首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Domestic chickens are less fearful, have a faster sexual development, grow bigger, and lay more eggs than their primary ancestor, the red junglefowl. Several candidate genetic variants selected during domestication have been identified, but only a few studies have directly linked them with distinct phenotypic traits. Notably, a variant of the thyroid stimulating hormone receptor (TSHR) gene has been under strong positive selection over the past millennium, but it’s function and mechanisms of action are still largely unresolved. We therefore assessed the abundance of the domestic TSHR variant and possible genomic selection signatures in an extensive data set comprising multiple commercial and village chicken populations as well as wild-living extant members of the genus Gallus. Furthermore, by mean of extensive backcrossing we introgressed the wild-type TSHR variant from red junglefowl into domestic White Leghorn chickens and investigated gene expression, hormone levels, cold adaptation, and behavior in chickens possessing either the wild-type or domestic TSHR variant. While the domestic TSHR was the most common variant in all studied domestic populations and in one of two red junglefowl population, it was not detected in the other Gallus species. Functionally, the individuals with the domestic TSHR variant had a lower expression of the TSHR in the hypothalamus and marginally higher in the thyroid gland than wild-type TSHR individuals. Expression of TSHB and DIO2, two regulators of sexual maturity and reproduction in birds, was higher in the pituitary gland of the domestic-variant chickens. Furthermore, the domestic variant was associated with higher activity in the open field test. Our findings confirm that the spread of the domestic TSHR variant is limited to domesticated chickens, and to a lesser extent, their wild counterpart, the red junglefowl. Furthermore, we showed that effects of genetic variability in TSHR mirror key differences in gene expression and behavior previously described between the red junglefowl and domestic chicken.  相似文献   

2.
We report the results of a novel experiment, in which genetically pure male red junglefowl Gallus gallus (Richardson strain) were deliberately crossed with domestic female chickens to create contaminated lines of known purity, reaching as high as 93.75%. Phenotypic characters generally used as indicators of purity (reduced or absent female comb, male eclipse plumage, etc.) all appeared to at least some extent in domestically contaminated progeny and moreso in successively more pure generations of the experiment, suggesting that such phenotypic characters may have little, if any, utility in characterizing red junglefowl stocks as to their genetic purity.  相似文献   

3.
During the domestication of farm animals, humans have manipulated genetic variation for growth and reproduction through artificial selection. Here, data are presented for growth, reproductive, and behavior traits for the red junglefowl, a line of White Plymouth Rock chickens, and their F1 and F2 reciprocal crosses. Intra- and intergenerational comparisons for growth related traits reflected considerable additive genetic variation. In contrast, those traits associated with reproduction exhibited heterosis. The role of sexual selection was seen in the evolution of prominent secondary sexual ornaments that lend to female choice and male-male competition. The large differences between parental lines in fearfulness to humans were only mitigated slightly in the intercross generations. Whereas, overall F1 generation heterosis was not transferred to the F2, there was developmental stability in the F2, as measured by relative asymmetry of bilateral traits. Through multigenerational analyses between the red junglefowl and the domestic White Plymouth Rocks, we observed plasticity and considerable residual genetic variation. These factors likely facilitated the adaptability of the chicken to a broad range of husbandry practices throughout the world.  相似文献   

4.
中国家鸡的起源探讨   总被引:21,自引:0,他引:21  
傅衍  牛冬  罗静  阮晖  何国庆  张亚平 《遗传学报》2001,28(5):411-417
测定了6个家鸡品种30个个体的线粒体D0环区539bp的碱基序列,并与GenBank中的红原鸡、灰原鸡、绿原鸡、黑尾原鸡及鹌鹑的相应序列作比较分析,构建了分析系统树。结果表明,原鸡属4个种间差异较大,其中家鸡与泰国及邻近地区红原鸡关系最近,与印尼红原鸡、黑尾原鸡、灰原鸡、绿原鸡及鹌鹑的关系依次变远。提示中国家鸡可能起源于泰国及邻近地区的红原鸡。结果还显示,该原鸡的两个亚种(G.g.gallus和G.g.spadiceus)间的遗传分化程度显著低于家鸡亚种内的分化程度,这两个亚种似乎可以归为同一亚种。  相似文献   

