首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Single K+-selective channels were studied in excised inside-out membrane patches from dissociated mouse toe muscle fibers. Channels of 74 pS conductance in symmetrical 160mm KCl solutions were blocked reversibly by 10 m internal ATP and thus identified as ATP-sensitive K+ channels. The channels were also blocked reversibly bymm concentrations of internal adenosine, adenine and thymine, but not by cytosine and uracil. The efficacy of the reversible channel blockers was higher when they were present in internal NaCl instead of KCl solutions. An irreversible inhibition of ATP-sensitive K+ channels was observed after application of several sulphydryl-modifying substances in the internal solution: 0.5mm chloramine-T, 50mm hydrogen peroxide or 2mm n-ethylmaleimide (NEM). Largeconductance Ca-activated K+ channels were not affected by these reagents. The presence of 1mm internal ATP prevents the irreversible inhibition of ATP-sensitive K+ channels by NEM. The results suggest that internal Na+ ions increase the affinity of the ATP-sensitive K+ channel to ATP and to other reversible channel blockers and that a functionally important SH-group is located at or near the ATP-binding site.  相似文献   

2.
Summary The single-channel current recording technique has been used to study the influences that the pyridine nucleotides NAD, NADH, NADP and NADPH have on the gating of ATP-sensitive K+ channels in an insulin-secreting cell line (RINm5F). The effects of the nucleotides were studied at the intracellular surface using either excised inside-out membrane patches or permeabilized cells. All four pyridine nucleotides were found to evoke similar effects. At low concentrations, 100 m and less, each promoted channel opening whereas high concentrations, 500 m and above, evoked channel closure. The degree of K+ channel activation by pyridine nucleotides (low conc.) was found to be similar to that evoked by the same concentrations of ADP or GTP, whereas the degree of K+ channel inhibition (high conc.) was less marked than that evoked by the same concentrations of ATP, and never resulted in refreshment of K+ channels following removal. The effects of NAD, NADH, NADP and NADPH seemed to interact with those of ATP and ADP. In the presence of 1mm ADP and 4mm ATP, 10 to 100 m concentrations of the pyridine nucleotides could not evoke channel opening, whereas concentrations of 500 m and above were found to evoke channel closure. In the presence of 2mm ATP and 0.5mm ADP, however, 10 to 100 m concentrations of the pyridine nucleotides were able to activate K+ channels.  相似文献   

3.
Dissociated single fibers from the mouse flexor digitorum brevis (FDB) muscle were used in patch clamp experiments to investigate the mechanisms of activation and inactivation of KATP in mammalian skeletal muscle. Spontaneous rundown of channel activity, in many excised patches, occurred gradually over a period of 10–20 min. Application of 1.0 mm free-Ca2+ to the cytoplasmic side of the patch caused irreversible inactivation of KATP within 15 sec. Ca2+-induced rundown was not prevented by the presence of 1.0 m okadaic acid or 2.0 mg ml of an inhibitor of calcium-activated neutral proteases, a result consistent with the conclusion that phosphatases or calcium-activated neutral proteases were not involved in the rundown process. Application of 1.0 mm Mg.ATP to Ca2+inactivated KATP caused inhibition of residual activity but little or no reactivation of the channels upon washout of ATP, even in the presence of the catalytic subunit of cyclic AMP-dependent protein kinase (10 U ml–1). Mg.ATP also failed to reactivate KATP, even after only partial spontaneous rundown, despite the presence of channels that could be activated by the potassium channel opener BRL 38227. Nucleotide diphosphates (500 m; CDP, UDP, GDP and IDP) caused immediate and reversible opening of Ca2+-inactivated KATP. Reactivation of KATP by ADP (100 m) increased further upon removal of the nucleotide. In contrast to KATP from cardiac and pancreatic cells, there was no evidence for phosphorylation of KATP from the surface sarcolemma of dissociated single fibers from mouse skeletal muscle. The small degree of activation occasionally observed following application of 10 m or 1.0 mm Mg.ATP could have been due to the generation of ADP from ATP hydrolysis and not through phosphorylation. Data are consistent with the suggestion that Ca2+ inactivation of KATP involves a gating mechanism that can be reopened by nucleotide diphosphates.M.H. is supported by the Medical Research Council.  相似文献   

