首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Qu  Yuanyuan  Zhang  Xueyan  Wang  Meiyu  Sun  Lina  Jiang  Yongzhong  Li  Cheng  Wu  Wei  Chen  Zhen  Yin  Qiangling  Jiang  Xiaolin  Liu  Yang  Li  Chuan  Li  Jiandong  Ying  Tianlei  Li  Dexin  Zhan  Faxian  Wang  Youchun  Guan  Wuxiang  Wang  Shiwen  Liang  Mifang 《中国病毒学》2021,36(5):934-947
Virologica Sinica - Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has precipitated multiple variants resistant to therapeutic antibodies. In this study, 12 high-affinity antibodies...  相似文献   

3.
The ongoing COVID-19 pandemic is caused by an RNA virus, SARS-CoV-2. The genome of SARS-CoV-2 lacks a nuclear phase in its life cycle and is replicated in the cytoplasm. However, interfering with nuclear trafficking using pharmacological inhibitors greatly reduces virus infection and virus replication of other coronaviruses is blocked in enucleated cells, suggesting a critical role of the nucleus in virus infection. Here, we summarize the alternations of nuclear pathways caused by SARS-CoV-2, including nuclear translocation pathways, innate immune responses, mRNA metabolism, epigenetic mechanisms, DNA damage response, cytoskeleton regulation, and nuclear rupture. We consider how these alternations contribute to virus replication and discuss therapeutic treatments that target these pathways, focusing on small molecule drugs that are being used in clinical studies.  相似文献   

4.
5.
Macropinocytosis is a type of large-scale endocytosis that is triggered by the interaction of receptor proteins and ligands, such as growth factors, cytokines, chemokines, and lipopolysaccharide (LPS). Macropinocytosis ingests the extracellular fluid solutes and conveys them into the lysosome in the context of cell growth and differentiation. Aside from its physiological functions, macropinocytosis has been observed in viral infections. While the infectious mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still unknown, recent studies suggest the involvement of macropinocytosis in its cell entry. In this review, we discuss the roles of endocytosis in SARS-CoV/SARS-CoV-2 cell entries and propose a hypothetical role of macropinocytosis in SARS-CoV-2 cell entry.  相似文献   

6.
本文分析了新型冠状病毒(SARS-CoV-2,新冠病毒)的进化来源及刺突蛋白(spike protein,S)基因的突变情况.从GenBank数据库中下载相关病毒全基因组序列及S基因序列,运用DNAMAN9.0、MEGAX等生物信息学软件,进行多序列比对,构建系统进化树,并统计S基因位点突变情况.分析结果提示,新冠病毒...  相似文献   

7.
新型冠状病毒疫情(COVID-19)是21世纪截至目前人类面对的最为严重的公共卫生事件。疫苗、中和抗体以及小分子化合药物的出现有效预防和阻止了COVID-19的快速传播,而不断出现的病毒突变体却使这些疫苗及药物的效价降低,这对COVID-19的预防及治疗提出了新的挑战。新型冠状病毒(SARS-CoV-2)通常会先黏附于呼吸道表面的大分子糖链——硫酸乙酰肝素,进而与特异性受体人血管紧张素转化酶2(human angiotensin-converting enzyme 2,hACE2)结合,从而实现对人体的侵入。SARS-CoV-2的刺突(spike,S)蛋白是高度糖基化的,而糖基化对于hACE2与S蛋白的结合也有着重要影响,S蛋白在宿主体内还会被一系列凝集素受体所结合,这意味着糖链在SARS-CoV-2的入侵及感染过程中有着重要的作用。基于SARS-CoV-2的糖基化及糖受体识别机制开发糖链抑制剂可能是预防或治疗新型冠状病毒感染的有效手段,相关研究发现海洋来源的硫酸化多糖、肝素分子及其他的一些糖类具有抗SARS-CoV-2的活性。本文系统阐述了新型冠状病毒的糖基化及其糖链在入侵、感染中的作用,并对抗SARS-CoV-2糖链抑制剂的发现和机制研究现状进行了总结,在此基础上还对糖类抗病毒药物的机遇与挑战进行了展望。  相似文献   