5.
Yellow skin is an abundant phenotype among domestic chickens and is caused by a recessive allele (W*Y) that allows deposition of yellow carotenoids in the skin. Here we show that yellow skin is caused by one or more cis-acting and tissue-specific regulatory mutation(s) that inhibit expression of BCDO2 (beta-carotene dioxygenase 2) in skin. Our data imply that carotenoids are taken up from the circulation in both genotypes but are degraded by BCDO2 in skin from animals carrying the white skin allele (W*W). Surprisingly, our results demonstrate that yellow skin does not originate from the red junglefowl (Gallus gallus), the presumed sole wild ancestor of the domestic chicken, but most likely from the closely related grey junglefowl (Gallus sonneratii). This is the first conclusive evidence for a hybrid origin of the domestic chicken, and it has important implications for our views of the domestication process.  相似文献   

6.
Domestic chickens (Gallus gallus domesticus) fulfill various roles ranging from food and entertainment to religion and ornamentation. To survey its genetic diversity and trace the history of domestication, we investigated a total of 4938 mitochondrial DNA (mtDNA) fragments including 2843 previously published and 2095 de novo units from 2044 domestic chickens and 51 red junglefowl (Gallus gallus). To obtain the highest possible level of molecular resolution, 50 representative samples were further selected for total mtDNA genome sequencing. A fine-gained mtDNA phylogeny was investigated by defining haplogroups A–I and W–Z. Common haplogroups A–G were shared by domestic chickens and red junglefowl. Rare haplogroups H–I and W–Z were specific to domestic chickens and red junglefowl, respectively. We re-evaluated the global mtDNA profiles of chickens. The geographic distribution for each of major haplogroups was examined. Our results revealed new complexities of history in chicken domestication because in the phylogeny lineages from the red junglefowl were mingled with those of the domestic chickens. Several local domestication events in South Asia, Southwest China and Southeast Asia were identified. The assessment of chicken mtDNA data also facilitated our understanding about the Austronesian settlement in the Pacific.  相似文献   

7.
Mellersh C 《Mammalian genome》2012,23(1-2):109-123
There are currently about 80 different DNA tests available for mutations that are associated with inherited disease in the domestic dog, and as the tools available with which to dissect the canine genome become increasingly sophisticated, this number can be expected to rise dramatically over the next few years. With unrelenting media pressure focused firmly on the health of the purebred domestic dog, veterinarians and dog breeders are turning increasingly to DNA tests to ensure the health of their dogs. It is ultimately the responsibility of the scientists who identify disease-associated genetic variants to make sensible choices about which discoveries are appropriate to develop into commercially available DNA tests for the lay dog breeder, who needs to balance the need to improve the genetic health of their breed with the need to maintain genetic diversity. This review discusses some of the factors that should be considered along the route from mutation discovery to DNA test and some representative examples of DNA tests currently available.  相似文献   

8.

Background

Previous studies suggested that multiple domestication events in South and South-East Asia (Yunnan and surrounding areas) and India have led to the genesis of modern domestic chickens. Ha Giang province is a northern Vietnamese region, where local chickens, such as the H'mong breed, and wild junglefowl coexist. The assumption was made that hybridisation between wild junglefowl and Ha Giang chickens may have occurred and led to the high genetic diversity previously observed. The objectives of this study were i) to clarify the genetic structure of the chicken population within the Ha Giang province and ii) to give evidence of admixture with G. gallus. A large survey of the molecular polymorphism for 18 microsatellite markers was conducted on 1082 chickens from 30 communes of the Ha Giang province (HG chickens). This dataset was combined with a previous dataset of Asian breeds, commercial lines and samples of Red junglefowl from Thailand and Vietnam (Ha Noï). Measurements of genetic diversity were estimated both within-population and between populations, and a step-by-step Bayesian approach was performed on the global data set.

Results

The highest value for expected heterozygosity (> 0.60) was found in HG chickens and in the wild junglefowl populations from Thailand. HG chickens exhibited the highest allelic richness (mean A = 2.9). No significant genetic subdivisions of the chicken population within the Ha Giang province were found. As compared to other breeds, HG chickens clustered with wild populations. Furthermore, the neighbornet tree and the Bayesian clustering analysis showed that chickens from 4 communes were closely related to the wild ones and showed an admixture pattern.

