首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fractalkine (CX3CL1, FKN), a CX3C gene sequence inflammatory chemokine, has been found to have pro‐inflammatory and pro‐adhesion effects. Macrophages are immune cells with a critical role in regulating the inflammatory response. The imbalance of M1/M2 macrophage polarization can lead to aggravated inflammation. This study attempts to investigate the mechanisms through which FKN regulates macrophage activation and the acute kidney injury (AKI) involved in inflammatory response induced by lipopolysaccharide (LPS) by using FKN knockout (FKN‐KO) mice and cultured macrophages. It was found that FKN and Wnt/β‐catenin signalling have a positive interaction in macrophages. FKN overexpression inhibited LPS‐induced macrophage apoptosis. However, it enhanced their cell viability and transformed them into the M2 type. The effects of FKN overexpression were accelerated by activation of Wnt/β‐catenin signalling. In the in vivo experiments, FKN deficiency suppressed macrophage activation and reduced AKI induced by LPS. Inhibition of Wnt/β‐catenin signalling and FKN deficiency further mitigated the pathologic process of AKI. In summary, we provide a novel mechanism underlying activation of macrophages in LPS‐induced AKI. Although LPS‐induced murine AKI was unable to completely recapitulate human AKI, the positive interactions between FKN and Wnt/β‐catenin signalling pathway may be a therapeutic target in the treatment of kidney injury.  相似文献   

3.
Acute kidney injury (AKI) is often secondary to sepsis. Increasing evidence suggests that mitochondrial dysfunction contributes to the pathological process of AKI. In this study, we aimed to examine the regulatory roles of Sirt3 in Lipopolysaccharide (LPS)‐induced mitochondrial damage in renal tubular epithelial cells (TECs). Sirt3 knockout mice were intraperitoneally injected with LPS, and cultured TECs were stimulated with LPS to evaluate the effects of Sirt3 on mitochondrial structure and function in TECs. Electron microscopy was used to assess mitochondrial morphology. Immunofluorescence staining was performed to detect protein expression and examine mitochondrial morphology. Western blotting was used to quantify protein expression. We observed that LPS increased apoptosis, induced disturbances in mitochondrial function and dynamics, and downregulated Sirt3 expression in a sepsis‐induced AKI mouse model and human proximal tubular (HK‐2) cells in vitro. Sirt3 deficiency further exacerbated LPS‐induced renal pathological damage, apoptosis and disturbances in mitochondrial function and dynamics. On the contrary, Sirt3 overexpression in HK‐2 cells alleviated these lesions. Functional studies revealed that Sirt3 overexpression alleviated LPS‐induced mitochondrial damage and apoptosis in TECs by promoting OPA1‐mediated mitochondrial fusion through the deacetylation of i‐AAA protease (YME1L1), an upstream regulatory molecule of OPA1. Our study has identified Sirt3 as a vital factor that protects against LPS‐induced mitochondrial damage and apoptosis in TECs via the YME1L1‐OPA1 signaling pathway.

In a physiological state, Sirt3 has a certain deacetylation effect on YME1L1, and YME1L1 deacetylation can promote OPA1‐mediated mitochondrial fusion, so that mitochondrial fusion and fission are in a balanced state. When sepsis‐induced AKI occurs, the expression of Sirt3 is reduced, resulting in a decrease in the deacetylation level of YME1L1 and a decrease in the expression of L‐OPA, which in turn reduces mitochondrial fusion and increases fission, ultimately leading to mitochondrial dysfunction and apoptosis.  相似文献   