8.
9.
Severe acute respiratory syndrome (SARS) coronavirus (CoV) 2 (SARS-CoV-2), which causes the coronavirus disease 2019, encodes several proteins whose roles are poorly understood. We tested their ability either to directly form plasma membrane ion channels or to change functions of two mammalian plasma membrane ion channels, the epithelial sodium channel (ENaC) and the α3β4 nicotinic acetylcholine receptor. In mRNA-injected Xenopus oocytes, none of nine SARS-CoV-2 proteins or two SARS-CoV-1 proteins produced conductances, nor did co-injection of several combinations. Immunoblots for ORF8, spike (S), and envelope (E) proteins revealed that the proteins are expressed at appropriate molecular weights. In experiments on coexpression with ENaC, three tested SARS proteins (SARS-CoV-1 E, SARS-CoV-2 E, and SARS-CoV-2 S) markedly decrease ENaC currents. SARS-CoV-1 S protein decreases ENaC currents modestly. Coexpressing the E proteins but not the S proteins with α3β4 nicotinic acetylcholine receptors significantly reduces acetylcholine-induced currents. ENaC inhibition does not occur if the SARS-CoV protein mRNAs are injected 24 h after the ENaC mRNAs, suggesting that SARS-CoV proteins affect early step(s) in functional expression of channel proteins. Consistent with the hypothesis that the SARS-CoV-2 S protein-induced ENaC inhibition involves competition for available protease, mutating the furin cleavage site in SARS-CoV-2 S protein partially relieves inhibition of ENaC currents. Extending previous suggestions that SARS proteins affect ENaC currents via protein kinase C (PKC) activation, PKC activation via phorbol 12-myristate 13-acetate decreases ENaC and α3β4 activity. Phorbol 12-myristate 13-acetate application reduced membrane capacitance ~5%, presumably via increased endocytosis, but this decrease is much smaller than the SARS proteins’ effects on conductances. Also, incubating oocytes in Gö-6976, a PKCα and PKCβ inhibitor, did not alter E or S protein-induced channel inhibition. We conclude that SARS-CoV-1 and SARS-CoV-2 proteins alter the function of human plasma membrane channels, via incompletely understood mechanisms. These interactions may play a role in the coronavirus 2019 pathophysiology.  相似文献   

10.
  相似文献   

11.
章菲  王义兵  吴利东 《病毒学报》2021,37(2):422-427
2019年12月出现于湖北武汉的一种新型冠状病毒(SARS-CoV-2)感染所致肺炎疫情,给人类生命安全造成威胁。迄今为止,对2019年出现的SARS-CoV-2的研究仍处于起步阶段,本文就其相关研究进展进行综述,重点阐述了目前关于SARS-CoV-2的病原学与致病机制方面的研究成果,同时对其流行病学以及该病毒引发的肺炎临床特点加以总结,有助于读者及时了解SARS-CoV-2最新的研究动态,并为今后开展治疗药物及疫苗研发提供方向。  相似文献   

12.
13.
The structure and post-translational processing of the SARS-CoV-2 spike glycoprotein (S) is intimately associated with the function of the virus and of sterilising vaccines. The surface of the S protein is extensively modified by glycans, and their biosynthesis is driven by both the wider cellular context, and importantly, the underlining protein structure and local glycan density. Comparison of virally derived S protein with both recombinantly derived and adenovirally induced proteins, reveal hotspots of protein-directed glycosylation that drive conserved glycosylation motifs. Molecular dynamics simulations revealed that, while the S surface is extensively shielded by N-glycans, it presents regions vulnerable to neutralising antibodies. Furthermore, glycans have been shown to influence the accessibility of the receptor binding domain and the binding to the cellular receptor. The emerging picture is one of unifying, principles of S protein glycosylation and an intimate role of glycosylation in immunogen structure and efficacy.  相似文献   

