首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method operated in the positive/negative electrospray ionization (ESI) switching mode has been developed and validated for the simultaneous determination of asperosaponin VI and its active metabolite hederagenin in rat plasma. After addition of internal standards diazepam (for asperosaponin VI) and glycyrrhetic acid (for hederagenin), the plasma sample was deproteinized with acetonitrile, and separated on a reversed phase C18 column with a mobile phase of methanol (solvent A)-0.05% glacial acetic acid containing 10 mM ammonium acetate and 30 μM sodium acetate (solvent B) using gradient elution. The detection of target compounds was done in multiple reaction monitoring (MRM) mode using a tandem mass spectrometry equipped with positive/negative ion-switching ESI source. At the first segment, the MRM detection was operated in the positive ESI mode using the transitions of m/z 951.5 ([M+Na](+))→347.1 for asperosaponin VI and m/z 285.1 ([M+H](+))→193.1 for diazepam for 4 min, then switched to the negative ESI mode using the transitions of m/z 471.3 ([M-H](-))→471.3 for hederagenin and m/z 469.4 ([M-H](-))→425.4 for glycyrrhetic acid, respectively. The sodiated molecular ion [M+Na](+) at m/z 951.5 was selected as the precursor ion for asperosaponin VI, since it provided better sensitivity compared to the deprotonated and protonated molecular ions. Sodium acetate was added to the mobile phase to make sure that abundant amount of the sodiated molecular ion of asperosaponin VI could be produced, and more stable and intensive mass response of the product ion could be obtained. For the detection of hederagenin, since all of the mass responses of the fragment ions were very weak, the deprotonated molecular ion [M-H](-)m/z 471.3 was employed as both the precursor ion and the product ion. But the collision energy was still used for the MRM, in order to eliminate the influences induced by the interference substances from the rat plasma. The validated method was successfully applied to study the pharmacokinetics of asperosaponin VI and its active metabolite hederagenin in rat plasma after oral administration of asperosaponin VI at a dose of 90 mg/kg.  相似文献   

2.
Prostaglandin (PG) D(2) ethanolamide (prostamide D(2)) was reduced to 9alpha,11beta-PGF(2) ethanolamide (9alpha,11beta-prostamide F(2)) by PGF synthase, which also catalyzes the reduction of PGH(2) and PGD(2) to PGF(2alpha) and 9alpha,11beta-PGF(2), respectively. These enzyme activities were measured by a new method, the liquid chromatographic-electrospray ionization-mass spectrometry (LC/ESI/MS) technique, which could simultaneously detect the substrate and all products. PGF(2alpha), 9alpha,11beta-PGF(2), PGD(2), PGH(2), 9alpha,11beta-prostamide F(2), and prostamide D(2) were separated on a TSKgel ODS 80Ts column, ionized by electrospray, and detected in the negative mode. Selected ion monitoring (SIM) of m/z 353 ([M-H](-)), 353 ([M-H](-)), 351 ([M-H](-)), 333 ([M-H-H(2)O](-)), 456 ([M+59](-)), and m/z 358 ([M-37](-)) was used for quantifying PGF(2alpha), 9alpha,11beta-PGF(2), PGD(2), PGH(2), 9alpha,11beta-prostamide F(2), and prostamide D(2), respectively. The detection limit for PGF(2alpha) and 9alpha,11beta-PGF(2) was 0.01pmol; that for PGH(2) and PGD(2), 0.1pmol; and that for prostamide D(2) and 9alpha,11beta-prostamide F(2), 0.5 and 0.03pmol, respectively. The LC/ESI/MS technique for measuring PGF synthase activity showed higher sensitivity than other methods. Using this method, we found that Bimatoprost, the ethyl amide analog of 17-phenyl-trinor PGF(2alpha) and an anti-glaucoma agent, inhibited all three reductase activities of PGF synthase when used at a low concentration. These results suggest that Bimatoprost also behaves as a potent PGF synthase inhibitor in addition to having prostamide-like activity.  相似文献   

