首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Li MS 《Biophysical journal》2007,93(8):2644-2654
It is well known that the unfolding times of proteins, tauu, scales with the external mechanical force f as tauu=tauu0exp(-fxu/kBT), where xu is the location of the average transition state along the reaction coordinate given by the end-to-end distance. Using the off-lattice Go-like models, we have shown that in terms of xu, proteins may be divided into two classes. The first class, which includes beta- and beta/alpha-proteins, has xu approximately 2-5 A whereas the second class of alpha-proteins has xu about three times larger than that of the first class, xu approximately 7-15 A. These results are in good agreement with the experimental data. The secondary structure is found to play the key role in determining the shape of the free energy landscape. Namely, the distance between the native state and the transition state depends on the helix content linearly. It is shown that xu has a strong correlation with mechanical stability of proteins. Defining the unfolding force, fu, from the constant velocity pulling measurements as a measure of the mechanical stability, we predict that xu decays with fu by a power law, xu approximately fu(-mu), where the exponent mu is approximately 0.4. We have demonstrated that the unfolding force correlates with the helix content of a protein. The contact order, which is a measure of fraction of local contacts, was found to strongly correlate with the mechanical stability and the distance between the transition state and native state. Our study reveals that xu and fu might be estimated using either the helicity or the contact order.  相似文献   

2.
Single-molecule manipulation techniques have enabled the characterization of the unfolding and refolding process of individual protein molecules, using mechanical forces to initiate the unfolding transition. Experimental and computational results following this approach have shed new light on the mechanisms of the mechanical functions of proteins involved in several cellular processes, as well as revealed new information on the protein folding/unfolding free-energy landscapes. To investigate how protein molecules of different folds respond to a stretching force, and to elucidate the effects of solution conditions on the mechanical stability of a protein, we synthesized polymers of the protein ubiquitin and characterized the force-induced unfolding and refolding of individual ubiquitin molecules using an atomic-force-microscope-based single-molecule manipulation technique. The ubiquitin molecule was highly resistant to a stretching force, and the mechanical unfolding process was reversible. A model calculation based on the hydrogen-bonding pattern in the native structure was performed to explain the origin of this high mechanical stability. Furthermore, pH effects were studied and it was found that the forces required to unfold the protein remained constant within a pH range around the neutral value, and forces decreased as the solution pH was lowered to more acidic values.  相似文献   

3.
Chung HS  Tokmakoff A 《Proteins》2008,72(1):474-487
Transient thermal unfolding of ubiquitin is investigated using nonlinear infrared spectroscopy after a nanosecond laser temperature jump (T-jump). The abrupt change in the unfolding free energy surface and the ns time resolution allow us to observe a fast response on ns to micros time-scales, which we attribute to downhill unfolding, before a cross-over to ms kinetics. The downhill unfolding by a sub-population of folded proteins is induced through a shift of the barrier toward the native state. By adjusting the T-jump width, the effect of the initial (T(i)) and final (T(f)) temperature on the unfolding dynamics can be separated. From the amplitude of the fast downhill unfolding, the fractional population prepared at the unfolding transition state is obtained. This population increases with both T(i) and with T(f). A two-state kinetic analysis of the ms refolding provides thermodynamic information about the barrier height. By a combination of the fast and slow unfolding and folding parameters, a quasi-two-state kinetic analysis is performed to calculate the time-dependent population changes of the folded state. This calculation coincides with the experimentally obtained population changes at low temperature but deviations are found in the T-jump from 67 to 78 degrees C. Using temperature-dependent barrier height changes, a temperature Phi value analysis is performed. The result shows a decreasing trend of Phi(T) with temperature, which indicates an increase of the heterogeneity of the transition state. We conclude that ubiquitin unfolds along a well-defined pathway at low temperature which expands with increasing temperature to include multiple routes.  相似文献   

4.
Folding experiments of single ubiquitin molecules under force clamp using an atomic force microscope revealed a dynamic long-lived intermediate with nanometer scale end-to-end distance fluctuations along an unexpectedly complex folding pathway. To examine the nature of this intermediate at the atomic level as well as the driving forces that give rise to the observed fluctuations, we performed molecular dynamics refolding simulations of unfolded ubiquitin under constant force. After an initial fast collapse, we find a highly dynamic, broad ensemble of conformations with partial and continuously changing secondary structure and side chain interactions. This ensemble resembles a molten-globule-like state, similar in nature to the previously described non-native state of ubiquitin in solution, but stretched by the external force. The scale of the end-to-end distance fluctuations derived from the simulations compares well with experiment. Transient formation of unspecific and metastable hydrophobic clusters along the chain are found to give rise to the observed end-to-end distance fluctuations. These distinct collapses, interpreted as folding attempts, imply an upper limit for the folding attempt frequency of approximately 10 ns. Our results suggest possible relations between force-induced unfolding and temperature or chemically induced denaturation.  相似文献   

