首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Covalent modification of proteins with ubiquitin (Ub) is widely implicated in the control of protein function and fate. Over 100 deubiquitylating enzymes rapidly reverse this modification, posing challenges to the biochemical and biophysical characterization of ubiquitylated proteins. We circumvented this limitation with a synthetic biology approach of reconstructing the entire eukaryotic Ub cascade in bacteria. Co‐expression of affinity‐tagged substrates and Ub with E1, E2 and E3 enzymes allows efficient purification of ubiquitylated proteins in milligram quantity. Contrary to in‐vitro assays that lead to spurious modification of several lysine residues of Rpn10 (regulatory proteasomal non‐ATPase subunit), the reconstituted system faithfully recapitulates its monoubiquitylation on lysine 84 that is observed in vivo. Mass spectrometry revealed the ubiquitylation sites on the Mind bomb E3 ligase and the Ub receptors Rpn10 and Vps9. Förster resonance energy transfer (FRET) analyses of ubiquitylated Vps9 purified from bacteria revealed that although ubiquitylation occurs on the Vps9‐GEF domain, it does not affect the guanine nucleotide exchanging factor (GEF) activity in vitro. Finally, we demonstrated that ubiquitylated Vps9 assumes a closed structure, which blocks additional Ub binding. Characterization of several ubiquitylated proteins demonstrated the integrity, specificity and fidelity of the system, and revealed new biological findings.  相似文献   

2.
Protein ubiquitylation profoundly expands proteome functionality and diversifies cellular signaling processes, with recent studies providing ample evidence for its importance to plant immunity. To gain a proteome-wide appreciation of ubiquitylome dynamics during immune recognition, we employed a two-step affinity enrichment protocol based on a 6His-tagged ubiquitin (Ub) variant coupled with high sensitivity mass spectrometry to identify Arabidopsis proteins rapidly ubiquitylated upon plant perception of the microbe-associated molecular pattern (MAMP) peptide flg22. The catalog from 2-week-old seedlings treated for 30 min with flg22 contained 690 conjugates, 64 Ub footprints, and all seven types of Ub linkages, and included previously uncharacterized conjugates of immune components. In vivo ubiquitylation assays confirmed modification of several candidates upon immune elicitation, and revealed distinct modification patterns and dynamics for key immune components, including poly- and monoubiquitylation, as well as induced or reduced levels of ubiquitylation. Gene ontology and network analyses of the collection also uncovered rapid modification of the Ub-proteasome system itself, suggesting a critical auto-regulatory loop necessary for an effective MAMP-triggered immune response and subsequent disease resistance. Included targets were UBIQUITIN-CONJUGATING ENZYME 13 (UBC13) and proteasome component REGULATORY PARTICLE NON-ATPASE SUBUNIT 8b (RPN8b), whose subsequent biochemical and genetic analyses implied negative roles in immune elicitation. Collectively, our proteomic analyses further strengthened the connection between ubiquitylation and flg22-based immune signaling, identified components and pathways regulating plant immunity, and increased the database of ubiquitylated substrates in plants.

Proteome-wide catalogs of ubiquitylated proteins reveal a rapid engagement of the ubiquitin–proteasome system in Arabidopsis innate immunity.  相似文献   

3.
Nedd4 is a HECT domain-containing ubiquitin ligase that mediates ubiquitylation and proteasome degradation of target proteins. The molecular basis for the interaction of Nedd4 with substrates lies in its WW domains, which can bind proline-rich (PY) domains in target proteins. Nedd4 is a developmentally expressed protein and may have a fundamental role to play in embryonic processes. However, whether Nedd4 has such a function is currently unknown, in part because few developmentally regulated ubiquitylation substrates have been identified or characterized. We have carried out a yeast two-hybrid screen and identified four proteins expressed in the mid-gestation embryo that are able to interact with Nedd4. Characterization of their functional interaction with Nedd4 in vitro and in vivo demonstrated that three of the four are bona fide Nedd4 binding partners, and two have the capacity to be ubiquitylation substrates. One of these is the first identified nonviral substrate for Nedd4-mediated monoubiquitylation. Interestingly, neither of these two ubiquitylated proteins interacts with Nedd4 through PY-mediated mechanisms. For one of the three Nedd4 binding partners, there was no discernable evidence of ubiquitylation. However, this protein clearly associates with Nedd4 through its PY domains and can alter the location of Nedd4 in cells, suggesting a role other than as a ubiquitylation substrate.  相似文献   