14.
Mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occur spontaneously during replication. Thousands of mutations have accumulated and continue to since the emergence of the virus. As novel mutations continue appearing at the scene, naturally, new variants are increasingly observed.Since the first occurrence of the SARS-CoV-2 infection, a wide variety of drug compounds affecting the binding sites of the virus have begun to be studied. As the drug and vaccine trials are continuing, it is of utmost importance to take into consideration the SARS-CoV-2 mutations and their respective frequencies since these data could lead the way to multi-drug combinations. The lack of effective therapeutic and preventive strategies against human coronaviruses (hCoVs) necessitates research that is of interest to the clinical applications.The reason why the mutations in glycoprotein S lead to vaccine escape is related to the location of the mutation and the affinity of the protein. At the same time, it can be said that variations should occur in areas such as the receptor-binding domain (RBD), and vaccines and antiviral drugs should be formulated by targeting more than one viral protein.In this review, a literature survey in the scope of the increasing SARS-CoV-2 mutations and the viral variations is conducted. In the light of current knowledge, the various disguises of the mutant SARS-CoV-2 forms and their apparent differences from the original strain are examined as they could possibly aid in finding the most appropriate therapeutic approaches.  相似文献   

15.
The evolution of SARS-CoV-2 remains poorly understood. Theory predicts a group-structured population with selection acting principally at two levels: the pathogen individuals and the group of pathogens within a single host individual. Rapid replication of individual viruses is selected for, but if this replication debilitates the host before transmission occurs, the entire group of viruses in that host may perish. Thus, rapid transmission can favor more pathogenic strains, while slower transmission can favor less pathogenic strains. Available data suggest that SARS-CoV-2 may follow this pattern. Indeed, high population density and other circumstances that favor rapid transmission may also favor more deadly strains. Health care workers, exposed to pathogenic strains of hospitalized patients, may be at greater risk. The low case fatality rate on the Diamond Princess cruise ship may reflect the founder effect—an initial infection with a mild strain. A vaccine made with one strain may confer limited immunity to other strains. Variation among strains may lead to the rapid evolution of resistance to therapeutics. Finally, if less pathogenic strains are largely associated with mild disease, rather than treating all SARS-CoV-2 positive individuals equally, priority could be focused on testing and contact tracing the most seriously symptomatic patients.  相似文献   

16.
COVID-19, caused by a novel coronavirus, SARS-CoV-2, poses a serious global threat. It was first reported in 2019 in China and has now dramatically spread across the world. It is crucial to develop therapeutics to mitigate severe disease and viral spread. The receptor-binding domains (RBDs) in the spike protein of SARS-CoV and MERS-CoV have shown anti-viral activity in previous reports suggesting that this domain has high potential for development as therapeutics. To evaluate the potential antiviral activity of recombinant SARS-CoV-2 RBD proteins, we determined the RBD residues of SARS-CoV-2 using a homology search with RBD of SARS-CoV. For efficient expression and purification, the signal peptide of spike protein was identified and used to generate constructs expressing recombinant RBD proteins. Highly purified RBD protein fused with the Fc domain of human IgG showed potent anti-viral efficacy, which was better than that of a protein fused with a histidine tag. Intranasally pre-administrated RBD protein also inhibited the attachment of SARS-COV-2 to mouse lungs. These findings indicate that RBD protein could be used for the prevention and treatment of SARS-CoV-2 infection.  相似文献   

17.
18.
Ioannou  Kyriacos  Vlasiou  Manos C. 《Biometals》2022,35(4):639-652
BioMetals - The first appearance of SARS-CoV-2 is dated back to 2019. This new member of the coronavirus family has caused more than 5 million deaths worldwide up until the end of January 2022. At...  相似文献   

19.
20.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号