5.
B Zhang  G Xu    J S Evans 《Biophysical journal》1999,77(3):1306-1315
Molecular elasticity is a physicomechanical property that is associated with a select number of polypeptides and proteins, such as the giant muscle protein, titin, and the extracellular matrix protein, tenascin. Both proteins have been the subject of atomic force microscopy (AFM), laser tweezer, and other in vitro methods for examining the effects of force extension on the globular (FNIII/Ig-like) domains that comprise each protein. In this report we present a time-dependent method for simulating AFM force extension and its effect on FNIII/Ig domain unfolding and refolding. This method treats the unfolding and refolding process as a standard three-state protein folding model (U right arrow over left arrow T right arrow over left arrow F, where U is the unfolded state, T is the transition or intermediate state, and F is the fully folded state), and integrates this approach within the wormlike chain (WLC) concept. We simulated the effect of AFM tip extension on a hypothetical titin molecule comprised of 30 globular domains (Ig or FNIII) and 25% Pro-Glu-Val-Lys (PEVK) content, and analyzed the unfolding and refolding processes as a function of AFM tip extension, extension rate, and variation in PEVK content. In general, we find that the use of a three-state protein-folding kinetic-based model and the implicit inclusion of PEVK domains can accurately reproduce the experimental force-extension curves observed for both titin and tenascin proteins. Furthermore, our simulation data indicate that PEVK domains exhibit extensibility behavior, assist in the unfolding and refolding of FNIII/Ig domains in the titin molecule, and act as a force "buffer" for the FNIII/Ig domains, particularly at low and moderate extension forces.  相似文献   

6.
Pressure-induced unfolding of 23-kDa protein from spinach photosystem II has been systematically investigated at various experimental conditions. Thermodynamic equilibrium studies indicate that the protein is very sensitive to pressure. At 20 degrees C and pH 5.5, 23-kDa protein shows a reversible two-state unfolding transition under pressure with a midpoint near 160 MPa, which is much lower than most natural proteins studied to date. The free energy (DeltaG(u)) and volume change (DeltaV(u)) for the unfolding are 5.9 kcal/mol and -160 ml/mol, respectively. It was found that NaCl and sucrose significantly stabilize the protein from unfolding and the stabilization is associated not only with an increase in DeltaG(u) but also with a decrease in DeltaV(u). The pressure-jump studies of 23-kDa protein reveal a negative activation volume for unfolding (-66.2 ml/mol) and a positive activation volume for refolding (84.1 ml/mol), indicating that, in terms of system volume, the protein transition state lies between the folded and unfolded states. Examination of the temperature effect on the unfolding kinetics indicates that the thermal expansibility of the transition state and the unfolded state of 23-kDa protein are closer to each other and they are larger than that of the native state. The diverse pressure-refolding pathways of 23-kDa protein in some conditions were revealed in pressure-jump kinetics.  相似文献   

7.
S Manyusa  D Whitford 《Biochemistry》1999,38(29):9533-9540
The refolding and unfolding kinetics of a soluble domain of apocytochrome b5 extending from residue 1 to 104 have been characterized using stopped flow and equilibrium-based fluorescence methods. The isolated apoprotein unfolds reversibly in the presence of GuHCl. From cooperative unfolding curves, the conformational stability (Delta G(uw)), in the absence of denaturant, is estimated to be 11.6 +/- 1.5 kJ mol-1 at 10 degrees C. The stability of apocytochrome b5 is lower than that of the corresponding form of the holoprotein (Delta G approximately 25 kJ mol-1) and exhibits a transition midpoint at 1.6 M GuHCl. Kinetic studies support the concept of a two-state model with both unfolding and refolding rates showing an exponential dependence on denaturant concentration with no evidence of the formation of transient intermediates in either limb of the chevron plot. Apocytochrome b5 is therefore an example of a protein in which both kinetics and equilibria associated with folding are described by a two-state model. The values of mku and mkf obtained from kinetic analysis are an indication of a transition state (mku/meq of 0.29) that resembles the native form by retaining similar solvent accessibility and many of the noncovalent interactions found in the apoprotein. The changes in heat capacity support a transition state that resembles the apoprotein with a value for Delta Cpf of -3.6 kJ mol-1 K-1 estimated for the refolding reaction. From these measurements, a model of refolding that involves the rapid nucleation of hydrophobic residues around Trp26 is suggested as a major event in the formation of the native apoprotein.  相似文献   