3.
A new and sensitive high performance liquid chromatography (HPLC) separation procedure coupled with tandem mass spectroscopy (MS and MS(2)) detection was developed to identify for the first time the oxidation products of 5β-scymnol [(24R)-(+)-5β-cholestan-3α,7α,12α,24,26,27-hexol] catalysed by bacterial hydroxysteroid dehydrogenase (HSD) reactions in vitro. The authentic scymnol (MW 468) standard yielded a protonated molecular ion [M+H](+) at m/z 469 Da, and higher mass adduct ions attributed to [M+NH(4)](+) (m/z 486), [M+H+CH(3)OH](+) (m/z 501) and [M+H+CH(3)COOH](+) (m/z 530). (24R)-(+)-5β-Cholestan-3-one-7α,12α,24,26,27-pentol (3-oxoscymnol, m/z 467 Da, relative retention time (RRT)=0.89) was identified as the principle molecular species of scymnol in the reaction with 3α-HSD pure enzyme. [S](0.5) for the reaction of 3α-HSD with scymnol as substrate was 0.7292 mM. (24R)-(+)-5β-cholestan-7-one-3α,12α,24,26,27-pentol (7-oxoscymnol, m/z 467 Da, RRT=0.79) and (24R)-(+)-5β-cholestan-12-one-3α,7α,24,26,27-pentol (12-oxoscymnol, m/z 467 Da, RRT=0.81) were similarly identified as principle molecular species in the respective 7α-HSD and 12α-HSD reactions. Polarity of the oxoscymnol species was established as 7-oxoscymnol>12-oxoscymnol>3-oxoscymnol>scymnol (in order from most polar to least polar). Confirmation that 5β-scymnol is an oxidative substrate for steroid-metabolising enzymes was made possible by the use of sophisticated liquid chromatography-mass spectrometry (LC-MS) techniques that will likely provide the basis for further exploration of scymnol as a therapeutic compound.  相似文献   

4.
Chromatophores isolated from cells of Rhodobacter sphaeroides exposed to hypertonic solutions were enriched in cardiolipin (CL). Because CL levels are raised by increasing the incubation time of R. sphaeroides in hypertonic solutions, it was possible to isolate chromatophores containing different CL amounts by starting from cells incubated in hypertonic solutions for different times. The functionality and stability of the photosynthetic proteins in chromatophore membranes having different CL levels were investigated. Reaction center (RC) stabilization with respect to thermal denaturation and photoxidative damage was observed by flash photolysis and fluorescence emission experiments in CL-enriched chromatophores. To gain detailed information about the structures of endogenous CLs, this lipid family was isolated and purified by preparative TLC, and characterized by high-resolution mass spectrometry. We conclude that osmotic shock can be used as a tool to modulate CL levels in isolated chromatophores and to change the composition of the RC lipid annulus, avoiding membrane artifacts introduced by the use of detergents.  相似文献   

5.
We have utilized the LKB Ultrofilm method of autoradiography to anatomically localize putative M1 and M2 muscarinic receptor subtypes in human stellate ganglia. Ten micron sections were labeled in vitro with either 1 nM of the classical antagonist [3H](-)quinuclidinyl benzilate ([3H](-)QNB) or 20 nM of the non-classical antagonist [3H]pirenzepine ([3H]PZ), using 1 microM atropine sulfate to define non-specific binding for both ligands. Our results indicate that [3H](-)QNB and [3H]PZ binding sites are distributed within the principal ganglion cells and nerve bundles.  相似文献   