4.
ATP-dependent potassium channels are present at high density in the membranes of heart, skeletal, and smooth muscle and have a lowP open at physiological [ATP]i. The unitary conductance is 15–20 pS at physiological [K+] o , and the channels are highly selective for K+. Certain sulfonylureas are specific blockers, and some K channel openers may also act through these channels. KATP channels are probably regulated through the binding of ATP, which may in turn be regulated through changes in the ADP/ATP ratio or in pHi. There is some evidence for control through G-proteins. The channels have complex kinetics, with multiple open and closed states. The main effect of ATP is to increase occupancy of long-lived closed states. The channels may have a role in the control of excitability and probably act as a route for K+ loss from muscle during activity. In arterial smooth muscle they may act as targets for vasodilators.  相似文献   

5.
Summary The effects of ADP upon the gating of ATP-sensitive K+ channels from rat ventricular myocytes have been investigated by patch-clamp single-channel current recording experiments. ADP was applied to the internal surface of excised insideout membrane patches and depending upon the experimental protocol and the concentration it was found that ADP could either inhibit or stimulate openings of ATP-sensitive K+ channels. In the absence of inactivation, ATP-sensitive K+ channels were inhibited by ADP in a dose-dependent manner. Partially inactivated channels, on the other hand, were stimulated by low (10 to 250 M) and inhibited by high (>250 M) concentrations of ADP. ATP-sensitive K+ channels which were being inhibited by ATP (<1 mM) could be opened by the simultaneous application of ADP (50 M to 1 mM). ADP had no effect upon channels inhibited by mM concentrations of ATP. The situation was further complicated when it was found that inhibition evoked by ADP was strongly attenuated by the presence of Mg2+ ions whilst channel stimulation, whether of partially inactivated channels or channels inhibited by ATP, required the presence of Mg2+ ions. The analog of ADP, ADPS, always evoked inhibition of ATP-sensitive K+ channels which was not affected by the presence or absence of Mg2+ ions.  相似文献   

6.
Summary The31P-NMR technique has been used to assess the intracellular ratios and concentrations of mobile ATP and ADP and the intracellular pH in an insulin-secreting cell line, RINm5F. The single-channel current-recording technique has been used to investigate the effects of changes in the concentrations of ATP and ADP on the gating of nucleotide-dependent K+ channels. Adding ATP to the membrane inside closes these channels. However, in the continued presence of ATP adding ADP invariably leads to the reactivation of ATP-inhibited K+ channels, even at ATP4–/ADP3– concentration ratios greater than 71. Interactions between ATP4– and ADP3– seem competitive. An increase in the concentration ratio ATP4–/ADP3– consistently evoked a decrease in the open-state probability of K+ channels; conversely a decrease in ATP4–/ADP3– increased the frequency of K+ channel opening events. Channel gating was also influenced by changes in the absolute concentrations of ATP4– and ADP3–, at constant free concentration ratios. ADP-evoked stimulation of ATP-inhibited channels did not result from phosphorylation of the channel, as ADP--S, a nonhydrolyzable analog of ADP, not only stimulated but enhanced ADP-induced activation of K+ channels, in the presence of ATP. Similarly, ADP was able to activate K+ channels in the presence of two nonhydrolyzable derivatives of ATP, AMP-PNP and methylene ATP.  相似文献   