8.
The stability of bacteriorhodopsin (bR) has often been assessed using SDS unfolding assays that monitor the transition of folded bR (bR(f)) to unfolded (bR(u)). While many criteria suggest that the unfolding curves reflect thermodynamic stability, slow retinal (RET) hydrolysis during refolding makes it impossible to perform the most rigorous test for equilibrium, i.e., superimposable unfolding and refolding curves. Here we made a new equilibrium test by asking whether the refolding rate in the transition zone is faster than RET hydrolysis. We find that under conditions we have used previously, refolding is in fact slower than hydrolysis, strongly suggesting that equilibrium is not achieved. Instead, the apparent free energy values reported previously are dominated by unfolding rates. To assess how different the true equilibrium values are, we employed an alternative method by measuring the transition of bR(f) to unfolded bacterioopsin (bO(u)), the RET-free form of unfolded protein. The bR(f)-to-bO(u) transition is fully reversible, particular when we add excess RET. We compared the difference in unfolding free energies for 13 bR mutants measured by both assays. For 12 of the 13 mutants with a wide range of stabilities, the results are essentially the same within experimental error. The congruence of the results is fortuitous and suggests the energetic effects of most mutations may be focused on the folded state. The bR(f)-to-bO(u) reaction is inconvenient because many days are required to reach equilibrium, but it is the preferable measure of thermodynamic stability. This article is part of a Special Issue entitled: Protein Folding in Membranes.  相似文献   

9.
We applied dynamic single-molecule force spectroscopy to quantify the parameters (free energy of activation and distance of the transition state from the folded state) characterizing the energy barriers in the unfolding energy landscape of the outer membrane protein G (OmpG) from Escherichia coli. The pH-dependent functional switching of OmpG directs the protein along different regions on the unfolding energy landscape. The two functional states of OmpG take the same unfolding pathway during the sequential unfolding of β-hairpins I-IV. After the initial unfolding events, the unfolding pathways diverge. In the open state, the unfolding of β-hairpin V in one step precedes the unfolding of β-hairpin VI. In the closed state, β-hairpin V and β-strand S11 with a part of extracellular loop L6 unfold cooperatively, and subsequently β-strand S12 unfolds with the remaining loop L6. These two unfolding pathways in the open and closed states join again in the last unfolding step of β-hairpin VII. Also, the conformational change from the open to the closed state witnesses a rigidified extracellular gating loop L6. Thus, a change in the conformational state of OmpG not only bifurcates its unfolding pathways but also tunes its mechanical properties for optimum function.  相似文献   

10.
The unfolding transition and kinetic refolding of dimeric creatine kinase after urea denaturation were monitored by intrinsic fluorescence and far ultraviolet circular dichroism. An equilibrium intermediate and a kinetic folding intermediate were identified and characterized. The fluorescence intensity of the equilibrium intermediate is close to that of the unfolded state, whereas its ellipticity at 222 nm is about 50% of the native state. The transition curves measured by these two methods are therefore non-coincident. The kinetic folding intermediate, formed during the burst phase of refolding under native-like conditions, possesses 75% of the native secondary structure, but is mostly lacking in native tertiary structure. In moderate concentrations of urea, only the initial, rapid change in fluorescence intensity or negative ellipticity is observed, and the final state values do not reach the equivalent unfolding values. The unfolding and refolding transition curves measured under identical conditions are non-coincident within the transition from intermediate to fully unfolded state. It is observed by SDS-PAGE that disulfide bond-linked dimeric or oligomeric intermediates are formed in moderate urea concentrations, especially in the refolding reaction. These rapidly formed, soluble intermediates represent an off-pathway event that leads to the hysteresis in the refolding transition curves.  相似文献   

