furthermore, we show that such a freely collaborating population is threatened by assorted strategies, which define groups that parasitize on independent tit-for-tat players. By excluding others, these groups engage in indirect reciprocal behaviour. Our model therefore combines many hitherto separate collaboration-enhancing concepts into one game, and suggests that group formation and collaboration are two separate social phenomena.  相似文献   

12.
Pairs of unrelated individuals face a prisoner's dilemma if cooperation is the best mutual outcome, but each player does best to defect regardless of his partner's behaviour. Although mutual defection is the only evolutionarily stable strategy in one-shot games, cooperative solutions based on reciprocity can emerge in iterated games. Among the most prominent theoretical solutions are the so-called bookkeeping strategies, such as tit-for-tat, where individuals copy their partner's behaviour in the previous round. However, the lack of empirical data conforming to predicted strategies has prompted the suggestion that the iterated prisoner's dilemma (IPD) is neither a useful nor realistic basis for investigating cooperation. Here, we discuss several recent studies where authors have used the IPD framework to interpret their data. We evaluate the validity of their approach and highlight the diversity of proposed solutions. Strategies based on precise accounting are relatively uncommon, perhaps because the full set of assumptions of the IPD model are rarely satisfied. Instead, animals use a diverse array of strategies that apparently promote cooperation, despite the temptation to cheat. These include both positive and negative reciprocity, as well as long-term mutual investments based on 'friendships'. Although there are various gaps in these studies that remain to be filled, we argue that in most cases, individuals could theoretically benefit from cheating and that cooperation cannot therefore be explained with the concept of positive pseudo-reciprocity. We suggest that by incorporating empirical data into the theoretical framework, we may gain fundamental new insights into the evolution of mutual reciprocal investment in nature.  相似文献   

13.
The evolution of reciprocity in sizable groups   总被引:9,自引:1,他引:8  
Recently, several authors have investigated the evolution of reciprocal altruism using the repeated prisoner's dilemma game. These models suggest that natural selection is likely to favor behavioral strategies leading to reciprocal cooperation when pairs of individuals interact repeatedly in potentially cooperative situations. Using the repeated n-person prisoner's dilemma game, we consider whether reciprocal altruism is also likely to evolve when social interactions involve more individuals. We show that the conditions that allow the evolution of reciprocal cooperation become extremely restrictive as group size increases.  相似文献   

14.
In spatial evolutionary games the fitness of each individual is traditionally determined by the payoffs it obtains upon playing the game with its neighbors. Since defection yields the highest individual benefits, the outlook for cooperators is gloomy. While network reciprocity promotes collaborative efforts, chances of averting the impending social decline are slim if the temptation to defect is strong. It is, therefore, of interest to identify viable mechanisms that provide additional support for the evolution of cooperation. Inspired by the fact that the environment may be just as important as inheritance for individual development, we introduce a simple switch that allows a player to either keep its original payoff or use the average payoff of all its neighbors. Depending on which payoff is higher, the influence of either option can be tuned by means of a single parameter. We show that, in general, taking into account the environment promotes cooperation. Yet coveting the fitness of one's neighbors too strongly is not optimal. In fact, cooperation thrives best only if the influence of payoffs obtained in the traditional way is equal to that of the average payoff of the neighborhood. We present results for the prisoner's dilemma and the snowdrift game, for different levels of uncertainty governing the strategy adoption process, and for different neighborhood sizes. Our approach outlines a viable route to increased levels of cooperative behavior in structured populations, but one that requires a thoughtful implementation.  相似文献   

15.
One of the most direct human mechanisms of promoting cooperation is rewarding it. We study the effect of sharing a reward among cooperators in the most stringent form of social dilemma, namely the prisoner's dilemma (PD). Specifically, for a group of players that collect payoffs by playing a pairwise PD game with their partners, we consider an external entity that distributes a fixed reward equally among all cooperators. Thus, individuals confront a new dilemma: on the one hand, they may be inclined to choose the shared reward despite the possibility of being exploited by defectors; on the other hand, if too many players do that, cooperators will obtain a poor reward and defectors will outperform them. By appropriately tuning the amount to be shared a vast variety of scenarios arises, including the traditional ones in the study of cooperation as well as more complex situations where unexpected behavior can occur. We provide a complete classification of the equilibria of the n-player game as well as of its evolutionary dynamics.  相似文献   