4.
The ubiquitin-interacting motif (UIM) is a short peptide motif with the dual function of binding ubiquitin and promoting ubiquitylation. This motif is conserved throughout eukaryotes and is present in numerous proteins involved in a wide variety of cellular processes including endocytosis, protein trafficking, and signal transduction. We previously reported that the UIMs of epsin were both necessary and sufficient for its ubiquitylation. In this study, we found that many, but not all, UIM-containing proteins were ubiquitylated. When expressed as chimeric fusion proteins, most UIMs promoted ubiquitylation of the chimera. In contrast to previous studies, we found that UIMs do not exclusively promote monoubiquitylation but rather a mixture of mono-, multi-, and polyubiquitylation. However, UIM-dependent polyubiquitylation does not lead to degradation of the modified protein. UIMs also bind polyubiquitin chains of varying lengths and to different degrees, and this activity is required for UIM-dependent ubiquitylation. Mutational analysis of the UIM revealed specific amino acids that are important for both polyubiquitin binding and ubiquitin conjugation. Finally we provide evidence that UIM-dependent ubiquitylation inhibits the interaction of UIM-containing proteins with other ubiquitylated cellular proteins. Our results suggest a new model for the ubiquitylation of UIM-containing proteins.  相似文献   

5.
Poly-ubiquitin chains targeting proteins for 26S proteasomal degradation are classically anchored on internal lysines of substrates via iso-peptide linkages. However recently, linkage of ubiquitin moieties to non-canonical nucleophilic residues, such as cysteines, serines and threonines, has been demonstrated in a small number of cases.Non-canonical ubiquitylation of the proneural protein Ngn2 has previously been seen in Xenopus egg extract, but it was not clear whether such highly unusual modes of ubiquitylation were restricted to the environment of egg cytoplasm. Here we show that Ngn2 is, indeed, ubiquitylated on non-canonical sites in extracts from neurula stage Xenopus embryos, when Ngn2 is usually active. Moreover, in the P19 mammalian embryonal carcinoma cell line capable of differentiating into neurons, xNgn2 is ubiquitylated on both canonical and non-canonical sites. We see that mutation of cysteines alone results stabilisation of the protein in P19 cells, indicating that non-canonical ubiquitylation on these residues normally contributes to the fast turnover of xNgn2 in mammalian cells.  相似文献   

6.
Ubiquitylation is a versatile post-translational modification (PTM). The diversity of ubiquitylation topologies, which encompasses different chain lengths and linkages, underlies its widespread cellular roles. Here, we show that endogenous ubiquitin is acetylated at lysine (K)-6 (AcK6) or K48. Acetylated ubiquitin does not affect substrate monoubiquitylation, but inhibits K11-, K48-, and K63-linked polyubiquitin chain elongation by several E2 enzymes in vitro. In cells, AcK6-mimetic ubiquitin stabilizes the monoubiquitylation of histone H2B—which we identify as an endogenous substrate of acetylated ubiquitin—and of artificial ubiquitin fusion degradation substrates. These results characterize a mechanism whereby ubiquitin, itself a PTM, is subject to another PTM to modulate mono- and polyubiquitylation, thus adding a new regulatory layer to ubiquitin biology.  相似文献   

7.
Polycomb-repressive complex 1 (PRC1)-mediated histone ubiquitylation plays an important role in aberrant gene silencing in human cancers and is a potential target for cancer therapy. Here we show that 2-pyridine-3-yl-methylene-indan-1,3-dione (PRT4165) is a potent inhibitor of PRC1-mediated H2A ubiquitylation in vivo and in vitro. The drug also inhibits the accumulation of all detectable ubiquitin at sites of DNA double-strand breaks (DSBs), the retention of several DNA damage response proteins in foci that form around DSBs, and the repair of the DSBs. In vitro E3 ubiquitin ligase activity assays revealed that PRT4165 inhibits both RNF2 and RING 1A, which are partially redundant paralogues that together account for the E3 ubiquitin ligase activity found in PRC1 complexes, but not RNF8 nor RNF168. Because ubiquitylation is completely inhibited despite the efficient recruitment of RNF8 to DSBs, our results suggest that PRC1-mediated monoubiquitylation is required for subsequent RNF8- and/or RNF168-mediated polyubiquitylation. Our results demonstrate the unique feature of PRT4165 as a novel chromatin-remodeling compound and provide a new tool for the inhibition of ubiquitylation signaling at DNA double-strand breaks.  相似文献   

