共查询到20条相似文献,搜索用时 15 毫秒
1.
Dezi M Francia F Mallardi A Colafemmina G Palazzo G Venturoli G 《Biochimica et biophysica acta》2007,1767(8):1041-1056
The reaction center-light harvesting complex 1 (RC-LH1) purified from the photosynthetic bacterium Rhodobacter sphaeroides has been studied with respect to the kinetics of charge recombination and to the phospholipid and ubiquinone (UQ) complements tightly associated with it. In the antenna-RC complexes, at 6.5 more than three times smaller than that measured in LH1-deprived RCs. At increasing pH values, for which increases, the deceleration observed in RC-LH1 complexes is reduced, vanishing at pH >11.0. In both systems kinetics are described by a continuous rate distribution, which broadens at pH >9.5, revealing a strong kinetic heterogeneity, more pronounced in the RC-LH1 complex. In the presence of the antenna the Q(A)Q(B)(-) state is stabilized by about 40 meV at 6.511. The phospholipid/RC and UQ/RC ratios have been compared in chromatophore membranes, in RC-LH1 complexes and in the isolated peripheral antenna (LH2). The UQ concentration in the lipid phase of the RC-LH1 complexes is about one order of magnitude larger than the average concentration in chromatophores and in LH2 complexes. Following detergent washing RC-LH1 complexes retain 80-90 phospholipid and 10-15 ubiquinone molecules per monomer. The fractional composition of the lipid domain tightly bound to the RC-LH1 (determined by TLC and (31)P-NMR) differs markedly from that of chromatophores and of the peripheral antenna. The content of cardiolipin, close to 10% weight in chromatophores and LH2 complexes, becomes dominant in the RC-LH1 complexes. We propose that the quinone and cardiolipin confinement observed in core complexes reflects the in vivo heterogeneous distributions of these components. Stabilization of the charge separated state in the RC-LH1 complexes is tentatively ascribed to local electrostatic perturbations due to cardiolipin. 相似文献
2.
3.
Betaine (N,N,N-trimethylglycine) functioned most effectively as an osmoprotectant in osmotically stressed Rhodobacter sphaeroides cells during aerobic growth in the dark and during anaerobic growth in the light. The presence of the amino acids L-glutamate, L-alanine, or L-proline in the growth medium did not result in a significant increase in the growth rate at increased osmotic strengths. The addition of choline to the medium stimulated growth at increased osmolarities but only under aerobic conditions. Under these conditions choline was converted via an oxygen-dependent pathway to betaine, which was not further metabolized. The initial rates of choline uptake by cells grown in media with low and high osmolarities were measured over a wide range of concentrations (1.9 microM to 2.0 mM). Only one kinetically distinguishable choline transport system could be detected. Kt values of 2.4 and 3.0 microM and maximal rates of choline uptake (Vmax) of 5.4 and 4.2 nmol of choline/min.mg of protein were found in cells grown in the minimal medium without or with 0.3 M NaCl, respectively. Choline transport was not inhibited by a 25-fold excess of L-proline or betaine. Only one kinetically distinguishable betaine transport system was found in cells grown in the low-osmolarity minimal medium as well as in a high-osmolarity medium containing 0.3 M NaCl. In cells grown and assayed in the absence of NaCl, betaine transport occurred with a Kt of 15.1 microM and a Vmax of 3.2 nmol/min . mg of protein, whereas in cells that were grown and assayed in the presence of 0.3 M NaCl, the corresponding values were 18.2 microM and 9.2 nmol of betaine/min . mg of protein. This system was also able to transport L-proline, but with a lower affinity than that for betaine. The addition of choline of betaine to the growth medium did not result in the induction of additional transport systems. 相似文献
4.