6.
The association of folates with the prevention of neural tube defects and reduced risk of other chronic diseases has stimulated interest in the development of techniques for the study of their bioavailability in humans. Stable isotope protocols differentiate between oral and/or intravenous test doses of folate and natural levels of folate already present in the body. An liquid chromatography/mass spectrometry (LC/MS) procedure is described that has been validated for the determination of [13C]5-methyltetrahydropteroyl monoglutamic acid ([13C]5-CH3H4PteGlu) in plasma and urine, following oral dosing of volunteers with different labeled folates. Folate binding protein affinity columns were used for sample purification prior to LC/MS determination. Chromatographic separation was achieved using a Superspher 100RP18 (4 microm) column and mobile phase of 0.1 mol/L acetic acid (pH 3.3):acetonitrile (90:10; 250 microL/min). Selected ion monitoring was conducted on the [M-H](-) ion: m/z 458 and 459 for analyzing 5-CH3H4PteGlu; m/z 464 [M+6-H](-) to determine 5-CH3H4PteGlu derived from the label dose; m/z 444 for analysis of 2H4PteGlu internal standard, and m/z 446 and 478 to confirm that there was no direct absorption of unmetabolized compounds. Calibration was linear over the range 0-9 x 10(-9) mol/L; the limits of detection and quantification were 0.2 x 10(-9) and 0.55 x 10(-9) mol/L, respectively. The mean coefficient of variation of the ratios (m/z 463/458) was 7.4%. The method has potential applications for other key folates involved in one-carbon metabolism.  相似文献   

7.
Nitrogenase-mediated H(2) accumulation of Rhodobacter sphaeroides under photoheterotrophic conditions is reduced directly by the hydrogenase activity catalyzing H(2) uptake and indirectly by energy-demanding metabolic processes such as poly-beta-hydroxybutyrate (PHB) formation. H(2) accumulation of R. sphaeroides was examined during cell growth under illumination of 15, 7, and 3 W/m(2). Mutations in either hupSL (H(2)-uptake hydrogenase) or phbC (PHB synthase) had no effect on nitrogenase activity. The nitrogenase activity of R. sphaeroides grown at 15 W/m(2), however, was 70% higher than that of cells grown at 3 W/m(2), while the H(2)-uptake hydrogenase activity was approximately 3-fold higher in the same comparison. Accordingly, H(2) uptake by hydrogenase, monitored by measuring the difference in H(2) accumulation between a hupSL-deletion mutant and the corresponding parental strain, appeared to reach a maximum level as illumination was increased to 15 W/m(2). On the other hand, the surplus energy due to lack of PHB formation led to a fixed increase in H(2) accumulation independent of light intensity, reflecting the fact that the cellular PHB content was not changed significantly depending on light intensity. Therefore, H(2) uptake by hydrogenase should be suppressed to achieve higher H(2) accumulation of R. sphaeroides, especially at 15 W/m(2).  相似文献   

8.
Temperature-sensitive mutants of Salmonella typhimurium that are defective in the biosynthesis of 3-deoxy-D-manno-octulosonate are known to accumulate disaccharide precursor(s) of lipid A at 42 degrees C (Rick, P. D., Fung, L. W.-M., Ho, C., and Osborn, M. J. (1977) J. Biol. Chem. 252, 4904-4912). We have devised new methods for purifying this material by chromatography on DEAE-cellulose and silicic acid columns and have fractionated it into eight related anionic components that fall into four sets, as judged by their charge. Substances IA and IB have an apparent net charge of -1, IIA and IIB of -2, IIIA and IIIB of -3, and IVA and IVB of -4. Negative ion fast atom bombardment mass spectrometry reveals that the simplest component is IVA [( M - H]- at m/z 1404). Compound IVA is also the most abundant, representing 30-50% of the accumulated lipids after 3 h at 42 degrees C. Structural studies of IVA, including NMR spectroscopy described in the accompanying paper, reveal that it consists of O-(2-amino-2-deoxy-beta-D-glucopyranosyl)-(1----6)-2-amino-2-deoxy-alpha - D-glucose, acylated at positions 2, 3, 2', and 3' with beta-hydroxymyristoyl moieties and bearing phosphate groups at positions 1 and 4'. Compound IIIA ([M - H]- at m/z 1527) contains an additional phosphoethanolamine residue, while IIA ([M - H]- m/z 1535) bears an aminodeoxypentose substituent, presumably 4-amino-4-deoxy-L-arabinose. Compound IA ([M - H]- at m/z 1658) bears both a phosphoethanolamine and an aminodeoxypentose. The compounds of the less abundant B series are further derivatized with an ester-linked palmitoyl moiety. Our results demonstrate that these precursors are far more heterogeneous than previously suspected.  相似文献   