4.
Acute kidney injury (AKI) is a clinical condition that is associated with high morbidity and mortality. Inflammation is reported to play a key role in AKI. Although the M2 macrophages exhibit antimicrobial and anti-inflammatory activities, their therapeutic potential has not been evaluated for AKI. This study aimed to investigate the protective effect of peritoneal M2 macrophage transplantation on AKI in mice. The macrophages were isolated from peritoneal dialysates of mice. The macrophages were induced to undergo M2 polarization using interleukin (IL)-4/IL-13. AKI was induced in mice by restoring the blood supply after bilateral renal artery occlusion for 30 minutes. The macrophages were injected into the renal cortex of mice. The changes in renal function, inflammation and tubular proliferation were measured. The M2 macrophages were co-cultured with the mouse primary proximal tubular epithelial cells (PTECs) under hypoxia/reoxygenation conditions in vitro. The PTEC apoptosis and proliferation were analysed. The peritoneal M2 macrophages effectively alleviated the renal injury and inflammatory response in mice with ischaemia-reperfusion injury (IRI) and promoted the PTEC proliferation in vivo and in vitro. These results indicated that the peritoneal M2 macrophages ameliorated AKI by decreasing inflammatory response and promoting PTEC proliferation. Hence, the peritoneal M2 macrophage transplantation can serve as a potential cell therapy for renal diseases.  相似文献   

5.
Acute kidney injury (AKI) is a substantial worldwide public health concern with no specific and effective therapies in clinic. NAD+ is a pivotal determinant of cellular energy metabolism involved in the progression of AKI; however, its mechanism in kidney injury remains poorly understood. Sirtuin 1 (SIRT1) is an NAD+‐dependent deacetylase associated with renal protection and acute stress resistance. In this study, we have investigated the role of NAD+ in AKI and the potential mechanism(s) involved in its renoprotective effect. NAD+ was notably decreased and negatively correlated with kidney dysfunction in AKI, restoring NAD+ with NMN significantly ameliorates LPS‐induced oxidative stress and apoptosis and attenuates renal damage. We also found that the protection of NAD+ is associated with SIRT1 expressions and performs in a SIRT1‐dependent manner. Inhibition of SIRT1 blunted the protective effect of NAD+ and up‐regulated the activity of glycogen synthase kinase‐3β (GSK‐3β) that was concomitant with mitigated Nrf2 nuclear accumulation, thereby exacerbates AKI. These findings suggest that NAD+/SIRT1/GSK‐3β/Nrf2 axis is an important mechanism that can protect against AKI which might be a potential therapeutic target for the treatment of AKI.  相似文献   

6.
Despite extensive research, the mechanisms underlying rhabdomyolysis‐induced acute kidney injury (AKI) remain largely elusive. In this study, we established both cell and murine models of rhabdomyolysis‐induced AKI by using myoglobin and glycerin, respectively, and provided evidence that protein kinase Cδ (PKC‐δ) was activated in both models and subsequently promoted cell apoptosis. Moreover, we found that this detrimental effect of PKC‐δ activation can be reversed by its pharmaceutical inhibitor rottlerin. Furthermore, we detected and confirmed the existence of PKC‐δ‐mediated myoglobin‐induced cell apoptosis and the expression of TNF‐α and IL1‐β via regulation of the p38MAPK and ERK1/2 signalling pathways. In summary, our research revealed the role of PKC‐δ in renal cell apoptosis and suggests that PKC‐δ is a viable therapeutic target for rhabdomyolysis‐induced AKI.  相似文献   

7.
Aristolochic acids (AAs) are extracted from certain plants as folk remedies for centuries until their nephrotoxicity and carcinogenicity were recognized. Aristolochic acid I (AAI) is one of the main pathogenic compounds, and it has nephrotoxic, carcinogenic and mutagenic effects. Previous studies have shown that AAI acts mainly on proximal renal tubular epithelial cells; however, the mechanisms of AAI‐induced proximal tubule cell damage are still not fully characterized. We exposed human kidney proximal tubule cells (PTCs; HK2 cell line) to AAI in vitro at different time/dose conditions and assessed cell proliferation, reactive oxygen species (ROS) generation, nitric oxide (NO) production, m‐RNA/ protein expressions and mitochondrial dysfunction. AAI exposure decreased proliferation and increased apoptosis, ROS generation / NO production in PTCs significantly at 24 h. Gene/ protein expression studies demonstrated activation of innate immunity (TLRs 2, 3, 4 and 9, HMGB1), inflammatory (IL6, TNFA, IL1B, IL18, TGFB and NLRP3) and kidney injury (LCN2) markers. AAI also induced epithelial‐mesenchymal transition (EMT) and mitochondrial dysfunction in HK2 cells. TLR9 knock‐down and ROS inhibition were able to ameliorate the toxic effect of AAI. In conclusion, AAI treatment caused injury to PTCs through ROS‐HMGB1/mitochondrial DNA (mt DNA)‐mediated activation of TLRs and inflammatory response.  相似文献   