The two-component sensing system controlling bacterial chemotaxis is one of the best studied in biology. Rhodobacter sphaeroides has a complex chemosensory pathway comprising two histidine protein kinases (CheAs) and eight downstream response regulators (six CheYs and two CheBs) rather than the single copies of each as in Escherichia coli. We used in vitro analysis of phosphotransfer to start to determine why R.sphaeroides has these multiple homologues. CheA(1) and CheA(2) contain all the key motifs identified in the histidine protein kinase family, except for conservative substitutions (F-L and F-I) within the F box of CheA(2), and both are capable of ATP-dependent autophosphorylation. While the K(m) values for ATP of CheA(1) and CheA(2) were similar to that of E.coli, the k(cat) value was three times lower, but similar to that measured for the related Sinorhizobium meliloti CheA. However, the two CheAs differed both in their ability to phosphorylate the various response regulators and the rates of phosphotransfer. CheA(2) phosphorylated all of the CheYs and both CheBs, whilst CheA(1) did not phosphorylate either CheB and phosphorylated only the response regulators encoded within its own genetic locus (CheY(1), CheY(2), and CheY(5)) and CheY(3). The dephosphorylation rates of the R.sphaeroides CheBs were much slower than the E.coli CheB. The dephosphorylation rate of CheY(6), encoded by the third chemosensory locus, was ten times faster than that of the E.coli CheY. However, the dephosphorylation rates of the remaining R.sphaeroides CheYs were comparable to that of E.coli CheY. 相似文献
5.
Chromatophores of Rhodobacter sphaeroides were excited with light flashes to generate a transmembrane electrical potential difference. The electric relaxation was measured by electrochromic absorption changes as a function of added gramicidin. At low gramicidin/bacteriochlorophyll (BChl) molar ratios the decay of the electrochromic absorption changes showed a biphasic behaviour, with a fast phase relaxing at some s, and a slow phase relaxing at more than 100 ms. This was attributable to a mixture of vesicles containing gramicidin dimers with others containing none. The concentration dependence of this effect was linear. This implied full dimerization of gramicidin. The data were interpreted to yield an average bacteriochlorophyll content per chromatophore of 770(±150) and the conductance of a single gramicidin dimer in the chromatophore membrane of 15(±4) pS (in about 115 mM KCl).Abbreviations BChl
Bacteriochlorphyll
- tricine
N-Tris[hydroxymethyllmethylglycine
Offprint requests to: W. Junge 相似文献
6.
The reversibility of the inhibition of photosynthetic reactions by water stress was examined with four systems of increasing complexity—stromal enzymes, intact chloroplasts, mesophyll protoplasts, and leaf slices. The inhibition of soluble chloroplast enzymes by high solute concentrations was instantly relieved when solutes were properly diluted. In contrast, photosynthesis was not restored but actually more inhibited when isolated chloroplasts exposed to hypertonic stress were transferred to conditions optimal for photosynthesis of unstressed chloroplasts. Upon transfer, chloroplast volumes increased beyond the volumes of unstressed chloroplasts, and partial envelope rupture occurred. In protoplasts and leaf slices, considerable and rapid, but incomplete restoration of photosynthesis was observed during transfer from hypertonic to isotonic conditions. Chloroplast envelopes did not rupture in situ during water uptake. It is concluded that inhibition of photosynthesis by severe water stress is at the biochemical level brought about in part by reversible inhibition of chloroplast enzymes and in part by membrane damage which requires repair mechanisms for reversibility. Both soluble enzymes and membranes appear to be affected by the increased concentration of internal solutes, which is caused by dehydration. 相似文献
7.