11.
Forced-unfolding and force-quench refolding of RNA hairpins   总被引:3,自引:2,他引:1       下载免费PDF全文
Nanomanipulation of individual RNA molecules, using laser optical tweezers, has made it possible to infer the major features of their energy landscape. Time-dependent mechanical unfolding trajectories, measured at a constant stretching force (fS) of simple RNA structures (hairpins and three-helix junctions) sandwiched between RNA/DNA hybrid handles show that they unfold in a reversible all-or-none manner. To provide a molecular interpretation of the experiments we use a general coarse-grained off-lattice Gō-like model, in which each nucleotide is represented using three interaction sites. Using the coarse-grained model we have explored forced-unfolding of RNA hairpin as a function of fS and the loading rate (rf). The simulations and theoretical analysis have been done both with and without the handles that are explicitly modeled by semiflexible polymer chains. The mechanisms and timescales for denaturation by temperature jump and mechanical unfolding are vastly different. The directed perturbation of the native state by fS results in a sequential unfolding of the hairpin starting from their ends, whereas thermal denaturation occurs stochastically. From the dependence of the unfolding rates on rf and fS we show that the position of the unfolding transition state is not a constant but moves dramatically as either rf or fS is changed. The transition-state movements are interpreted by adopting the Hammond postulate for forced-unfolding. Forced-unfolding simulations of RNA, with handles attached to the two ends, show that the value of the unfolding force increases (especially at high pulling speeds) as the length of the handles increases. The pathways for refolding of RNA from stretched initial conformation, upon quenching fS to the quench force fQ, are highly heterogeneous. The refolding times, upon force-quench, are at least an order-of-magnitude greater than those obtained by temperature-quench. The long fQ-dependent refolding times starting from fully stretched states are analyzed using a model that accounts for the microscopic steps in the rate-limiting step, which involves the trans to gauche transitions of the dihedral angles in the GAAA tetraloop. The simulations with explicit molecular model for the handles show that the dynamics of force-quench refolding is strongly dependent on the interplay of their contour length and persistence length and the RNA persistence length. Using the generality of our results, we also make a number of precise experimentally testable predictions.  相似文献   

12.
We have exploited a procedure to identify when hydrogen bonds (H-bonds) form under two-state folding conditions using equilibrium and kinetic deuterium/hydrogen amide isotope effects. Deuteration decreases the stability of equine cytochrome c and the dimeric and crosslinked versions of the GCN4-p1 coiled coil by approximately 0. 5 kcal mol-1. For all three systems, the decrease in equilibrium stability is reflected by a decrease in refolding rates and a near equivalent increase in unfolding rates. This apportionment indicates that approximately 50% of the native H-bonds are formed in the transition state of these helical proteins. In contrast, an alpha/beta protein, mammalian ubiquitin, exhibits a small isotope effect only on unfolding rates, suggesting its folding pathway may be different. These four proteins recapitulate the general trend that approximately 50% of the surface buried in the native state is buried in the transition state, leading to the hypothesis that H-bond formation in the transition state is cooperative, with alpha-helical proteins forming a number of H-bonds proportional to the amount of surface buried in the transition state.  相似文献   

13.
McCully ME  Beck DA  Daggett V 《Biochemistry》2008,47(27):7079-7089
The principle of microscopic reversibility states that at equilibrium the number of molecules entering a state by a given path must equal those exiting the state via the same path under identical conditions or, in structural terms, that the conformations along the two pathways are the same. There has been some indirect evidence indicating that protein folding is such a process, but there have been few conclusive findings. In this study, we performed molecular dynamics simulations of an ultrafast unfolding and folding protein at its melting temperature to observe, on an atom-by-atom basis, the pathways the protein followed as it unfolded and folded within a continuous trajectory. In a total of 0.67 micros of simulation in water, we found six transient denaturing events near the melting temperature (323 and 330 K) and an additional refolding event following a previously identified unfolding event at a high temperature (373 K). In each case, unfolding and refolding transition state ensembles were identified, and they agreed well with experiment on the basis of a comparison of S and Phi values. On the basis of several structural properties, these 13 transition state ensembles agreed very well with each other and with four previously identified transition states from high-temperature denaturing simulations. Thus, not only were the unfolding and refolding transition states part of the same ensemble, but in five of the seven cases, the pathway the protein took as it unfolded was nearly identical to the subsequent refolding pathway. These events provide compelling evidence that protein folding is a microscopically reversible process. In the other two cases, the folding and unfolding transition states were remarkably similar to each other but the paths deviated.  相似文献   