8.
Posttranslational modification of proteins with ubiquitin (ubiquitylation) regulates numerous cellular processes. Besides functioning as a signal for proteasomal degradation, ubiquitylation has also non-proteolytic functions by altering the biochemical properties of the modified protein. To investigate the effect(s) of ubiquitylation on the properties of a protein, sufficient amounts of homogenously and well-defined ubiquitylated proteins are required. Here, we report on the elaboration of a method for the generation of high amounts of site-specifically mono-ubiquitylated proteins. Firstly, a one-step affinity purification scheme was developed for ubiquitin containing the unnatural amino acid azidohomoalanine at the C-terminal position. This ubiquitin was conjugated in a click reaction to recombinant DNA polymerase β, equipped with an alkyne function at a distinct position. Secondly, addition of defined amounts of SDS to the reaction significantly improved product formation. With these two technical improvements, we have developed a straight forward procedure for the efficient generation of site-specifically ubiquitylated proteins that can be used to study the effect(s) of ubiquitylation on the activities/properties of a protein.  相似文献   

9.
PCNA is a key component of DNA replication and repair machineries. DNA damage-induced PCNA ubiquitylation serves as a molecular mark to orchestrate postreplication repair. Here, we have identified and characterized Spartan, a protein that specifically recognizes ubiquitylated PCNA and plays an important role in cellular resistance to UV radiation. In vitro, Spartan engages ubiquitylated PCNA via both a PIP box and a UBZ domain. In cells, Spartan is recruited to sites of UV damage in a manner dependent upon the PIP box, the UBZ domain, and PCNA ubiquitylation. Furthermore, Spartan colocalizes and interacts with Rad18, the E3 ubiquitin ligase that modifies PCNA. Surprisingly, while Spartan is recruited by ubiquitylated PCNA, knockdown of Spartan compromised chromatin association of Rad18, monoubiquitylation of PCNA, and localization of Pol η to UV damage. Thus, as a "reader" of ubiquitylated PCNA, Spartan promotes an unexpected feed-forward loop to enhance PCNA ubiquitylation and translesion DNA synthesis.  相似文献   