Conclusion

In the absence of any population structuring within the province, the H'mong chicken, identified from its black phenotype, shared a common gene pool with other chickens from the Ha Giang population. The large number of alleles shared exclusively between Ha Giang chickens and junglefowl, as well as the results of a Bayesian clustering analysis, suggest that gene flow has been taking place from junglefowl to Ha Giang chickens.  相似文献   

9.
The genetic architecture of a female sexual ornament   总被引:1,自引:0,他引:1  
Understanding the evolution of sexual ornaments, and particularly that of female sexual ornaments, is an enduring challenge in evolutionary biology. Key to this challenge are establishing the relationship between ornament expression and female reproductive investment, and determining the genetic basis underpinning such relationship. Advances in genomics provide unprecedented opportunities to study the genetic architecture of sexual ornaments in model species. Here, we present a quantitative trait locus (QTL) analysis of a female sexual ornament, the comb of the fowl, Gallus gallus, using a large-scale intercross between red junglefowl and a domestic line, selected for egg production. First, we demonstrate that female somatic investment in comb reflects female reproductive investment. Despite a trade-off between reproductive and skeletal investment mediated by the mobilization of skeletal minerals for egg production, females with proportionally large combs also had relatively high skeletal investment. Second, we identify a major QTL for bisexual expression of comb mass and several QTL specific to female comb mass. Importantly, QTL for comb mass were nonrandomly clustered with QTL for female reproductive and skeletal investment on chromosomes one and three. Together, these results shed light onto the physiological and genetic architecture of a female ornament.  相似文献   

10.
The origin and genetic diversity of Chinese native chicken breeds   总被引:5,自引:0,他引:5  
Niu D  Fu Y  Luo J  Ruan H  Yu XP  Chen G  Zhang YP 《Biochemical genetics》2002,40(5-6):163-174
The first 539 bases of mitochondrial DNA D-loop region of six Chinese native chicken breeds (Gallus gallus domesticus) were sequenced and compared to those of the red junglefowl (Gallus gallus), the gray junglefowl (Gallus sonneratii), the green junglefowl (Gallus varius) and Lafayette's junglefowl (Gallus lafayettei) reported in GenBank, and the phylogenetic trees for the chickens were constructed based on the D-loop sequences. The results showed that the four species of the genus Gallus had great differences among each other, the G. g. domesticus was closest to the red junglefowl in Thailand and its adjacent regions, suggesting the Chinese domestic fowl probably originated from the red junglefowl in these regions. The two subs pecies of Thailand, G. g. gallus and G. g. spadiceus, should belong to one subspecies because of their resemblance. In the case of native breeds, there existed a great difference between the egg breeds and general purpose breeds, which suggested different maternal origins of the two types.  相似文献   

11.
In mammals, a gene based sex determination system ensures that approximately 50% of offspring will be of the male sex and 50% will be of the female sex. In domestic animal production systems, this ratio is not always ideal. Recent advances in our understanding of the molecular biology of sex determination and differentiation, as well as in the control of gene expression and the direct modification of animal genomes, allows us to consider methods for the direct genetic manipulation of sexual phenotype.  相似文献   

12.
Parker TH  Garant D 《Heredity》2005,95(5):401-407
We studied phenotypic patterns and underlying quantitative genetics of development of sexual size dimorphism in red junglefowl (Gallus gallus). Using a multigenerational pedigree and the 'animal model' technique, we found significant heritability for many of the size and growth-related traits we examined, as well as significant genetic correlations among them. Despite sexual size dimorphism throughout posthatching ontogeny, the genetic correlation between males and females for all size measurements and growth parameters remained high. Significant positive phenotypic and genetic correlations between the fastest rate of growth and mass at week 26 (near asymptote) indicate that faster growth when young promotes larger adult size. However, age at which peak growth is reached does not appear to be phenotypically or genetically correlated with adult size. Positive genetic correlations within traits among ages were common, demonstrating that the genetic variance important to growth is relatively consistent among ages. However, male mass and tarsus length showed no genetic correlation between week 0 values and those from later ages. The body size traits of mass and tarsus length were genetically correlated with each other in females, but this pattern was not significant in males. Thus, despite striking sexual dimorphism in size and growth trajectories, size dimorphic traits in junglefowl show, with some exceptions, genetic integration between the sexes, among ages, and between traits.  相似文献   