14.
Substitution of trans-proline at three positions in ubiquitin (residues 19, 37 and 38) produces significant context-dependent effects on protein stability (both stabilizing and destabilizing) that reflect changes to a combination of parameters including backbone flexibility, hydrophobic interactions, solvent accessibility to polar groups and intrinsic backbone conformational preferences. Kinetic analysis of the wild-type yeast protein reveals a predominant fast-folding phase which conforms to an apparent two-state folding model. Temperature-dependent studies of the refolding rate reveal thermodynamic details of the nature of the transition state for folding consistent with hydrophobic collapse providing the overall driving force. Br?nsted analysis of the refolding and unfolding rates of a family of mutants with a variety of side chain substitutions for P37 and P38 reveals that the two prolines, which are located in a surface loop adjacent to the C terminus of the main alpha-helix (residues 24-33), are not significantly structured in the transition state for folding and appear to be consolidated into the native structure only late in the folding process. We draw a similar conclusion regarding position 19 in the loop connecting the N-terminal beta-hairpin to the main alpha-helix. The proline residues of ubiquitin are passive spectators in the folding process, but influence protein stability in a variety of ways.  相似文献   

15.
Furuike S  Ito T  Yamazaki M 《FEBS letters》2001,498(1):72-75
Filamin A (ABP-280), which is an actin-binding protein of 560 kDa as a dimer, can, together with actin filaments, produce an isotropic cross-linked three-dimensional network (actin/filamin A gel) that plays an important role in mechanical responses of cells in processes such as maintenance of membrane stability and translational locomotion. In this study, we investigated the mechanical properties of single filamin A molecules using atomic force microscopy. In force-extension curves, we observed sawtooth patterns corresponding to the unfolding of individual immunoglobulin (Ig)-fold domains of filamin A. At a pulling speed of 0.37 microm/s, the unfolding interval was sharply distributed around 30 nm, while the unfolding force ranged from 50 to 220 pN. This wide distribution of the unfolding force can be explained by variation in values of activation energy and the width of activation barrier of 24 Ig-fold domains of the filamin A at the unfolding transition. This unfolding can endow filamin A with great extensibility. The refolding of the unfolded chain of filamin A occurred when the force applied to the protein was reduced to near zero, indicating that its unfolding is reversible. Based on these results, we discuss here the physiological implications of the mechanical properties of single filamin A molecules.  相似文献   

16.
We have previously described the complexity of the folding of the lipolytic enzyme cutinase from F. solani pisi in guanidinium chloride. Here we extend the refolding analysis by refolding from the pH-denatured state and analyze the folding behaviour in the presence of the weaker denaturant urea and the stronger denaturant guanidinium thiocyanate. In urea there is excellent consistency between equilibrium and kinetic data, and the intermediate accumulating at low denaturant concentrations is off-pathway. However, in GdmCl, refolding rates, and consequently the stability of the native state, vary significantly depending on whether refolding takes place from the pH- or GdmCl-denatured state, possibly due to transient formation of aggregates during folding from the GdmCl-denatured state. In GdmSCN, stability is reduced by several kcal/mol with significant aggregation in the unfolding transition region. The basis for the large variation in folding behaviour may be the denaturants' differential ability to support formation of exposed hydrophobic regions and consequent changes in aggregative properties during refolding.  相似文献   

17.
The role that intermediate states play in protein folding is the subject of intense investigation and in the case of ubiquitin has been controversial. We present fluorescence-detected kinetic data derived from single and double mixing stopped-flow experiments to show that the F45W mutant of ubiquitin (WT*), a well-studied single-domain protein and most recently regarded as a simple two-state system, folds via on-pathway intermediates. To account for the discrepancy we observe between equilibrium and kinetic stabilities and m-values, we show that the polypeptide chain undergoes rapid collapse to an intermediate whose presence we infer from a fast lag phase in interrupted refolding experiments. Double-jump kinetic experiments identify two direct folding phases that are not associated with slow isomerisation reactions in the unfolded state. These two phases are explained by kinetic partitioning which allows molecules to reach the native state from the collapsed state via two possible competing routes, which we further examine using two destabilised ubiquitin mutants. Interrupted refolding experiments allow us to observe the formation and decay of an intermediate along one of these pathways. A plausible model for the folding pathway of ubiquitin is presented that demonstrates that obligatory intermediates and/or chain collapse are important events in restricting the conformational search for the native state of ubiquitin.  相似文献   

