首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Hydroxyurea inhibited synthesis of certain deoxyribonucleic acid (DNA) precursors and causes the cessation of DNA synthesis. It did not cause induction of lambda. Superinfection of an irradiated lysogen with lambdaind- could prevent induction, but the percentage of cells protected decreased as the time between irradiation and superinfection increased. The presence of hydroxyurea did not increase the time during which cells could be rescued by superinfection. The accumulation of DNA precursors after ultraviolet or ionizing radiation was not necessary for the induction of lambda prophage to occur.  相似文献   

3.
4.
5.
The effect of the deoxyribonucleic acid (DNA) gyrase inhibitors coumermycin A1, novobiocin, and oxolinic acid on ribonucleic acid (RNA) synthesis in Escherichia coli was studied in vivo and in vitro. Preferential inhibition of ribosomal RNA (rRNA) synthesis was observed. No effect of oxolinic acid and coumermycin on rRNA synthesis was seen in mutants having a DNA gyrase which is resistant to these inhibitors. In a temperature-sensitive DNA gyrase mutant rRNA synthesis was decreased at nonpermissive temperatures. Thus, a functional DNA gyrase is required for rRNA synthesis. Purified DNA gyrase had no effect on rRNA synthesis in a purified system. However, DNA gyrase does show preferential stimulation of rRNA synthesis in a system supplemented with other proteins. Apparently, DNA gyrase stimulation of rRNA synthesis requires another protein.  相似文献   

6.
7.
8.
9.
The dnaA and dnaC genes are thought to code for two proteins required for the initiation of chromosomal deoxyribonucleic acid replication in Escherichia coli. When a strain carrying a mutation in either of these genes is shifted from a permissive to a restrictive temperature, chromosome replication ceases after a period of residual synthesis. When the strains are reincubated at the permissive temperature, replication again resumes after a short lag. This reinitiation does not require either protein synthesis (as measured by resistance to chloramphenicol) or ribonucleic acid synthesis (as measured by resistance to rifampin). Thus, if there is a requirement for the synthesis of a specific ribonucleic acid to initiate deoxyribonucleic acid replication, this ribonucleic acid can be synthesized prior to the time of initiation and is relatively stable. Furthermore, the synthesis of this hypothetical ribonucleic acid does not require either the dnaA of dnaC gene products. The buildup at the restrictive temperature of the potential to reinitiate deoxyribonucleic acid synthesis at the permissive temperature shows rather complex kinetics the buildup roughly parallels the rate of mass increase of the culture for at least the first mass doubling at the restrictive temperature. At later times there appears to be a gradual loss of initiation potential despite a continued increase in mass. Under optimal conditions the increase in initiation potential can equal, but not exceed, the increase in cell division at the restrictive temperature. These results are most easily interpreted according to models that postulate a relationship between the initiation of deoxyribonucleic acid synthesis and the processes leading to cell division.  相似文献   

10.
11.
Inhibition of deoxyribonucleic acid (DNA) synthesis in Escherichia coli by chemical inhibitors or by shifting cultures of temperature-sensitive elongation (dnaE and dnaB) or initiation (dnaA) mutants to nonpermissive conditions led to greatly increased synthesis of the enzyme ribonucleoside diphosphate reductase, which catalyzes the first reaction unique to the pathway leading to DNA replication. In contrast to the Gudas and Pardee proposed model for control of the synthesis of DNA repair enzymes, in which both DNA inhibition and DNA degradation are involved, DNA synthesis inhibition in recA, recB, recC, or lex strains results in increased synthesis of ribonucleotide reductase, which suggests that DNA degradation is not required. We propose that inhibition of DNA synthesis causes a cell to accumulate an unknown compound that stimulates the initiation of a new round of DNA replication, and that this same signal is used to induce ribonucleotide reductase synthesis.  相似文献   

12.
13.
Scission of Escherichia coli deoxyribonucleic acid in alkali   总被引:6,自引:0,他引:6  
W E Hill  W L Fangman 《Biochemistry》1973,12(9):1772-1774
  相似文献   

14.
15.
16.
1. During inhibition of Escherichia coli by chlortetracycline, protein synthesis was sharply reduced whereas synthesis of RNA was much less affected. 2. Most of the RNA made during inhibition was contained in particles that sedimented more slowly than ribosomes. 3. The particles were more sensitive than ribosomes to degradation by ultrasonic vibrations and ribonuclease and differed from ribosomes in their behaviour during chromatography on DEAE-cellulose. 4. The particles contained two species of RNA that differed slightly in their sedimentation properties from the two RNA components found in ribosomes. 5. The nature of the events taking place during inhibition by chlortetracycline is discussed with particular reference to the status of the particles that accumulate and to the mode of action of this and other antibiotics.  相似文献   

17.
The biosynthesis of ribosomal ribonucleic acid (rRNA) In wild-type Neurospora crassa growing at 25 degrees C was investigated by continuous-labeling and pulsechase experiments using [5-3H]uridine. The results of these experiments suggest the following precursor-product relationships: the first RNA molecule to be synthesized in significant quantities is the 2.4 X 10(6)-dalton (2.4-Mdal) ribosomal precursor RNA. This RNA is cleaved to produce two species of RNA with weights of 0.7 and 1.4-Mdal. The former is the mature 17S rRNA of the 37S ribosomal subunit. The 1.4-Mdal RNA is subsequently cleaved to produce the mature 1.27-Mdal (25S) and 61,000-dalton (5.8S) rRNA's of the 60S ribosomal subunit. In the maturation process, approximately 15 to 20% of the 2.4-Mdal ribosomal precursor rRNA molecule is lost. As in other eukaryotes that have been examined, 5S rRNA is not derived from this precursor molecule.  相似文献   

18.
Thiolactomycin, an antibiotic with the structure of (4S)-(2E,5E)-2,4,6-trimethyl-3-hydroxy-2,5,7-octatriene-4-thiolide, inhibits the incorporation of [14C]acetate into cellular fatty acids of Escherichia coli. This antibiotic inhibits the fatty acid synthetase system of E. coli. However, the fatty acid synthetases from Saccharomyces cerevisiae, Candida albicans and rat liver are insensitive to thiolactomycin. This effect may account for the antibacterial activity of thiolactomycin and for its low toxicity in animals.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号