7.
Summary ATP-inhibited potassium channels (K(ATP)) were studied in excised, inside-out patches from cultured adult mouse pancreatic -cells and HIT cells. In the absence of ATP, ADP opened K(ATP) channels at concentrations as low as 10 m and as high as 500 m, with maximal activation between 10 and 100 m ADP in mouse -cell membrane patches. At concentrations greater than 500 m, ADP inhibited K(ATP) channels while 10 mm virtually abolished channel activity. HIT cell channels had a similar biphasic response to ADP except that more than 1 mm ADP was required for inhibition. The channel opening effect of ADP required magnesium while channel inhibition did not. Using creatine/creatine phosphate solutions with creatine phosphokinase to fix ATP and ADP concentrations, we found substantially different K(ATP)-channel activity with solutions having the same ATP/ADP ratio but different absolute total nucleotide levels. To account for ATP-ADP competition, we propose a new model of channel-nucleotide interactions with two kinds of ADP binding sites regulating the channel. One site specifically binds MgADP and increases channel opening. The other, the previously described ATP site, binds either ATP or ADP and decreases channel opening. This model very closely fits the ADP concentration-response curve and, when incorporated into a model of -cell membrane potential, increasing ADP in the 10 and 100 m range is predicted to compete very effectively with millimolar levels of ATP to hyperpolarize -cells.The results suggest that (i) K(ATP)-channel activity is not well predicted by the ATP/ADP ratio, and (ii) ADP is a plausible regulator of K(ATP) channels even if its free cytoplasmic concentration is in the 10–100 m range as suggested by biochemical studies.We would like to thank Mr. Louis Stamps for expert technical assistance and Dr. Wil Fujimoto and Ms. Jeanette Teague for generously providing HIT cells obtained from Dr. Robert Santerre at Eli Lilly. We would also like to thank Dr. Michel Vivaudou for providing the program ALEX. Support was provided by the NIH and the Department of Veterans Affairs.  相似文献   

8.
The efficacy and mechanism of -dendrotoxin (DTX) block of K+ channel currents in Vicia stomatal guard cells was examined. Currents carried by inward- and outward-rectifying K+ channels were determined under voltage clamp in intact guard cells, and block was characterized as a function of DTX and external K+ (K+) concentrations. Added to the bath, 0.1-30 nM DTX blocked the inward-rectifying K+ current (IK,in), but was ineffective in blocking current through the outward-rectifying K+ channels (IK,out) even at concentrations of 30 nM. DTX block was independent of clamp voltage and had no significant effect on the voltage-dependent kinetics for IK,in, neither altering its activation at voltages negative of –120 mV nor its deactivation at more positive voltages. No evidence was found for a use dependence to DTX action. Block of IK,in followed a simple titration function with an apparent K1/2 for block of 2.2 nM in 3 mm K o + . However, DTX block was dependent on the external K+ concentration. Raising K+ from 3 to 30 mm slowed block and resulted in a 60–70% reduction in its efficacy (apparent K i = 10 mm in 10 nm DTX). The effect of K+ in protecting I K,in was competitive with DTX and specific for permeant cations. A joint analysis of IK,in block with DTX and K+ concentration was consistent with a single class of binding sites with a K d for DTX of 240 pm. A K d of 410 m for extracellular K+ was also indicated. These results complement previous studies implicating a binding site requiring extracellular K+ (K1/2 1 mm) for IK,in activation; they parallel features of K+ channel block by DTX and related peptide toxins in many animal cells, demonstrating the sensitivity of plant plasma membrane K+ channels to nanomolar toxin concentrations under physiological conditions; the data also highlight one main difference: in the guard cells, DTX action appears specific to the K+ inward rectifier.We thank J.O. Dolly (Imperial, London) and S.M. Jarvis (University of Kent, Canterbury) for several helpful discussions. This work was supported by SERC grant GR/H07696 and was aided by equipment grants from the Gatsby Foundation, the Royal Society and the University of London Central Research Fund. G.O. was supported by an Ausbildungsstipendium (OB 85/1-1) from the Deutsche Forschungsgemeinschaft. F.A. holds a Sainsbury Studentship.  相似文献   