8.
9.
Lipopolysaccharide (LPS)‐induced sepsis‐associated acute kidney injury (SA‐AKI) is a model of clinical serious care syndrome, with high morbidity and mortality. Tacrolimus (TAC), a novel immunosuppressant that inhibits inflammatory response, plays a pivotal role in kidney diseases. In this study, LPS treated mice and cultured podocytes were used as the models of SA‐AKI in vivo and in vitro, respectively. Medium‐ and high‐dose TAC administration significantly attenuated renal function and renal pathological manifestations at 12, 24 and 48 h after LPS treatment in mice. Moreover, the Toll‐like receptor 4 (TLR4)/myeloid differential protein‐88 (MyD88)/nuclear factor‐kappa (NF‐κB) signalling pathway was also dramatically inhibited by medium‐ and high‐dose TAC administration at 12, 24 and 48 h of LPS treatment mice. In addition, TAC reversed LPS‐induced podocyte cytoskeletal injury and podocyte migratory capability. Our findings indicate that TAC has protective effects against LPS‐induced AKI by inhibiting TLR4/MyD88/NF‐κB signalling pathway and podocyte dysfunction, providing another potential therapeutic effects for the LPS‐induced SA‐AKI.  相似文献   

10.
Inadequate trophoblastic invasion is considered as one of hallmarks of preeclampsia (PE), which is characterized by newly onset of hypertension (>140/90 mmHg) and proteinuria (>300 mg in a 24‐h urine) after 20 weeks of gestation. Accumulating evidence has indicated that long noncoding RNAs are aberrantly expressed in PE, whereas detailed mechanisms are unknown. In the present study, we showed that lncRNA Taurine upregulated 1 (TUG1) were downregulated in preeclamptic placenta and in HTR8/SVneo cells under hypoxic conditions, together with reduced enhancer of zeste homolog2 (EZH2) and embryonic ectoderm development (EED) expression, major components of polycomb repressive complex 2 (PRC2), as well as activation of Nodal/ALK7 signalling pathway. Mechanistically, we found that TUG1 bound to PRC2 (EZH2/EED) in HTR8/SVneo cells and weakened TUG1/PRC2 interplay was correlated with upregulation of Nodal expression via decreasing H3K27me3 mark at the promoter region of Nodal gene under hypoxic conditions. And activation of Nodal signalling prohibited trophoblast invasion via reducing MMP2 levels. Overexpression of TUG1 or EZH2 significantly attenuated hypoxia‐induced reduction of trophoblastic invasiveness via negative modulating Nodal/ALK7 signalling and rescuing expression of its downstream target MMP2. These investigations might provide some evidence for novel mechanisms responsible for inadequate trophoblastic invasion and might shed some light on identifying future therapeutic targets for PE.  相似文献   

11.
Renal fibrosis is a major factor in the progression of chronic kidney diseases. Obstructive nephropathy is a common cause of renal fibrosis, which is also accompanied by inflammation. To explore the effect of human‐specific CHRFAM7A expression, an inflammation‐related gene, on renal fibrosis during obstructive nephropathy, we studied CHRFAM7A transgenic mice and wild type mice that underwent unilateral ureteral obstruction (UUO) injury. Transgenic overexpression of CHRFAM7A gene inhibited UUO‐induced renal fibrosis, which was demonstrated by decreased fibrotic gene expression and collagen deposition. Furthermore, kidneys from transgenic mice had reduced TGF‐β1 and Smad2/3 expression following UUO compared with those from wild type mice with UUO. In addition, the overexpression of CHRFAM7A decreased release of inflammatory cytokines in the kidneys of UUO‐injured mice. In vitro, the overexpression of CHRFAM7A inhibited TGF‐β1‐induced increase in expression of fibrosis‐related genes in human renal tubular epithelial cells (HK‐2 cells). Additionally, up‐regulated expression of CHRFAM7A in HK‐2 cells decreased TGF‐β1‐induced epithelial‐mesenchymal transition (EMT) and inhibited activation f TGF‐β1/Smad2/3 signalling pathways. Collectively, our findings demonstrate that overexpression of the human‐specific CHRFAM7A gene can reduce UUO‐induced renal fibrosis by inhibiting TGF‐β1/Smad2/3 signalling pathway to reduce inflammatory reactions and EMT of renal tubular epithelial cells.  相似文献   