9.
Fast atom bombardment (FAB) and collisional activation dissociation (CAD) mass-analysed ion kinetic energy (MIKE) spectra have confirmed the structures of retinyl phosphate (Ret-P), retinyl phosphate mannose (Ret-P-Man) and guanosine 5'-diphospho-D-mannose (GDP-Man). Ret-P-Man was made in vitro while Ret-P and GDP-Man were chemically synthesized. Positive ion FAB mass spectrometry of Ret-P showed an observable short-lived spectrum with a mass ion at m/z 367 [M + H]+, and a major fragment ion at m/z 269 [M + H - H3PO4]+. Negative ion FAB mass spectrometry of Ret-P showed a strong stable spectrum with a parent ion at m/z 365 [M - H]-, a glycerol (G) adduct ion at m/z 457 [M - H + G]- and a dimer ion at m/z 731 [2M - H]-. GDP-Man showed an intense spectrum with parent ion at m/z 604 [M - H]- and cationized species at m/z 626 [M + Na - 2H]- and 648 [M + 2Na - 3H]-. Negative ion FAB mass spectrometry of Ret-P-Man showed a parent ion at m/z 527 [M - H]- and a fragment ion at m/z 259 [C6H12PO9]-. The CAD-MIKE spectra showed structurally significant fragment ions at m/z 442 and 361 for the [M - H]- ion of GDP-Man, and at m/z 509, 406, 364 and 241 for the [M - H]- ion of Ret-P-Man. FAB and CAD-MIKE spectra have been applied successfully to confirm the structure of Ret-P-Man made in vitro from Ret-P and GDP-Man.  相似文献   

10.
We report on the quantitative determination of acetaminophen (paracetamol; NAPAP-d(0)) in human plasma and urine by GC-MS and GC-MS/MS in the electron-capture negative-ion chemical ionization (ECNICI) mode after derivatization with pentafluorobenzyl (PFB) bromide (PFB-Br). Commercially available tetradeuterated acetaminophen (NAPAP-d(4)) was used as the internal standard. NAPAP-d(0) and NAPAP-d(4) were extracted from 100-μL aliquots of plasma and urine with 300 μL ethyl acetate (EA) by vortexing (60s). After centrifugation the EA phase was collected, the solvent was removed under a stream of nitrogen gas, and the residue was reconstituted in acetonitrile (MeCN, 100 μL). PFB-Br (10 μL, 30 vol% in MeCN) and N,N-diisopropylethylamine (10 μL) were added and the mixture was incubated for 60 min at 30 °C. Then, solvents and reagents were removed under nitrogen and the residue was taken up with 1000 μL of toluene, from which 1-μL aliquots were injected in the splitless mode. GC-MS quantification was performed by selected-ion monitoring ions due to [M-PFB](-) and [M-PFB-H](-), m/z 150 and m/z 149 for NAPAP-d(0) and m/z 154 and m/z 153 for NAPAP-d(4), respectively. GC-MS/MS quantification was performed by selected-reaction monitoring the transition m/z 150 → m/z 107 and m/z 149 → m/z 134 for NAPAP-d(0) and m/z 154 → m/z 111 and m/z 153 → m/z 138 for NAPAP-d(4). The method was validated for human plasma (range, 0-130 μM NAPAP-d(0)) and urine (range, 0-1300 μM NAPAP-d(0)). Accuracy (recovery, %) ranged between 89 and 119%, and imprecision (RSD, %) was below 19% in these matrices and ranges. A close correlation (r>0.999) was found between the concentrations measured by GC-MS and GC-MS/MS. By this method, acetaminophen can be reliably quantified in small plasma and urine sample volumes (e.g., 10 μL). The analytical performance of the method makes it especially useful in pediatrics.  相似文献   