9.
Summary The properties of transporters (or channels) for monovalent cations in the membrane of isolated pancreatic zymogen granules were characterized with an assay measuring bulk cation influx driven by a proton diffusion potential. The proton diffusion potential was generated by suspending granules in an isotonic monovalent cation/acetate solution and increasing the proton conductance of the membrane with a protonophore. Monovalent cation conductance had the sequence Rb+ > K+ > Na+ > Cs+ > Li+ > N-methyl glucamine+. The conductance could be inhibited by Ca2+, Mg2+, Ba2+, and pharmacological agents such as quinine, quinidine, glyburide and tolbutamide, but not by 5 mm tetra-ethyl ammonium or 5mm 4-aminopyridine, when applied to the cytosolic surface of the granule membrane. Over 50% of K+ conductance could be inhibited by millimolar concentrations of ATP or MgATP. The inhibition by MgATP, but not by ATP itself, was reversed by the K+ channel opener diazoxide. The inhibitory effect is probably by a noncovalent interaction since it could be mimicked by nonhydrolyzable analogs of ATP and by ADP. The reversal of MgATP inhibition by diazoxide may be mediated by phosphorylation since it was not affected by dilution, and was blocked by the protein kinase inhibitor H7. The properties of the K+ conductance of pancreatic zymogen granule membranes are similar to those of ATP-sensitive K+ channels found in the plasma membrane of insulin-secreting islet cells, neurons, muscle, and renal cells.This research was supported by grants from the Cystic Fibrosis Foundation (ZO298) and NIH (DK-39658). F.T. is recipient of a Fellowship from the American Cystic Fibrosis Foundation. K.C.V. is a participant of a summer research program for undergraduate students from Knox College, Galesburg, IL.  相似文献   

10.
Summary The control of K+ channels in the insulin-secreting cell line RINm5F has been investigated by patch-clamp singlechannel current recording experiments. The unitary current events recorded from cell-attached patches are due to large and small inwardly rectifying ATP-sensitive K+ channels with conductance properties similar to the two channels previously identified in primary cultured rat islet cells (Findlay, I., Dunne, M.J., & Petersen, O. H.J. Membrane Biol. 88:165–172, 1985). Cell permeabilization through brief exposure to 10 m digitonin or 0.05% saponin (outside the isolated membrane patch area) results in a dramatic increase in current through the cell-attached patch due to opening of many large and small K+-selective channels. These channels are inhibited in a dose-dependent manner by ATP applied to the bath (near-complete inhibition by 5mm ATP). During prolonged ATP exposure (1–5 min) the initial inhibition is followed by partial recovery of channel activity, although further activation does occur when ATP is subsequently removed. From the maximal number of coincident channel openings in the permeabilized cells (in the absence of ATP), it is estimated that there are on average 12 large ATP-sensitive K+ channels per membrane patch, but in the intact cells less than 5% of the membrane patches exhibited three or more coincident K+ channel openings, indicating the degree to which the channels are inhibited in the resting condition by endogenous ATP. Stimulation of RINm5F cells to secrete insulin was carried out by challenging intact cells with 10mm d-glyceraldehyde.d-glyceraldehyde induced depolarization of the membrane from about –70 to –20 mV and evoked a marked reduction in the open-state probability of both the large and small ATP-sensitive channels.d-glyceraldehyde also induced action potentials in a number of cases. All effects of stimulation were largely transient, lasting about 100 sec. The two ATP-sensitive K+ channels are probably responsible for the resting potential and play a crucial role in coupling metabolism to membrane depolarization.  相似文献   