12.
Matrix metalloproteinase-10 (MMP-10) is a zinc-dependent endopeptidase involved in regulating a wide range of biologic processes, such as apoptosis, cell proliferation, and tissue remodeling. However, the role of MMP-10 in the pathogenesis of acute kidney injury (AKI) is unknown. In this study, we show that MMP-10 was upregulated in the kidneys and predominantly localized in the tubular epithelium in various models of AKI induced by ischemia/reperfusion (IR) or cisplatin. Overexpression of exogenous MMP-10 ameliorated AKI, manifested by decreased serum creatinine, blood urea nitrogen, tubular injury and apoptosis, and increased tubular regeneration. Conversely, knockdown of endogenous MMP-10 expression aggravated kidney injury. Interestingly, alleviation of AKI by MMP-10 in vivo was associated with the activation of epidermal growth factor receptor (EGFR) and its downstream AKT and extracellular signal-regulated kinase-1 and 2 (ERK1/2) signaling. Blockade of EGFR signaling by erlotinib abolished the MMP-10-mediated renal protection after AKI. In vitro, MMP-10 potentiated EGFR activation and protected kidney tubular cells against apoptosis induced by hypoxia/reoxygenation or cisplatin. MMP-10 was colocalized with heparin-binding EGF-like growth factor (HB-EGF) in vivo and activated it by a process of proteolytical cleavage in vitro. These studies identify HB-EGF as a previously unrecognized substrate of MMP-10. Our findings also underscore that MMP-10 can protect against AKI by augmenting EGFR signaling, leading to promotion of tubular cell survival and proliferation after injury.Subject terms: Apoptosis, Cell growth  相似文献   

13.
Inflammation and renal tubular injury are major features of acute kidney injury (AKI). Many cytokines and chemokines are released from injured tubular cells and acts as proinflammatory mediators. However, the role of IL-19 in the pathogenesis of AKI is not defined yet. In bilateral renal ischemia/reperfusion injury (IRI)-induced and HgCl2-induced AKI animal models, real-time quantitative (RTQ)-PCR showed that the kidneys, livers, and lungs of AKI mice expressed significantly higher IL-19 and its receptors than did sham control mice. Immunohistochemical staining showed that IL-19 and its receptors were strongly stained in the kidney, liver, and lung tissue of AKI mice. In vitro, IL-19 upregulated MCP-1, TGF-β1, and IL-19, and induced mitochondria-dependent apoptosis in murine renal tubular epithelial M-1 cells. IL-19 upregulated TNF-α and IL-10 in cultured HepG2 cells, and it increased IL-1β and TNF-α expression in cultured A549 cells. In vivo, after renal IRI or a nephrotoxic dose of HgCl2 treatment, IL-20R1-deficient mice (the deficiency blocks IL-19 signaling) showed lower levels of blood urea nitrogen (BUN) in serum and less tubular damage than did wild-type mice. Therefore, we conclude that IL-19 mediates kidney, liver, and lung tissue damage in murine AKI and that blocking IL-19 signaling may provide a potent therapeutic strategy for treating AKI.  相似文献   