10.
Damaged and misfolded proteins that are no longer functional in the cell need to be eliminated. Failure to do so might lead to their accumulation and aggregation, a hallmark of many neurodegenerative diseases. Protein quality control pathways play a major role in the degradation of these proteins, which is mediated mainly by the ubiquitin proteasome system. Despite significant focus on identifying ubiquitin ligases involved in these pathways, along with their substrates, a systems-level understanding of these pathways has been lacking. For instance, as misfolded proteins are rapidly ubiquitylated, unconjugated ubiquitin is rapidly depleted from the cell upon misfolding stress; yet it is unknown whether certain targets compete more efficiently to be ubiquitylated. Using a system-wide approach, we applied statistical and computational methods to identify characteristics enriched among proteins that are further ubiquitylated after heat shock. We discovered that distinct populations of structured and, surprisingly, intrinsically disordered proteins are prone to ubiquitylation. Proteomic analysis revealed that abundant and highly structured proteins constitute the bulk of proteins in the low-solubility fraction after heat shock, but only a portion is ubiquitylated. In contrast, ubiquitylated, intrinsically disordered proteins are enriched in the low-solubility fraction after heat shock. These proteins have a very low abundance in the cell, are rarely encoded by essential genes, and are enriched in binding motifs. In additional experiments, we confirmed that several of the identified intrinsically disordered proteins were ubiquitylated after heat shock and demonstrated for two of them that their disordered regions are important for ubiquitylation after heat shock. We propose that intrinsically disordered regions may be recognized by the protein quality control machinery and thereby facilitate the ubiquitylation of proteins after heat shock.Cells face the constant threat of protein misfolding and aggregation, and thus protein quality control pathways are important in selectively targeting damaged and misfolded proteins for degradation (1, 2). The ubiquitin proteasome system serves as a major mediator of this pathway by conjugating the small protein ubiquitin onto substrates through the E1-E2-E3 (ubiquitin-activating enzyme, ubiquitin-conjugating enzyme, and ubiquitin ligase, respectively) cascade for their recognition and degradation by the proteasome (3, 4). It is known that the activity of the ubiquitin-proteasome system is associated with many neurodegenerative diseases. For instance, ubiquitin is found enriched in protein inclusions associated with these diseases (5). Furthermore, proteasome activity has been shown to decrease with age in a large variety of organisms (6), leading to increased proteotoxicity in the cell.Because of the importance of maintaining protein homeostasis, numerous ubiquitin ligases in different cellular compartments function in protein quality control pathways to target misfolded or damaged proteins for degradation via the proteasome. For instance, the conserved Hrd1 ubiquitin ligase is involved in the endoplasmic-reticulum-associated degradation pathway that targets endoplasmic reticulum proteins for retro-translocation to the cytoplasm and proteasome degradation (7). A major question is what features are recognized by ubiquitin ligases that allow them to selectively target terminally misfolded proteins for degradation, given that the folding rates and physicochemical properties vary largely from protein to protein. Several E3 ubiquitin ligases involved in cytosolic protein quality control target their substrates via their interactions with chaperone proteins. For instance, the CHIP ubiquitin ligase can directly bind to Hsp70 and Hsp90 proteins (8), which may hand over client proteins that are not successfully folded. Understanding which features are recognized by these degradation quality-control pathways might help us understand how certain misfolded proteins evade this system, leading to their accumulation and aggregation in the cell.Many studies investigating degradation protein quality control have employed model substrates (e.g. mutated proteins that misfold) to reveal which components are involved in a given quality control machinery. However, these approaches do not typically reveal the whole spectrum of substrates for these pathways. Thus, alternative system-wide approaches are also needed to provide a bigger picture. Heat shock (HS)1 induces general misfolding at the proteome level by increasing thermal energy and was shown to cause an increase in ubiquitylation levels in the cell over 25 years ago (9, 10). However, the exact mechanism and pathways that target misfolded proteins have remained uncharacterized for a long time. We recently showed that the Hul5 ubiquitin ligase plays a major role in this heat stress response that mainly affects cytosolic proteins (11). Absence of Hul5 averts the ubiquitylation in the cytoplasm of several misfolded targets after HS, as well as low-solubility proteins in unstressed cells. Other E3 ubiquitin ligases are likely involved in this pathway (12). Interestingly, as ubiquitin constitutes about only 1% of the proteome, free unconjugated ubiquitin is rapidly depleted under stress conditions (13, 14). Given the limited amount of this protein, how does the cell triage ubiquitin among an excess of misfolded proteins? In order to gain systems-level insight, we sought to identify characteristics enriched among proteins ubiquitylated after HS using a combination of statistical and computational analysis, and we conducted additional proteomics and biochemical experiments to support our hypotheses. We discovered an unexpected susceptibility of intrinsically disordered proteins for ubiquitylation after misfolding stress.  相似文献   

11.
The ubiquitin system is crucial for the development and fitness of higher plants. De-etiolation, during which green plants initiate photomorphogenesis and establish autotrophy, is a dramatic and complicated process that is tightly regulated by a massive number of ubiquitylation/de-ubiquitylation events. Here we present site-specific quantitative proteomic data for the ubiquitylomes of de-etiolating seedling leaves of Zea mays L. (exposed to light for 1, 6, or 12 h) achieved through immunoprecipitation-based high-resolution mass spectrometry (MS). Through the integrated analysis of multiple ubiquitylomes, we identified and quantified 1926 unique ubiquitylation sites corresponding to 1053 proteins. We analyzed these sites and found five potential ubiquitylation motifs, KA, AXK, KXG, AK, and TK. Time-course studies revealed that the ubiquitylation levels of 214 sites corresponding to 173 proteins were highly correlated across two replicate MS experiments, and significant alterations in the ubiquitylation levels of 78 sites (fold change >1.5) were detected after de-etiolation for 12 h. The majority of the ubiquitylated sites we identified corresponded to substrates involved in protein and DNA metabolism, such as ribosomes and histones. Meanwhile, multiple ubiquitylation sites were detected in proteins whose functions reflect the major physiological changes that occur during plant de-etiolation, such as hormone synthesis/signaling proteins, key C4 photosynthetic enzymes, and light signaling proteins. This study on the ubiquitylome of the maize seedling leaf is the first attempt ever to study the ubiquitylome of a C4 plant and provides the proteomic basis for elucidating the role of ubiquitylation during plant de-etiolation.  相似文献   