11.
Summary K+ channels in cultured rat pancreatic islet cells have been studied using patch-clamp single-channel recording techniques in cell-attached and excised inside-out and outside-out membrane patches. Three different K+-selective channels have been found. Two inward rectifier K+ channels with slope conductances of about 4 and 17 pS recorded under quasi-physiological cation gradients (Na+ outside, K+ inside) and maximal conductances recorded in symmetrical K+-rich solutions of about 30 and 75 pS, respectively. A voltage- and calcium-activated K channel was recorded with a slope conductance of about 90 pS under the same conditions and a maximal conductance recorded in symmetrical K+-rich solutions of about 250 pS. Single-channel current recording in the cell-attached conformation revealed a continuous low level of activity in an apparently small number of both the inward rectifier K+ channels. But when membrane patches were excised from the intact cell a much larger number of inward rectifier K+ channels became transiently activated before showing an irreversible decline. In excised patches opening and closing of both the inward rectifier K+ channels were unaffected by voltage, internal Ca2+ or externally applied tetraethyl-ammonium (TEA) but the probability of opening of both inward rectifier K+ channels was reduced by internally applied 1–5mm adenosine-5-triphosphate (ATP). The large K+ channel was not operational in cell-attached membrane patches, but in excised patches it could be activated at negative membrane potentials by 10–7 to 10–6 m internal Ca2+ and blocked by 5–10mm external TEA.  相似文献   

12.
Summary Guard cells of higher plants control transpirational water loss and gas exchange for photosynthesis by opening and closing pores in the epidermis of the leaf. To power these turgordriven movements, guard cells accumulate (and lose) 200 to 400mm (1 to 3 pmol/cell) K+, fluxes thought to pass through K+ channels in the guard cells plasma membrane. Steady-state current-voltage (I–V) relations of intactVicia guard cells frequently show large, outward-going currents at potentials approaching 0 mV. Since this current could be carried by K+ channels, its pharmacology and dependence on external K+ (K v + ) has been examined under voltage clamp over an extended potential range. Measurements were carried out on cells which showed little evidence of primary electrogenic transport, thus simplifying analyses. Clamping these cells away from the free-running membrane potential (V m ) revealed an outward-rectifying current with instantaneous and time-dependent components, and sensitive to the K+ channel blocker tetraethylammonium chloride. The current declined also under metabolic blockade with NaCN and in the presence of diethylstilbesterol, responses which were attributed to secondary effects of these inhibitors. The putative K+ current rose with voltage positive toV m but it decayed over two voltage ranges, one negative toV m and one near +100 mV, to give steady-stateI–V relations with two regions of negative (slope) conductance. Voltage-dependent and kinetic characteristics of the current were affected by K v + and followed the K+ equilibrium potential. Against a (presumably) low background of primary ion transport, the K+ current contributed appreciably to charge balance atV m in 0.1mm as well as in 1 to 10mm K v + . Thus, gating of these K+ channels compensates for the prevailing K+ conditions to ensure net K+ movement out of the cell.  相似文献   

13.
Summary We have investigated the effect of a purified preparation of Charybdotoxin (CTX) on the Ca-activated K+ (Ca–K) channel of human red cells (RBC). Cytosolic Ca2+ was increased either by ATP depletion or by the Ca ionophore A23187 and incubation in Na+ media containing CaCl2. The Ca–K efflux activated by metabolic depletion was partially (77%) inhibited from 15.8±2.4 mmol/liter cell · hr, to 3.7±1.0 mmol/liter cell · hr by 6nm CTX (n=3). The kinetic of Ca–K efflux was studied by increasing cell ionized Ca2+ using A23187 (60 mol/liter cell), and buffering with EGTA or citrate; initial rates of net K+ efflux (90 mmol/liter cell K+) into Na+ medium containing glucose, ouabain, bumetanide at pH 7.4 were measured. Ca–K efflux increased in a sigmoidal fashion (n of Hill 1.8) when Ca2+ was raised, with aK m of 0.37 m and saturating between 2 and 10 m Ca2+. Ca–K efflux was partially blocked (71±7.8%, mean ±sd,n=17) by CTX with high affinity (IC500.8nm), a finding suggesting that is a high affinity ligand of Ca–K channels. CTX also blocked 72% of the Ca-activated K+ efflux into 75mm K+ medium, which counteracted membrane hyperpolarization, cell acidification and cell shrinkage produced by opening of the K+ channel in Na+ media. CTX did not block Valinomycin-activated K+ efflux into Na+ or K+ medium and therefore it does not inhibit K+ movement coupled to anion conductive permeability.TheV max, but not theK m–Ca of Ca–K efflux showed large individual differences varying between 4.8 and 15.8 mmol/liter cell · min (FU). In red cells with Hb A,V max was 9.36±3.0 FU (mean ±sd,n=17). TheV max of the CTX-sensitive, Ca–K efflux was 6.27±2.5 FU (range 3.4 to 16.4 FU) in Hb A red cells and it was not significantly different in Hb S (6.75±3.2 FU,n=8). Since there is larger fraction of reticulocytes in Hb S red cells, this finding indicates that cell age might not be an important determinant of theV max of Ca–K+ efflux.Estimation of the number of CTX-sensitive Ca-activated K+ channels per cell indicate that there are 1 to 3 channels/per cell either in Hb A or Hb S red cells. The CTX-insensitive K+ efflux (2.7±0.9 FU) may reflect the activity of a different channel, nonspecific changes in permeability or coupling to an anion conductive pathway.  相似文献   