14.
15.
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Although cisplatin‐based chemotherapy is commonly used in HNSCC, frequent development of cisplatin resistance is a potential cause of poor HNSCC prognosis. In the present study, we investigated the anticancer efficacy of a major paclitaxel metabolite namely 7‐Epitaxol in cisplatin‐resistant HNSCC. The findings revealed that 7‐Epitaxol exerts cytotoxic effects in cisplatin‐resistant HNSCC cell lines by inducing cell cycle arrest and intrinsic and extrinsic apoptotic pathways. Specifically, 7‐Epitaxol increased Fas, TNF‐R1, DR5, DcR3 and DcR2 expressions, reduced Bcl‐2 and Bcl‐XL (anti‐apoptotic proteins) expressions, and increased Bid and Bim L/S (pre‐apoptotic proteins) expressions, leading to activation of caspase‐mediated cancer cell apoptosis. At the upstream cell signalling level, 7‐Epitaxol reduced the phosphorylation of AKT, ERK1/2 and p38 to trigger apoptosis. In vivo results showed that animals treated with 7‐Epitaxol show antitumor growth compared to control animals. Taken together, the study demonstrates the potential anticancer efficacy of 7‐Epitaxol in inducing apoptosis of cisplatin‐resistant HNSCC cells through the suppression of AKT and MAPK signalling pathways.  相似文献   

16.
Gentamicin nephrotoxicity is one of the most common causes of acute kidney injury (AKI). Hypoxia-inducible factor (HIF) is effective in protecting the kidney from ischemic and toxic injury. Increased expression of HIF-1α mRNA has been reported in rats with gentamicin-induced renal injury. We hypothesizd that we could study the role of HIF in gentamicin-induced AKI by modulating HIF activity. In this study, we investigated whether HIF activation had protective effects on gentamicin-induced renal tubule cell injury. Gentamicin-induced AKI was established in male Sprague-Dawley rats. Cobalt was continuously infused into the rats to activate HIF. HK-2 cells were pre-treated with cobalt or dimethyloxalylglycine (DMOG) to activate HIF and were then exposed to gentamicin. Cobalt or DMOG significantly increased HIF-1α expression in rat kidneys and HK-2 cells. In HK-2 cells, HIF inhibited gentamicin-induced reactive oxygen species (ROS) formation. HIF also protected these cells from apoptosis by reducing caspase-3 activity and the amount of cleaved caspase-3, and -9 proteins. Increased expression of HIF-1α reduced the number of gentamicin-induced apoptotic cells in rat kidneys and HK-2 cells. HIF activation improved the creatinine clearance and proteinuria in gentamicin-induced AKI. HIF activation also ameliorated the extent of histologic injury and reduced macrophage infiltration into the tubulointerstitium. In gentamicin-induced AKI, the activation of HIF by cobalt or DMOG attenuated renal dysfunction, proteinuria, and structural damage through a reduction of oxidative stress, inflammation, and apoptosis in renal tubular epithelial cells.  相似文献   

17.
Mixed lineage leukemia 1 (MLL1) is a histone H3 lysine 4 (H3K4) methyltransferase that interacts with WD repeat domain 5 (WDR5) to regulate cell survival, proliferation, and senescence. The role of MLL1 in the pathogenesis of acute kidney injury (AKI) is unknown. In this study, we demonstrate that MLL1, WDR5, and trimethylated H3K4 (H3K4me3) were upregulated in renal tubular cells of cisplatin-induced AKI in mice, along with increased phosphorylation of p53 and decreased expression of E-cadherin. Administration of MM102, a selective MLL1/WDR5 complex inhibitor, improved renal function and attenuated tubular injury and apoptosis, while repressing MLL1, WDR5, and H3K4me3, dephosphorylating p53 and preserving E-cadherin. In cultured mouse renal proximal tubular cells (RPTCs) exposed to cisplatin, treatment with MM102 or transfection with siRNAs for either MLL1 or WDR5 also inhibited apoptosis and p53 phosphorylation while preserving E-cadherin expression; p53 inhibition with Pifithrin-α lowered cisplatin-induced apoptosis without affecting expression of MLL1, WDR5, and H3K4me3. Interestingly, silencing of E-cadherin offset MM102’s cytoprotective effects, but had no effect on p53 phosphorylation. These findings suggest that MLL1/WDR5 activates p53, which, in turn, represses E-cadherin, leading to apoptosis during cisplatin-induced AKI. Further studies showed that MM102 effectively inhibited cisplatin-triggered DNA damage response (DDR), as indicated by dephosphorylation of ataxia telangiectasia mutated (ATM) and ATM and Rad-3 related (ATR) proteins, dephosphorylation of checkpoint kinase 1 and 2 (Chk1 and Chk2); depression of γ-H2AX; and restrained cell cycle arrest, as evidenced by decreased expression of p21 and phospho-histone H3 at serine 10 in vitro and in vivo. Overall, we identify MLL1 as a novel DDR regulator that drives cisplatin-induced RPTC apoptosis and AKI by modulating the MLL1/WDR5-/ATR/ATM-Chk-p53-E-cadherin axis. Targeting the MLL1/WDR5 complex may have a therapeutic potential for the treatment of AKI.Subject terms: Acute kidney injury, Methylation  相似文献   