13.
The origins of the European domestic goose are uncertain. The available information comes from archaeological findings and historical literature, but genetic evidence has hitherto been scarce. The domestic goose in Europe is derived from the greylag goose (Anser anser), but it is not known where the initial domestication took place and which of the two subspecies of greylag goose was ancestral. We aimed to determine the amount and geographical distribution of genetic diversity in modern populations of greylag geese as well as in different breeds of the domestic goose to make inferences about goose domestication. We studied DNA sequence variation in the mitochondrial control region of greylag geese from multiple populations across Europe and western Asia as well as specimens of domestic geese representing 18 modern breeds and individuals not belonging to any recognised breed. Our results show notable differences in genetic diversity between different greylag goose populations and the presence of six mitochondrial haplogroups which show a degree of geographical partitioning. The genetic diversity of the domestic goose is low, with 84% of sampled individuals having one of two major closely related haplotypes, suggesting that modern European domestic geese may derive from a narrow genetic base. The site of domestication remains unresolved, but domestic geese in Turkey were unusually diverse, indicating the importance of further sampling in the vicinity of the eastern Mediterranean and the Near East. There appears to be past or ongoing hybridisation between greylags and domestic geese in particular areas, consistent with field observations.  相似文献   

14.
Sequence analysis of the mitochondrial DNA control region from 112 southeastern US coyotes (Canis latrans) revealed 12 individuals with a haplotype closely related to those in domestic dogs. Phylogenetic analyses grouped this new haplotype in the dog/grey wolf (Canis familiaris/Canis lupus) clade with 98% bootstrap support. These results demonstrate that a male coyote hybridized with a female dog, and female hybrid offspring successfully integrated into the coyote population. The widespread distribution of this haplotype from Florida to West Virginia suggests that the hybridization event occurred long ago before the southeastern USA was colonized by coyotes. However, it could have occurred in the southeastern USA before the main front of coyotes arrived in the area between male coyotes released for sport and a local domestic dog. The introgression of domestic dog genes into the southeastern coyote population does not appear to have substantially affected the coyote's genetic, morphological, or behavioural integrity. However, our results suggest that, contrary to previous reports, hybridization can occur between domestic and wild canids, even when the latter is relatively abundant. Therefore, hybridization may be a greater threat to the persistence of wild canid populations than previously thought.  相似文献   

15.
The role of European wild horses in horse domestication is poorly understood. While the fossil record for wild horses in Europe prior to horse domestication is scarce, there have been suggestions that wild populations from various European regions might have contributed to the gene pool of domestic horses. To distinguish between regions where domestic populations are mainly descended from local wild stock and those where horses were largely imported, we investigated patterns of genetic diversity in 24 European horse breeds typed at 12 microsatellite loci. The distribution of high levels of genetic diversity in Europe coincides with the distribution of predominantly open landscapes prior to domestication, as suggested by simulation-based vegetation reconstructions, with breeds from Iberia and the Caspian Sea region having significantly higher genetic diversity than breeds from central Europe and the UK, which were largely forested at the time the first domestic horses appear there. Our results suggest that not only the Eastern steppes, but also the Iberian Peninsula provided refugia for wild horses in the Holocene, and that the genetic contribution of these wild populations to local domestic stock may have been considerable. In contrast, the consistently low levels of diversity in central Europe and the UK suggest that domestic horses in these regions largely derive from horses that were imported from the Eastern refugium, the Iberian refugium, or both.  相似文献   

16.
人类文明发展历史中, 家马(Equus ferus caballus)曾是推动文化交流、促进人类社会发展的主要动力。关于家马何时、何地被驯化以及在此过程中其遗传演化如何被人类影响等一直备受关注。近年来随着遗传学技术的发展, 人们对该问题有了更为深入的理解。本文回顾了近二十年来相关研究所取得的成果, 探讨了家马的驯化起源中心和驯化过程中的遗传演化特征, 并对未来的研究方向以及遗传资源保护提出了建议。分子标记遗传学和考古学研究认为家马可能来自多个驯化起源地种群, 然而最近的古DNA研究结果表明, 现代家马的驯化起源可能比之前人们所猜测的更加复杂, 古代博泰马被认为是最早被驯化的家马, 然而最近被证实并不是现代家马的直系祖先。如此复杂的驯化问题可能从多学科的层次才能解析清楚。人类社会活动直接或间接影响了家马的演化历程, 特别是工业革命以来家马的遗传基础发生了巨大变化, 其遗传多样性开始急剧衰退, 不少地方品种正逐渐走向衰落甚至灭绝。为确保农业生态安全不受威胁, 建议加强家马遗传资源保护与动物遗传学和文化地理之间的联系研究。  相似文献   