14.
It is proposed that the activity of an epidermal cotransport system for Na+ and dicarboxylic amino acids accounts for the small amounts of L-glutamate and L-aspartate in the otherwise amino-acid-rich blood plasma of insects. This Na+-dependent transport system is responsible for more than 95% of the uptake of these amino acids into the larval epidermis of the beetle Tenebrio molitor. Kinetic analysis of uptake showed that the Na+-dependent co-transporter has medium affinity for L-glutamate and L-aspartate. The K m for L-glutamate uptake was 146 mol·l-1, and the maximum velocity of uptake (V max) was 12.1 pmol·mm-2 of epidermal sheet per minute. The corresponding values for L-aspartate were 191 mol·l-1 and 8.4 pmol·mm-2·min-1. The Na+/L-glutamate co-transporter has a stoichiometry of at least two Na+ ions for each L-glutamate-ion transported (n=217). The co-transporter has an affinity for Na+ equivalent to a K m of 21 mmol · l-1 Na+. Na+ is the only external ion apparently required to drive L-glutamate uptake. Li+ substitutes weakly for Na+. Removal of external K+ or addition of ouabain decreases uptake slowly over 1 h, suggesting that these treatments dissipate the Na+/K+ gradient by inhibiting epidermal Na+/K+ ATPase. Several structural analogues of L-glutamate inhibit the medium-affinity uptake of L-glutamate. The order of potency with which these competitive inhibitors block glutamate uptake is L-cysteatethreo-3-hydroxy-Dl-aspartate > D-aspartateL-aspartate> L-cysteine sulphinate > L-homocysteateD-glutamate. L-trans-Pyrrolidine-2,4-dicarboxylate, a potent inhibitor of L-glutamate uptake in mammalian synaptosomes, is a relatively weak blocker of epidermal uptake. The epidermis takes up substantially more L-glutamate by this Na+-dependent system than tissues such as skeletal muscle and ventral nerve cord. The epidermis may be a main site regulating blood L-glutamate levels in insects with high blood [Na+]. Because L-glutamate and L-aspartate stimulate skeletal muscle in insects, a likely role for epidermal L-glutamate/L-aspartate transporter is to keep the level of these excitatory amino acids in the blood below the postsynaptic activation thresholds.Abbreviation ac acetate - Ch choline - CNS central nervous system - cpm counts per minute - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetic acids - HPLC high performance liquid chromatography - K m Michaelis constant - n app apparent number - NMG N-methyl-D-glucamine - Pipes Piperazine-N,N-bis-[2-ethanesulfonic acid] - SD standard deviation - TEA tetraethyl-ammonium - V velocity of uptake - V max maximum velocity of uptake  相似文献   