18.
In kidneys, each tubular epithelial cell contains a primary cilium that protrudes from the apical surface. Ciliary dysfunction was recently linked to acute kidney injury (AKI) following renal ischemia–reperfusion. Whether ciliary regulation is a general pathogenic mechanism in AKI remains unclear. Moreover, the ciliary change during AKI and its underlying mechanism are largely unknown. Here we examined the change of primary cilium and its role in tubular cell apoptosis and AKI induced by cisplatin, a chemotherapy agent with notable nephrotoxicity. In cultured human proximal tubular HK-2 epithelial cells, cilia became shorter during cisplatin treatment, followed by apoptosis. Knockdown of Kif3a or Polaris (cilia maintenance proteins) reduced cilia and increased apoptosis during cisplatin treatment. We further subcloned HK-2 cells and found that the clones with shorter cilia were more sensitive to cisplatin-induced apoptosis. Mechanistically, cilia-suppressed cells showed hyperphosphorylation or activation of ERK. Inhibition of ERK by U0126 preserved cilia during cisplatin treatment and protected against apoptosis in HK-2 cells. In C57BL/6 mice, U0126 prevented the loss of cilia from proximal tubules during cisplatin treatment and protected against AKI. U0126 up-regulated Polaris, but not Kif3a, in kidney tissues. It is suggested that ciliary regulation by ERK plays a role in cisplatin-induced tubular apoptosis and AKI.  相似文献   

19.
Acute kidney injury (AKI) is a frequent complication of sepsis and contributes to increased morbidity and mortality. Urinary tissue inhibitor of metalloproteinases-2 (TIMP2) has been recently recognized as an early biomarker to predict AKI in critically ill patients. However, the biological functions of TIMP2 remain largely unknown. In this study, we investigated the role of TIMP2 in mediating inflammation and tubular cell apoptosis in AKI. In kidney tissue taken from mice exposed to cecal ligation and puncture (CLP) and in human kidney 2 (HK-2) cells exposed to lipopolysaccharide (LPS) in culture, TIMP2 expression was significantly upregulated. The expression of TIMP2 in the kidney tissue correlated with the severity of AKI in vivo. In cultured HK-2 cells, LPS challenge markedly induced cytokine release, and recombinant cytokines promoted TIMP2 expression and apoptosis. However, TIMP2 silencing ameliorated LPS-induced cytokine release, apoptosis, and cell injury. We further found that the effects of downregulation of TIMP2 on a suppression of release of inflammatory cytokines were mediated by p-P65. Stable, kidney-specific TIMP2 knockdown mice were transduced by injecting the TIMP2 knockdown lentiviral vector into kidney parenchyma. TIMP2 silencing ameliorated CLP-induced proinflammatory cytokines, kidney dysfunction as measured by serum creatinine level, and histopathological changes. Downregulation of TIMP2 showed renoprotective effects on endotoxin-induced AKI, which was associated with the anti-inflammatory activity through inhibition of the nuclear factor (NF)-κB pathway. Collectively, our results indicate that TIMP2 plays an important role in mediating sepsis-induced AKI through regulation of NF-κB. These findings reveal the pathogenic role of TIMP2 in AKI and suggest a novel target for the treatment of AKI.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号