In this study, the in vivo function and properties of two cytochrome c maturation proteins, CcmF and CcmH from Rhodobacter sphaeroides, were analyzed. Strains lacking CcmH or both CcmF and CcmH are unable to grow under anaerobic conditions where c-type cytochromes are required, demonstrating their critical role in the assembly of these electron carriers. Consistent with this observation, strains lacking both CcmF and CcmH are deficient in c-type cytochromes when assayed under permissive growth conditions. In contrast, under permissive growth conditions, strains lacking only CcmH contain several soluble and membrane-bound c-type cytochromes, albeit at reduced levels, suggesting that this bacterium has a CcmH-independent route for their maturation. In addition, the function of CcmH that is needed to support anaerobic growth can be replaced by adding cysteine or cystine to growth media. The ability of exogenous thiol compounds to replace CcmH provides the first physiological evidence for a role of this protein in thiol chemistry during c-type cytochrome maturation. The properties of R. sphaeroides cells containing translational fusions between CcmF and CcmH and either Escherichia coli alkaline phosphatase or beta-galactosidase suggest that they are each integral cytoplasmic membrane proteins with their presumed catalytic domains facing the periplasm. Analysis of CcmH shows that it is synthesized as a higher-molecular-weight precursor protein with an N-terminal signal sequence. 相似文献
8.
Porter SL Wadhams GH Martin AC Byles ED Lancaster DE Armitage JP 《The Journal of biological chemistry》2006,281(43):32694-32704
The Escherichia coli two-component chemosensory pathway has been extensively studied, and its response regulator, CheY, has become a paradigm for response regulators. However, unlike E. coli, most chemotactic nonenteric bacteria have multiple CheY homologues. The roles and cellular localization of the CheYs in Rhodobacter sphaeroides were determined. Only two CheYs were required for chemotaxis, CheY(6) and either CheY(3) or CheY(4). These CheYs were partially localized to either of the two chemotaxis signaling clusters, with the remaining protein delocalized. Interestingly, mutation of the CheY(6) phosphorylatable aspartate to asparagine produced a stopped motor, caused by phosphorylation on alternative site Ser-83 by CheA. Extensive mutagenesis of E. coli CheY has identified a number of activating mutations, which have been extrapolated to other response regulators (D13K, Y106W, and I95V). Analogous mutations in R. sphaeroides CheYs did not cause activation. These results suggest that although the R. sphaeroides and E. coli CheYs are similar in that they require phosphorylation for activation, they may differ in both the nature of the phosphorylation-induced conformational change and their subsequent interactions with the flagellar motor. Caution should therefore be used when projecting from E. coli CheY onto novel response regulators. 相似文献
9.
B B Nepple J Kessi R Bachofen 《Journal of industrial microbiology & biotechnology》2000,25(4):198-203
Rhodobacter sphaeroides grew in the presence of up to 43 μM chromate and reduced hexavalent chromium to the trivalent form under both aerobic and anaerobic conditions. Reduced chromium remained in the external medium. Reductase activity was present in cells of R. sphaeroides independent of whether chromate was present or not in the growth medium. The reducing activity was found in the cytoplasmic cell fraction and was dependent on NADH. The chromate-reducing enzyme was purified by anion exchange, hydroxyapatite and hydrophobic interaction chromatography, and gel filtration. The molecular weight of the enzyme was 42 kDa as determined by gel filtration. The optimum of the reaction is at pH 7.0 and 30°C. The enzyme activity showed a hyperbolic dependence on the concentrations of both substrates, NADH and chromate, with a maximum velocity at 0.15 mM NADH. A K m of 15±1.3 μM CrO4 2− and a V max of 420±50 μmol min−1 mg protein−1 was determined for the enzyme isolated from anaerobically grown cells and 29±6.4 μM CrO4 2− and 100±9.6 μmol CrO4 2− min−1 mg protein−1 for the one from aerobically grown ones. Journal of Industrial Microbiology & Biotechnology (2000) 25, 198–203. Received 05 January 2000/ Accepted in revised form 27 May 2000 相似文献
10.
本文测定了浑球红假单胞菌(Rhodobacter sphaeroides)菌株601谷氨酰胺合成酶(GS)、谷氨酸合酶(GOGAT)、谷氨酸脱氢酶(GDH)和丙氨酸脱氢酶(ADH)的活性。低氨时,GS/GOGAT活力高,GDH活力低,高氨时,GS/GOGAT活力低,GDH活力高。在以分子氮或低浓度氨为氮源的培养条件下,加入GS抑制刑MSX(L—methionine—DL—sulphoximine),细菌生长受到抑制。但是,生长在以谷氨酸为氮源的细菌则不受影响。上述结果表明,浑球红假单胞菌菌株601氨同化是通过GS/GOGAT途径和GDH途径。 相似文献
11.