11.
Ion suppression effects during electrospray-ionsation mass spectrometry (ESI-MS) caused by different sample preparation procedures for serum were investigated. This topic is of importance for systematic toxicological analysis for which LC-ESI-MS has been developed with transport-region collision-induced dissociation (ECI-CID) and mass spectra library searching. With continuous postcolumn infusion of two test compounds-codeine and glafenine-the ion suppression effects of extracted biological matrix obtained after a standard liquid-liquid extraction, a mixed-mode solid-phase extraction (SPE) method, a protein precipitation method and a combination of precipitation with polymer-based mixed-mode SPE have been investigated. Extracted ion chromatograms of codeine ([M+H](+), m/z 300) and glafenine ([M-H](-), m/z 371) were used for monitoring ion suppression. Severe ion suppression effects for codeine and glafenine were detected in positive and in negative ionisation modes, respectively, in the LC-front peak after serum clean-up with SPE (acid/neutral fraction) and protein precipitation as well as with protein precipitation combined with SPE. Less ion suppression of codeine in positive mode was found with liquid-liquid extraction of serum samples. No ion suppression was detected with the second fraction of the mixed-mode SPE (using RP-C(8) and cation-exchange phase) in both ionisation modes. All suppression effects were caused by polar and unretained matrix components, which were present after extraction and/or protein precipitation. However, no specific ion suppression was seen after elution of the polar LC-front throughout the whole gradient. It could be demonstrated, that ion suppression is not generally present at any retention time when using reversed-phase HPLC with rather long gradient programs, but may play an important role in case of high-throughput LC-MS analysis, when the analyte is not separated from the LC-front, or in flow injection analysis without chromatographic separation.  相似文献   

12.
Many recent studies highlight the importance of lipids in membrane proteins, including in the formation of well-ordered crystals. To examine the effect of changes in one lipid, cardiolipin, on the lipid profile and the production, function, and crystallization of an intrinsic membrane protein, cytochrome c oxidase, we mutated the cardiolipin synthase (cls) gene of Rhodobacter sphaeroides, causing a >90% reduction in cardiolipin content in vivo and selective changes in the abundances of other lipids. Under these conditions, a fully native cytochrome c oxidase (CcO) was produced, as indicated by its activity, spectral properties, and crystal characteristics. Analysis by MALDI tandem mass spectrometry (MS/MS) revealed that the cardiolipin level in CcO crystals, as in the membranes, was greatly decreased. Lipid species present in the crystals were directly analyzed for the first time using MS/MS, documenting their identities and fatty acid chain composition. The fatty acid content of cardiolipin in R. sphaeroides CcO (predominantly 18:1) differs from that in mammalian CcO (18:2). In contrast to the cardiolipin dependence of mammalian CcO activity, major depletion of cardiolipin in R. sphaeroides did not impact any aspect of CcO structure or behavior, suggesting a greater tolerance of interchange of cardiolipin with other lipids in this bacterial system.  相似文献   

13.
cis-1,4-Dioxo-2-butene is a toxic metabolite of furan, while the trans-isomer is a product of deoxyribose oxidation in DNA. It has recently been reported that both cis- and trans-1,4-dioxo-2-butene react with the 2'-deoxynucleosides dC, dG, and dA to form novel diastereomeric oxadiazabicyclo(3.3.0)octaimine adducts. We have now extended these studies with kinetic and spectroscopic analyses of the reactions of cis- and trans-1,4-dioxo-2-butene, as well as the identification of novel adducts of dA. The reaction of dC with trans-1,4-dioxo-2-butene was observed to be nearly quantitative and produced two interchanging diastereomers with a second-order rate constant of 3.66 x 10(-2)M(-1)s(-1), which is nearly 10-fold faster than the reaction with the cis-isomer (3.74 x 10(-3)M(-1)s(-1)). HPLC analyses of reactions of 1,4-dioxo-2-butene with both dA and 9-methyladenine (pH 7.4, 37 degrees C) revealed multiple products including a novel pair of closely eluting fluorescent species of identical mass ([M+H] m/z 420), each of which contains two molecules of 1,4-dioxo-2-butene, and a more abundant but unstable and non-fluorescent species ([M+H] m/z 414). Partial structural characterization of the fluorescent adducts of dA revealed the presence of the oxadiazabicyclo(3.3.0)octaimine ring system common to the dC adducts. These results support the genotoxic potential of furan metabolites and products of deoxyribose oxidation.  相似文献   