18.
X Gao  M Qin  P Yin  J Liang  J Wang  Y Cao  W Wang 《Biophysical journal》2012,102(9):2149-2157
Per-ARNT-Sim (PAS) domains serve as versatile binding motifs in many signal-transduction proteins and are able to respond to a wide spectrum of chemical or physical signals. Despite their diverse functions, PAS domains share a conserved structure. It has been suggested that the structure of PAS domains is flexible and thus adaptable to many binding partners. However, direct measurement of the flexibility of PAS domains has not yet been provided. Here, we quantitatively measure the mechanical unfolding of a PAS domain, ARNT PAS-B, using single-molecule atomic force microscopy. Our force spectroscopy results indicate that the structure of ARNT PAS-B can be unraveled under mechanical forces as low as ~30 pN due to its broad potential well for the mechanical unfolding transition of ~2 nm. This allows the PAS-B domain to extend by up to 75% of its resting end-to-end distance without unfolding. Moreover, we found that the ARNT PAS-B domain unfolds in two distinct pathways via a kinetic partitioning mechanism. Sixty-seven percent of ARNT PAS-B unfolds through a simple two-state pathway, whereas the other 33% unfolds with a well-defined intermediate state in which the C-terminal β-hairpin is detached. We propose that the structural flexibility and force-induced partial unfolding of PAS-B domains may provide a unique mechanism for them to recruit diverse binding partners and lower the free-energy barrier for the formation of the binding interface.  相似文献   

19.
Reversible denaturation of the gene V protein of bacteriophage f1   总被引:7,自引:0,他引:7  
H Liang  T C Terwilliger 《Biochemistry》1991,30(11):2772-2782
The guanidine hydrochloride (GuHCl)-induced denaturation of the gene V protein of bacteriophage f1 has been studied, using the chemical reactivity of a cysteine residue that is buried in the folded protein and the circular dichroism (CD) at 211 and 229 nm as measures of the fraction of polypeptide chains in the folded form. It is found that this dimeric protein unfolds in a single cooperative transition from a folded dimer to two unfolded monomers. A folded, monomeric form of the gene V protein was not detected at equilibrium. The kinetics of unfolding of the gene V protein in 3 M GuHCl and the refolding in 2 M GuHCl are also consistent with a transition between a folded dimer and two unfolded monomers. The GuHCl concentration dependence of the rates of folding and unfolding suggests that the transition state for folding is near the folded conformation.  相似文献   

20.
Xu X  Liu Q  Xie Y 《Biochemistry》2002,41(11):3546-3554
Anticoagulation factor II (ACF II) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X-binding protein in a Ca(2+)-dependent fashion with marked anticoagulant activity. The equilibrium unfolding/refolding of apo-ACF II, holo-ACF II, and Tb(3+)-reconstituted ACF II in guanidine hydrochloride (GdnHCl) solutions was studied by following the fluorescence and circular dichroism (CD). Metal ions were found to increase the structural stability of ACF II against GdnHCl and irreversible thermal denaturation and, furthermore, influence its unfolding/refolding behavior. The GdnHCl-induced unfolding/refolding of both apo-ACF II and Tb(3+)-ACF II is a two-state process with no detectable intermediate state, while the GdnHCl-induced unfolding/refolding of holo-ACF II in the presence of 1 mM Ca(2+) follows a three-state transition with an intermediate state. Ca(2+) ions play an important role in the stabilization of both native and I states of holo-ACF II. The decalcification of holo-ACF II shifts the ending zone of unfolding/refolding curve toward lower GdnHCl concentration, while the reconstitution of apo-ACF II with Tb(3+) ions shifts the initial zone of the denaturation curve toward higher GdnHCl concentration. Therefore, it is possible to find a denaturant concentration (2.1 M GdnHCl) at which refolding from the fully denatured state of apo-ACF II to the I state of holo-ACF II or to the native state of Tb(3+)-ACF II can be initiated merely by adding the 1 mM Ca(2+) ions or 10 microM Tb(3+) ions to the unfolded state of apo-ACF II, respectively, without changing the concentration of the denaturant. Using Tb(3+) as a fluorescence probe of Ca(2+), the kinetic results of metal ion-induced refolding provide evidence for the fact that the first phase of Tb(3+)-induced refolding should involve the formation of the compact metal-binding site regions, and subsequently, the protein undergoes further conformational rearrangements to form the native structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号