含硒类球红细菌的研究 总被引:3,自引:0,他引:3
为了确定类球红细菌转硒培养的最佳条件 ,研究了无机硒的加入浓度、时间以及分批补料培养对菌体生长和转硒效率的影响。实验表明 ,无机硒的浓度低于 1× 10 -5mol/L时 ,对类球红细菌的生长基本没有影响 ,并能将6 3.9%的无机硒转化为有机硒。转硒的最佳时间是在接种后 12h左右 ,此时转硒效率最高。实验还表明 ,分批补料培养可以提高菌体浓度 ,可使转硒效率和绝对量增加。体内试验表明 ,用 5mL/kgbw和 10mL/kgbw剂量的含硒类球红细菌灌养小鼠 ,可以使其全血GSH Px酶活性提高 2 0 .9%和 2 5 .5 % ,使其血清丙二醛 (MDA)含量降低2 1.0 %和 2 3.2 %。 相似文献
12.
Catucci L De Leo V Milano F Giotta L Vitale R Agostiano A Corcelli A 《Journal of bioenergetics and biomembranes》2012,44(4):487-493
Osmotic shock was used as a tool to obtain cardiolipin (CL) enriched chromatophores of Rhodobacter sphaeroides. After incubation of cells in iso- and hyper-osmotic buffers both chromatophores with a physiological lipid profile (Control) and with an almost doubled amount of CL (CL enriched) were isolated. Spectroscopic properties, reaction centre (RC) and reducible cytochrome (cyt) contents in Control and CL enriched chromatophores were the same. The oxidoreductase activity was found higher for CL enriched than for Control chromatophores, raising from 60?±?2 to 93?±?3?mol cyt c s(-1) (mol total cyt c)(-1). Antymicin and myxothiazol were tested to prove that oxidoreductase activity thus measured was mainly attributable to the cyt bc ( 1 ) complex. The enzyme was then purified from BH6 strain yielding a partially delipidated and almost inactive cyt bc ( 1 ) complex, although the protein was found to maintain its structural integrity in terms of subunit composition. The ability of CL in restoring the activity of the partially delipidated cyt bc ( 1 ) complex was proved in micellar systems by addition of exogenous CL. Results here reported indicate that CL affects oxidoreductase activity in the bacterium Rhodobacter sphaeroides both in chromatophore and in purified cyt bc ( 1 ) complex. 相似文献
13.
The photosynthetic bacterium Rhodobacter sphaeroides is capable of producing H2 via nitrogenase when grown photoheterotrophically in the absence of N2. By using 14C-labeled malate, it was found that greater than 95% of this substrate was catabolized completely to CO2 during H2 production. About 60% of this catabolism was associated with H2 biosynthesis, while almost 40% provided reductant for other cellular purposes. Thus, only a small fraction of malate provided carbon skeletons. The addition of ammonium, which inhibited nitrogenase activity, increased substrate conversion into carbon skeletons threefold. Catabolism of malate occurred primarily via the tricarboxylic acid cycle, but gluconeogenesis was also observed. The wild-type organism grew poorly on glucose, accumulated gluconate and 2-keto-3-deoxygluconate, and did not produce H2. More than 50% of metabolized glucose appeared in carbon skeletons or in storage compounds. A glucose-utilizing mutant was five times more effective in utilizing this substrate. This mutant produced H2 from glucose, using 74% of metabolized substrate for this purpose. Glucose converted to storage products or to other carbon skeletons was reduced to 8%. Fixation of CO2 competed directly with H2 production for reducing equivalents and ATP. Refixation of CO2 released from these substrates under H2-producing conditions was, at most, 10 to 12%. Addition of ammonium increased refixation of respired CO2 to 83%. Patterns of carbon flow of fixation products were associated with the particular strains and culture conditions. 相似文献
14.