14.
Aggregation processes are analyzed by two kinetic models, the random polymerization model and the nucleation-dependent polymerization model. A kinetic equation for the random polymerization model can be derived analytically, revealing the relation between the initial monomer concentration ([M]0), the rate constant (k(a)), time (t), the yield of detectable aggregate ([F]), and the critical aggregation number (m). However, time-course curves for the nucleation-dependent polymerization model can be obtained by numerical calculation. It is found that lag time (t(d)) and half-time (t1/2) are proportional to [M](-1) in the random polymerization model, while t(d) and t1/2 are proportional to [M1](-s) (1 < s < n; n is nucleus size) at the lower concentration and are less dependent on [M1] at the higher concentration in the nucleation-dependent polymerization model.  相似文献   

15.
A nonspecific density labeling technique has been employed to monitor the synthesis of intracytoplasmic membrane in synchronously dividing populations of Rhodopseudomonas sphaeroides. The intracytoplasmic membranes of cells synchronized in D2O-based medium were found to undergo discontinuous decreases in specific density during synchronous cell growth following transfer to H2O-based medium. These abrupt decreases in membrane specific density occurred immediately prior to cell division and were not observed with intracytoplasmic membranes prepared from asynchronously dividing cells (see also Kowakowski, H., and Kaplan, S. (1974) J. Bacteriol. 118, 1144-1157). Discontinuous increases in the net accumulation of cellular phospholipid were also observed during the synchronous growth of R. sphaeroides. This is to be contrasted to the continuous insertion of protein and the photopigment components of the photosynthetic apparatus into the intracytoplasmic membrane during the cell division cycle (Fraley, R.T., Lueking, D.R., and Kaplan, S. (1978) J. Biol. Chem. 253, 458-464; Wraight, C.A., Lueking, D.R., Fraley, R.T., and Kaplan, S. (1978) J. Biol. Chem. 253, 465-471). Further, examination of the protein/phospholipid ratios of purified intracytoplasmic membrane preparations revealed that this ratio undergoes cyclical changes of 35 to 40% during a normal cycle of cell division. In contrast to the results of Ferretti and Gray ((1968) J. Bacteriol, 95, 1400-1406), DNA synthesis was found to occur in a stepwise manner in synchronously dividing cell populations of R. sphaeroides.  相似文献   

16.
Rhodobacter sphaeroides MDC 6521 was able to produce bio-hydrogen (H(2)) in anaerobic conditions under illumination. In this study the effects of the hydrogenase inhibitor-diphenylene iodonium (Ph(2)I) and its solvent dimethylsulphoxide (DMSO) on growth characteristics and H(2) production by R. sphaeroides were investigated. The results point out the concentration dependent DMSO effect: in the presence of 10?mM DMSO H(2) yield was ~6 fold lower than that of the control. The bacterium was unable to produce H(2) in the presence of Ph(2)I. In order to examine the mediatory role of proton motive force (?p) or the F(0)F(1)-ATPase in H(2) production by R. sphaeroides, the effects of Ph(2)I and DMSO on ?p and its components (membrane potential (?ψ) and transmembrane pH gradient), and ATPase activity were determined. In these conditions ?ψ was of -98?mV and the reversed ?pH was +30?mV, resulting in ?p of -68?mV. Ph(2)I decreased ?ψ in concentrations of 20?μM and higher; lower concentrations of Ph(2)I as DMSO had no valuable effect on ?ψ. The R. sphaeroides membrane vesicles demonstrated significant ATPase activity sensitive to N,N'-dicyclohexylcarbodiimide. The 10-20?μM Ph(2)I did not affect the ATPase activity, whereas 40?μM Ph(2)I caused a marked inhibition (~2 fold) in ATPase activity. The obtained results provide novel evidence on the involvement of hydrogenase and the F(0)F(1)-ATPase in H(2) production by R. sphaeroides. Moreover, these data indicate the role of hydrogenase and the F(0)F(1)-ATPase in ?p generation. In addition, DMSO might increase an interaction of nitrogenase with CO(2), decreasing nitrogenase activity and affecting H(2) production.  相似文献   