12.
Ubiquitin accumulation in amyloid plaques is a pathological marker observed in the vast majority of neurodegenerative diseases, yet ubiquitin function in these inclusions is controversial. It has been suggested that ubiquitylated proteins are directed to inclusion bodies under stress conditions, when both chaperone-mediated refolding and proteasomal degradation are compromised or overwhelmed. Alternatively, ubiquitin and chaperones may be recruited to preformed inclusions to promote their elimination. We address this issue using a yeast model system, based on expression of several mildly misfolded degradation substrates in cells with altered chaperone content. We find that the heat shock protein 70 (Hsp70) chaperone pair Ssa1/Ssa2 and the Hsp40 cochaperone Sis1 are essential for degradation. Substrate ubiquitylation is strictly dependent on Sis1, whereas Ssa1 and Ssa2 are dispensable. Remarkably, in Ssa1/Ssa2-depleted cells, ubiquitylated substrates are sequestered into detergent-insoluble, Hsp42-positive inclusion bodies. Unexpectedly, sequestration is abolished by preventing substrate ubiquitylation. We conclude that Hsp40 is required for the targeting of misfolded proteins to the ubiquitylation machinery, whereas the decision to degrade or sequester ubiquitylated proteins is mediated by the Hsp70s. Accordingly, diminished Hsp70 levels, as observed in aging or certain pathological conditions, might be sufficient to trigger ubiquitin-dependent sequestration of partially misfolded proteins into inclusion bodies.  相似文献   

13.
Protein ubiquitylation is a dynamic process that affects the function and stability of proteins and controls essential cellular processes ranging from cell proliferation to cell death. This process is regulated through the balanced action of E3 ubiquitin ligases and deubiquitylating enzymes (DUB) which conjugate ubiquitins to, and remove them from target proteins, respectively. Our genetic analysis has revealed that the deubiquitylating enzyme DmUsp5 is required for maintenance of the ubiquitin equilibrium, cell survival and normal development in Drosophila. Loss of the DmUsp5 function leads to late larval lethality accompanied by the induction of apoptosis. Detailed analyses at a cellular level demonstrated that DmUsp5 mutants carry multiple abnormalities, including a drop in the free monoubiquitin level, the excessive accumulation of free polyubiquitins, polyubiquitylated proteins and subunits of the 26S proteasome. A shortage in free ubiquitins results in the induction of a ubiquitin stress response previously described only in the unicellular budding yeast. It is characterized by the induction of the proteasome-associated deubiquitylase DmUsp14 and sensitivity to cycloheximide. Removal of DmUsp5 also activates the pro-apoptotic machinery thereby resulting in widespread apoptosis, indicative of an anti-apoptotic role of DmUsp5. Collectively, the pleiotropic effects of a loss of DmUsp5 function can be explained in terms of the existence of a limited pool of free monoubiquitins which makes the ubiquitin-dependent processes mutually interdependent.  相似文献   

14.
《Cryobiology》2008,56(3):230-235
Rodent hibernators experience low core body temperature (as low as −2 °C) and reduced metabolic rates during hibernation. Concordant with energetic constraints, protein synthesis is negligible during torpor. To maintain pools of key regulatory proteins, proteolysis must be depressed as well. Ubiquitin-dependent proteolysis consists of two major steps: (1) ubiquitylation or tagging of a protein substrate by ubiquitin and (2) the protein substrate’s subsequent degradation by the 26S proteasome. Earlier, we demonstrated that the low temperatures typical of torpor virtually arrest proteolytic processing. Here, we demonstrate that in vitro ubiquitylation still continues at greater than 30% of maximal rates at temperatures as low as 0 °C. Continued ubiquitylation in the presence of severely depressed proteolysis may explain the previously observed 2- to 3-fold increase of ubiquitin conjugates during torpor. We determined if there is a qualitative change in the type of ubiquitylation e.g., monoubiquitylation vs polyubiquitylation that occurs during torpor. We found no bias for monoubiquitylation in any state of the torpor cycle. We further determined that substrate limitation of free ubiquitin is not limiting ubiquitylation during torpor. We conclude that while the cold temperatures of torpor may limit proteolysis in accordance with metabolic demands, continued ubiquitylation may result in increased ubiquitin conjugate concentrations that must be processed upon arousal.  相似文献   