15.
Halvor Aarnes 《Planta》1978,140(2):185-192
Homoserine kinase was purified 700-fold by fractional ammonium sulfate precipitation, heat treatment, CM-Sephadex C-50 and DEAE-Sephadex A-50 ion exchange chromatography, and Sephadex G-100 gel filtration. The reaction products O-phosphohomoserine and ADP were the only compounds which caused considerable inhibition of homoserine kinase activity. Product inhibition studies showed non-competitive inhibition between ATP and O-phosphohomoserine and between homoserine and O-phosphohomoserine, and competitive inhibition between ATP and ADP. ADP showed non-competitive inhibition versus homoserine at suboptimal concentrations of ATP. At saturating concentrations of ATP no effect of ADP was observed. The homoserine kinase activity was negligible in the absence of K+ and the Km value for K+ was observed to be 4.3 mmol l–1. A non-competitive pattern was observed with respect to the substrates homoserine and ATP. Threonine synthase in the first green leaf of 6-day-old barley seedlings was partially purified 15-fold by ammonium sulfate fractionation and Sephadex G-100 gel chromatography. Threonine synthase was shown to require pyridoxal 5-phosphate as coenzyme for optimum activity and the enzyme was strongly activated by S-adenosyl-L-methionine. The optimum pH for threonine synthase activity was 7 to 8.Abbreviations PLP Pyridoxal 5-phosphate - SAM S-adenosyl-L-methionine - HSP O-phosphohomoserine  相似文献   

16.
The inside-out mode of the patch-clamp technique was used to study adenosine-5-triphosphate (ATP)-sensitive K+ channels in mammalian skeletal muscle. Vanadate, applied to the cytoplasmic face of excised patches, was a potent activator of ATP-sensitive K+ channels. Divalent cations (Mg2+, Ca2+) were a prerequisite for the activating process. The maximal effect was achieved using 1 mM vanadate dissolved in Ringer, increasing the open-state probability about ninefold. The active 5 + redox form of vanadate which stimulates ATP-sensitive K+ channels is likely to be decavanadate V10O inf28 sup6– . ATP concentration-response curves have Hill coefficients near three in internal Na+-rich Ringer and between one and two in internal KCl solutions. Half maximal channel blockage was observed at ATP concentrations of 4 and 8 M in Ringer and KCl solutions, respectively. Internal vanadate shifted the curves towards higher ATP concentrations without affecting their slopes. Thus 50% channel blockage occurred at 65 M ATP in internal Ringer containing 0.5 mM vanadate. The results indicate that the affinity and stoichiometry of ATP binding to ATP-sensitive K+ channels are strongly modulated by internal cations and that the ATP sensitivity is weakened by vanadate. Offprint requests to: B. Neumcke  相似文献   

17.

Background

Sevoflurane has been demonstrated to vasodilate the foeto-placental vasculature. We aimed to determine the contribution of modulation of potassium and calcium channel function to the vasodilatory effect of sevoflurane in isolated human chorionic plate arterial rings.

Methods

Quadruplicate ex vivo human chorionic plate arterial rings were used in all studies. Series 1 and 2 examined the role of the K+ channel in sevoflurane-mediated vasodilation. Separate experiments examined whether tetraethylammonium, which blocks large conductance calcium activated K+ (KCa++) channels (Series 1A+B) or glibenclamide, which blocks the ATP sensitive K+ (KATP) channel (Series 2), modulated sevoflurane-mediated vasodilation. Series 3 – 5 examined the role of the Ca++ channel in sevoflurane induced vasodilation. Separate experiments examined whether verapamil, which blocks the sarcolemmal voltage-operated Ca++ channel (Series 3), SK&F 96365 an inhibitor of sarcolemmal voltage-independent Ca++ channels (Series 4A+B), or ryanodine an inhibitor of the sarcoplasmic reticulum Ca++ channel (Series 5A+B), modulated sevoflurane-mediated vasodilation.