16.
The evolution of cooperation is an enduring conundrum in biology and the social sciences. Two social dilemmas, the prisoner's dilemma and the snowdrift game have emerged as the most promising mathematical metaphors to study cooperation. Spatial structure with limited local interactions has long been identified as a potent promoter of cooperation in the prisoner's dilemma but in the spatial snowdrift game, space may actually enhance or inhibit cooperation. Here we investigate and link the microscopic interaction between individuals to the characteristics of the emerging macroscopic patterns generated by the spatial invasion process of cooperators in a world of defectors. In our simulations, individuals are located on a square lattice with Moore neighborhood and update their strategies by probabilistically imitating the strategies of better performing neighbors. Under sufficiently benign conditions, cooperators can survive in both games. After rapid local equilibration, cooperators expand quadratically until global saturation is reached. Under favorable conditions, cooperators expand as a large contiguous cluster in both games with minor differences concerning the shape of embedded defectors. Under less favorable conditions, however, distinct differences arise. In the prisoner's dilemma, cooperators break up into isolated, compact clusters. The compact clustering reduces exploitation and leads to positive assortment, such that cooperators interact more frequently with other cooperators than with defectors. In contrast, in the snowdrift game, cooperators form small, dendritic clusters, which results in negative assortment and cooperators interact more frequently with defectors than with other cooperators. In order to characterize and quantify the emerging spatial patterns, we introduce a measure for the cluster shape and demonstrate that the macroscopic patterns can be used to determine the characteristics of the underlying microscopic interactions.  相似文献   

17.
By assuming the random intensity of selection, the emergence of cooperation on a network is studied. We constructed an evolutionary model in which an individual plays the prisoner's dilemma game, and updates both its strategy and neighbor connections in response to its relative success in the game. The constant (strong or weak) and random intensities of selection are compared. The random intensities of selection are introduced to realize complex environmental effects on the fitness of each individual. Breaking the links on the network is realized according to fixed global parameters. We found that cooperative clusters emerged when cooperators unilaterally broke the link with defectors. The emergent networks under these conditions had a high clustering coefficient and shared some properties with a scale-free network. In addition, after a cooperator with high fitness emerged circumstantially under the random intensity of selection, we observed that the cooperative linkages emerged and spread rapidly through the network. This situation frequently occurred because of the stochastic effect on the fitness of cooperators. Thus, the origin of such phenomena is qualitatively different from the Lotka-Volterra system in which deterministic processes control the system. Cooperative linkages spread more when defectors maintained many links with cooperators.  相似文献   

18.
Conventional escapes from the paradox that noncooperation between two organisms may be rational, even when cooperation would yield a higher reward to each, are based on the mechanism of reciprocity; but an analytical model of foraging among oviposition sites reveals a more immediate rationale, namely, equivalence of selfishness and altruism. The resulting game is unconditionally the prisoner's dilemma if the players have perfect recognition; however, in the absence thereof and for three different parameter regimes, it yields either the prisoner's dilemma, or two evolutionarily stable strategies, or a unique cooperative ESS. Thus unrecognition can favor cooperation; and environments can exist in which cooperation persists, or even invades, without reciprocity. The results suggest that different mechanisms for cooperation may operate at different levels of neural complexity.  相似文献   

19.
Summary In theoretical and empirical studies of the evolution of cooperation, the tit-for-tat strategy (i.e. cooperate unless your partner did not cooperate in the previous interaction) is widely considered to be of central importance. Nevertheless, surprisingly little is known about the conditions in which tit-for-tat appears and disappears across generations in a population of interacting individuals. Here, we apply a newly developed classifier-system model (EvA) in addressing this issue when the key features of interactions are caricatured using the iterated prisoner's dilemma game. Our simple representation of behavioural strategies as algorithms composed of two interacting rules allowed us to determine conditions in which tit-for-tat can replace noncooperative strategies and vice versa. Using direct game-theoretic analysis and simulations with the EvA model, we determined that no strategy is evolutionarily stable, but larger population sizes and longer sequences of interactions between individuals can yield transient dominance by tit-for-tat. Genetic drift among behaviourally equivalent strategies is the key mechanism underlying this dominance. Our analysis suggests that tit-for-tat could be important in nature for cognitively simple organisms of limited memory capacity, in strongly kin-selected or group-selected populations, when interaction sequences between individuals are relatively short, in moderate-sized populations of widely interacting individuals and when defectors appear in the population with moderate frequency.  相似文献   

20.
Zhang F  Hui C 《PloS one》2011,6(11):e27523
Unveiling the origin and forms of cooperation in nature poses profound challenges in evolutionary ecology. The prisoner's dilemma game is an important metaphor for studying the evolution of cooperation. We here classified potential mechanisms for cooperation evolution into schemes of frequency- and density-dependent selection, and focused on the density-dependent selection in the ecological prisoner's dilemma games. We found that, although assortative encounter is still the necessary condition in ecological games for cooperation evolution, a harsh environment, indicated by a high mortality, can foster the invasion of cooperation. The Hamilton rule provides a fundamental condition for the evolution of cooperation by ensuring an enhanced relatedness between players in low-density populations. Incorporating ecological dynamics into evolutionary games opens up a much wider window for the evolution of cooperation, and exhibits a variety of complex behaviors of dynamics, such as limit and heteroclinic cycles. An alternative evolutionary, or rather succession, sequence was proposed that cooperation first appears in harsh environments, followed by the invasion of defection, which leads to a common catastrophe. The rise of cooperation (and altruism), thus, could be much easier in the density-dependent ecological games than in the classic frequency-dependent evolutionary games.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号