17.
We studied the quantitative genetics of sexually selected traits in a captive population of red junglefowl (Gallus gallus L.) using a multi-generational 'animal model' approach. We found significant heritability of mass, tarsus length (both strongly sexually dimorphic), residual mass, and male comb (a fleshy head ornament) length. Residual mass has a genetic correlation between the sexes smaller than unity and so could show partially independent responses to selection in the two sexes. In males, tarsus length and mass were not genetically correlated, and this produced a negative genetic correlation between tarsus length and residual mass. The male red junglefowl's comb, an ornament influencing female choice, is highly condition dependent. We show that expression of this ornament is heritable, however, and shows strong genetic correlation with a condition index, residual mass. Because residual mass is partly influenced by various aspects of condition, it appears that comb size has 'captured' genetic variability in condition.  相似文献   

18.
Abstract Females may choose more attractive mates to obtain better viability or attractiveness genes for their offspring. A number of studies have demonstrated a positive relationship between paternal attractiveness and offspring quality. However, this pattern could be due to inheritance of paternal genes and/or it could be due to increased maternal investment in the offspring of more attractive males. To isolate female responses to male appearance from paternal genetic effects, I housed female red junglefowl ( Gallus gallus ) with vasectomized (sterile) males and artificially inseminated them. Male junglefowl with larger combs are more attractive to females. Females laid more eggs when housed with a large-combed, as opposed to a small-combed, vasectomized mate. Neither egg volume nor offspring body condition was associated with comb size of the mother's vasectomized mate. Paternal genetics appeared important. Body condition and comb size were greater for the sons of large-combed sperm donor males. This is consistent with the hypothesis that genetic benefits to offspring maintain female preference for the most ornate males. It is possible that greater body condition and comb size in sons of large-combed sires was not caused by genetic differences, but instead was due to compounds in the ejaculate of large-combed sperm donors inducing greater reproductive investment from females. However, females artificially inseminated by large-combed males did not produce more or larger eggs than females artificially inseminated by small-combed males, and thus there is no other evidence consistent with ejaculate-induced differential investment. Furthermore, only in older chicks was body condition significantly related to sire comb size, suggesting genetic rather than differential investment mechanisms.  相似文献   

19.
It may be hypothesised that reduced fearfulness has been a major target of selection during domestication. We tested 20 domesticated White Leghorn (WL) chickens and their ancestors, red junglefowl (RJF), in four different fear tests (Open Field, Novel Object, Aerial Predator, and Fear for Humans). The tests were designed to measure reactions to different types of potentially fearful stimuli. The correlations between durations of the same four variables from each of the tests (Stand/sit alert, Locomotion, Fly/jump, and Vocalisation) were analysed with principal components analysis (PCA). In the PCA, 33.5% of the variation in responses was explained by a single factor, interpreted as a general fear factor. Higher scores on this were related to stronger fear reactions. Red junglefowl scored significantly higher than White Leghorns on this factor, and also had a longer latency to feed in the Fear of Humans-test, used as an independent measure of fear in the same tests. The results suggest that selection for low fearfulness has been an important element of domestication.  相似文献   

20.
Bighorn sheep (Ovis canadensis) often die from respiratory disease after commingling with domestic sheep. From 2000 to 2009, we observed commingling between domestic and reintroduced bighorn sheep in 3 populations in UT, USA. We investigated how commingling affected survival of radio-collared female bighorns that were released initially (founder) and those that were subsequently released (augmented). We predicted that the proportion of young surviving to their first winter and population growth would be lower after observed commingling with domestic sheep. We observed groups of bighorns year-round on 2,712 occasions and commingling between domestic sheep and bighorns in 6 instances. On Mount Timpanogos, survival rates were best modeled as constant for females (n?=?57) before and after observed commingling with domestic sheep. Survival rates of female bighorns, however, decreased significantly in Rock Canyon (n?=?21) and on Mount Nebo (n?=?22) for founder, but not augmented bighorns after observed commingling with domestic sheep. Also, the proportion of young surviving to their first winter was almost 3 times lower and population growth was reduced for bighorns after observed commingling with domestic sheep in Rock Canyon and on Mount Nebo. Commingling between domestic and bighorn sheep reduced population parameters in 2 of 3 bighorn populations we studied; however, on Mount Timpanogos, interactions between those 2 species were not fatal for radio-collared female bighorns. Wildlife biologists should manage for spatial separation of these 2 species and consider the location of hobby farms and trailing operations of domestic sheep near release sites for bighorns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号