15.
Jill Zeilstra-Ryalls Mark Gomelsky Jesus M. Eraso Alexei Yeliseev James OGara Samuel Kaplan 《Journal of bacteriology》1998,180(11):2801-2809
16.
K. H. Schneider 《Applied microbiology and biotechnology》1994,41(5):578-583
Mannitol dehydrogenase (MDH) from Rhodobacter sphaeroides Si4 was overproduced by constructing a strain that overexpresses the MDH gene and by producing high cell concentrations via fed-batch cultivation in a bioreactor. With the gene of mannitol dehydrogenase (mtlK) cloned into the expression vector pKK223-3 expression of MDH in Escherichia coli was obtained, but the specific enzyme activity was lower than in R. sphaeroides Si4. In order to overexpress mtlK in R. sphaeroides, plasmid pAK82 was constructed by cloning a DNA fragment carrying mtlK into the broad-host-range expression vector pRK415. When pAK82 was introduced into R. sphaeroides Si4 the specific mannitol dehydrogenase activity in the strain obtained was 0.48 unit (U)mg–1, 3.4-fold higher thain in the wild type. In this way the enzyme yield from cultivation in a bioreactor could be improved from 110 Ul–1 to 350 Ul–1. A further increase in productivity was obtained by fed-batch cultivation of R. sphaeroides Si4 [pAK82]. Using this cultivation method can optical density of 27.6 was reached in the bioreactor, corresponding to a dry mass of 16.6 g l–1. Since MDH formation correlated with biomass production, the MDH yield could be raised to 918 Ul–1, an 8.3-fold increase in comparison to batch cultivation of the wild-type strain.Dedicated to Prof. Fritz Wagner on the occasion of his 65th birthday. 相似文献
17.
Rhodobacter sphaeroides: complexity in chemotactic signalling 总被引:1,自引:0,他引:1
Most bacteria have much more complex chemosensory systems than those of the extensively studied Escherichia coli. Rhodobacter sphaeroides, for example, has multiple homologues of the E. coli chemosensory proteins. The roles of these homologues have been extensively investigated using a combination of deletion, subcellular localization and phosphorylation assays. These studies have shown that the homologues have specific roles in the sensory pathway, and they differ in their cellular localization and interactions with other components of the pathway. The presence of multiple chemosensory pathways might enable bacteria to tune their tactic responses to different environmental conditions. 相似文献
18.
19.
20.
《BBA》2020,1861(10):148238
The photoinduced charge separation in QB-depleted reaction centers (RCs) from Rhodobacter sphaeroides R-26 in solid air-dried and vacuum-dried (~10−2 Torr) films, obtained in the presence of detergent n-dodecyl-β-D-maltoside (DM), is characterized using ultrafast transient absorption spectroscopy. It is shown that drying of RC-DM complexes is accompanied by reversible blue shifts of the ground-state absorption bands of the pigment ensemble, which suggest that no dehydration-induced structural destruction of RCs occurs in both types of films. In air-dried films, electron transfer from the excited primary electron donor P⁎ to the photoactive bacteriopheophytin HA proceeds in 4.7 ps to form the P+HA− state with essentially 100% yield. P+HA− decays in 260 ps both by electron transfer to the primary quinone QA to give the state P+QA− (87% yield) and by charge recombination to the ground state (13% yield). In vacuum-dried films, P⁎ decay is characterized by two kinetic components with time constants of 4.1 and 46 ps in a proportion of ~55%/45%, and P+HA− decays about 2-fold slower (462 ps) than in air-dried films. Deactivation of both P⁎ and P+HA− to the ground state effectively competes with the corresponding forward electron-transfer reactions in vacuum-dried RCs, reducing the yield of P+QA− to 68%. The results are compared with the data obtained for fully hydrated RCs in solution and are discussed in terms of the presence in the RC complexes of different water molecules, the removal/displacement of which affects spectral properties of pigment cofactors and rates and yields of the electron-transfer reactions. 相似文献