Results

Sevoflurane produced dose dependent vasodilatation of chorionic plate arterial rings in all studies. Prior blockade of the KCa++ and KATP channels augmented the vasodilator effects of sevoflurane. Furthermore, exposure of rings to sevoflurane in advance of TEA occluded the effects of TEA. Taken together, these findings suggest that sevoflurane blocks K+ channels. Blockade of the voltage-operated Ca++channels inhibited the vasodilator effects of sevoflurane. In contrast, blockade of the voltage-independent and sarcoplasmic reticulum Ca++channels did not alter sevoflurane vasodilation.

Conclusion

Sevoflurane appears to block chorionic arterial KCa++ and KATP channels. Sevoflurane also blocks voltage-operated calcium channels, and exerts a net vasodilatory effect in the in vitro foeto-placental circulation.  相似文献   

18.
Summary A simple procedure was developed for the isolation of a sarcolemma-enriched membrane preparation from homogenates of bullfrog (Rana catesbeiana) heart. Crude microsomes obtained by differential centrifugation were fractionated in Hypaque density gradients. The fraction enriched in surface membrane markers consisted of 87% tightly sealed vesicles. The uptake of86Rb+ by the preparation was measured in the presence of an opposing K+ gradient using a rapid ion exchange technique. At low extravesicular Rb+ concentrations, at least 50% of the uptake was blocked by addition of 1mm ouabain to the assay medium. Orthovanadate (50 m), ADP (2.5mm), or Mg (1mm) were also partial inhibitors of Rb+ uptake under these conditions, and produced a complete block of Rb+ influx in the presence of 1mm ouabain. When86Rb+ was used as a tracer of extravesicular K+ (Rb 0 + 40 m K 0 + =0.1–5mm) a distinct uptake pathway emerged, as detected by its inhibition by 1mm Ba2+ (K 0.5=20 m). At a constant internal K+ concentration (K in + =50mm) the magnitude of the Ba2+-sensitive K+ uptake was found to depend on K 0 + in a manner that closely resembles the K+ concentration dependence of the background K+ conductance (I Kl) observed electrophysiologically in intact cardiac cells. We conclude that K+ permeates passively this preparation through two distinct pathways, the sodium pump and a system identifiable as the background potassium channel.  相似文献   

19.
Summary The current-voltage (I/V) technique was employed to investigate the different electrophysiological states of theChara plasmalemma and their interaction under a range of conditions. In K+ state the membrane became very permeable (conductances >20 S m 2) as [K+]0 increased to 10mm. As the cells were then easily damaged by the voltage-clamp procedures, it was difficult to determine the saturation K+ conductance. TEA (tetraethylammonium chloride) reversibly blocked the K+ channels, but had no effect on theI/V curve of the pump state, indicating that the K+ channels were not participating in this state. Acid pH0 (4.5) diminished the K+ conductance, but did not alter the response of the K+ channels to change in [K+]0. Alkaline pH0 (11.0) madeChara resting PD bistable: the PD either stayed near the estimatedE K and theI/V curve showed a negative conductance region typical of the K+ state, or it hyperpolarized and the near-linearI/V profile of the proton-permeable state was observed.  相似文献   

20.
Summary Voltage-clamped steps in the electric potential difference (PD) across the membrane in cells of the green alga,Chara inflata, cause voltage- and time-dependent current flows, interpreted to arise from opening and closing of various types of ion channel in the membrane. With cells in the light, these channels are normally closed, and the resting PD is probably determined by the operation of an H+ efflux pump. Positive steps in PD from the resting level often caused the opening of K+ channels with sigmoid kinetics. The channels began to show opening when the PD–120 mV for an external concentration of K+ of 1.0mm. Return of the PD to the resting level caused closing of the channels with complex kinetics. Various treatments of the cell could cause these K+ channels to open, and remain open continuously, with the PD then lying closer to the Nernst PD for K+. The K+ channels have been identified by the blocking effects of TEA+. Another group of channels, probably Cl and Ca2+ associated with the action potential open when the PD is stepped to values less negative than –50 mV. Negative steps from the resting PD cause the slow opening, with a time course of seconds, of yet another type of channel, probably Cl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号