17.
J Zilsel  T G Lilburn  J T Beatty 《FEBS letters》1989,253(1-2):247-252
A Rhodobacter capsulatus mutant strain deficient in all pigment-binding peptides and hence incapable of photosynthetic growth was genetically complemented with a plasmid-borne copy of the Rhodobacter sphaeroides puf operon. Hybrid reaction centers composed of R. sphaeroides L and M and R. capsulatus H subunits assembled in vivo, and host cells were photosynthetically competent. Light-harvesting complex B875, also encoded by the R. sphaeroides puf operon, was present along with the hybrid reaction center. These cells emitted fluorescence, however, indicating an impairment in energy transduction.  相似文献   

18.
Ukena K  Iwakoshi E  Minakata H  Tsutsui K 《FEBS letters》2002,512(1-3):255-258
Recently, cDNAs encoding novel RFamide-related peptides (RFRPs) have been reported in the mammalian brains by a gene database search and the deduced RFRPs have been suggested to participate in neuroendocrine and pain mechanisms in the rat. Two peptides have been predicted to be encoded in the cDNA of rodent RFRPs. To assess precise functions of rodent RFRPs in the brain, in the present study we identified a naturally occurring RFRP in the rat hypothalamus by immunoaffinity purification combined with mass spectrometry (MS). The affinity chromatography showed that the rat hypothalamus contained RFRP-like immunoreactivity. The immunoreactive material was analyzed by a nanoflow electrospray ionization time-of-flight MS followed by tandem MS analysis. The mass peak corresponding to octadecapeptide was detected at 1010.54 m/z ([M+2H](2+)) and its sequence, ANMEAGTMSHFPSLPQRF-NH(2), was revealed by the fragmentation, showing a mature form encoded in the cDNA sequence of RFRPs. The identified endogenous RFRP will aid not only in defining its physiological roles but also facilitate the development of its agonists and antagonists in the rodent brain.  相似文献   

19.
Endoplasmic reticulum (ER) stress is associated with various cardiovascular diseases. However, its pathophysiological relevance and the underlying mechanisms in the context of hypoxia/reoxygenation (H/R) in endothelial cells are not fully understood. Previous findings have suggested that acetylcholine (ACh), the major vagal nerve neurotransmitter, protected against cardiomyocyte injury by activating AMP-activated protein kinase (AMPK). This study investigated the role of ER stress in endothelial cells during H/R and explored the beneficial effects of ACh. Our results showed that H/R triggered ER stress and apoptosis in endothelial cells, evidenced by the elevation of glucose-regulated protein 78, cleaved caspase-12 and C/EBP homologous protein expression. ACh significantly decreased ER stress and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling positive cells and restored ER ultrastructural changes induced by H/R, possibly via protein kinase-like ER kinase and inositol-requiring kinase 1 pathways. Additionally, 4-diphenylacetoxy-N-methylpiperidine methiodide, a type-3 muscarinic ACh receptor (M3 AChR) inhibitor, abolished ACh-mediated increase in AMPK phosphorylation during H/R. Furthermore, M3 AChR or AMPK siRNA abrogated the ACh-elicited the attenuation of ER stress in endothelial cells, indicating that the salutary effects of ACh were likely mediated by M3 AChR-AMPK signaling. Overall, ACh activated AMPK through M3 AChR, thereby inhibited H/R-induced ER stress and apoptosis in endothelial cells. We have suggested for the first time that AMPK may function as an essential intermediate step between M3 AChR stimulation and inhibition of ER stress-associated apoptotic pathway during H/R, which may help to develop novel therapeutic approaches targeting ER stress to prevent or alleviate ischemia/reperfusion injury.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号