15.
Ligand-dependent endocytosis of the epidermal growth factor receptor (EGFR) involves recruitment of a ubiquitin ligase, and sorting of ubiquitylated receptors to lysosomal degradation. By studying Hgs, a mammalian homolog of a yeast vacuolar-sorting adaptor, we provide information on the less understood, ligand-independent pathway of receptor endocytosis and degradation. Constitutive endocytosis involves receptor ubiquitylation and translocation to Hgs-containing endosomes. Whereas the lipid-binding motif of Hgs is necessary for receptor endocytosis, the ubiquitin-interacting motif negatively regulates receptor degradation. We demonstrate that the ubiquitin-interacting motif is endowed with two functions: it binds ubiquitylated proteins and it targets self-ubiquitylation by recruiting Nedd4, an ubiquitin ligase previously implicated in endocytosis. Based upon the dual function of the ubiquitin-interacting motif and its wide occurrence in endocytic adaptors, we propose a ubiquitin-interacting motif network that relays ubiquitylated membrane receptors to lysosomal degradation through successive budding events.  相似文献   

16.

Background  

Post-translational protein modification with ubiquitin, or ubiquitylation, is one of the hottest topics in a modern biology due to a dramatic impact on diverse metabolic pathways and involvement in pathogenesis of severe human diseases. A great number of eukaryotic proteins was found to be ubiquitylated. However, data about particular ubiquitylated proteins are rather disembodied.  相似文献   

17.
Defining the full complement of substrates for each ubiquitin ligase remains an important challenge. Improvements in mass spectrometry instrumentation and computation and in protein biochemistry methods have resulted in several new methods for ubiquitin ligase substrate identification. Here we used the parallel adapter capture (PAC) proteomics approach to study βTrCP2/FBXW11, a substrate adaptor for the SKP1–CUL1–F-box (SCF) E3 ubiquitin ligase complex. The processivity of the ubiquitylation reaction necessitates transient physical interactions between FBXW11 and its substrates, thus making biochemical purification of FBXW11-bound substrates difficult. Using the PAC-based approach, we inhibited the proteasome to “trap” ubiquitylated substrates on the SCFFBXW11 E3 complex. Comparative mass spectrometry analysis of immunopurified FBXW11 protein complexes before and after proteasome inhibition revealed 21 known and 23 putatively novel substrates. In focused studies, we found that SCFFBXW11 bound, polyubiquitylated, and destabilized RAPGEF2, a guanine nucleotide exchange factor that activates the small GTPase RAP1. High RAPGEF2 protein levels promoted cell-cell fusion and, consequently, multinucleation. Surprisingly, this occurred independently of the guanine nucleotide exchange factor (GEF) catalytic activity and of the presence of RAP1. Our data establish new functions for RAPGEF2 that may contribute to aneuploidy in cancer. More broadly, this report supports the continued use of substrate trapping proteomics to comprehensively define targets for E3 ubiquitin ligases. All proteomic data are available via ProteomeXchange with identifier PXD001062.  相似文献   

18.
Mono- and polyubiquitylation of proteins are key steps in a wide range of biological processes. However, the molecular mechanisms that mediate these different events are poorly understood. Here, we employed NMR spectroscopy to map a non-covalent ubiquitin binding surface (UBS) on the Smurf ubiquitin ligase HECT domain. Analysis of mutants of the HECT UBS reveal that interfering with the UBS surface blocked Smurf-dependent degradation of its substrate RhoA in cells. In vitro analysis revealed that the UBS was not required for UbcH7-dependent charging of the HECT catalytic cysteine. Surprisingly, although the UBS was required for polyubiquitylation of both Smurf itself and the Smurf substrate RhoA, it was not required for monoubiquitylation. Furthermore, we show that mutating the UBS interfered with efficient binding of a monoubiquitylated form of RhoA to the Smurf HECT domain. Our findings suggest the UBS promotes polyubiquitylation by stabilizing ubiquitylated substrate binding to the HECT domain.  相似文献   

19.
Ubiquitylation is a highly diverse and complex post-translational modification for the regulation of protein function and stability. Studies of ubiquitylation have, however, been hampered by its rapid reversal in cell extracts, for example through the action of de-ubiquitylating enzymes (DUBs). Here we describe a novel ubiquitin-binding protein reagent, MultiDsk, composed of an array of five UBA domains from the yeast ubiquitin-binding protein Dsk2, fused to GST. MultiDsk binds ubiquitylated substrates with unprecedented avidity, and can be used as both an affinity resin to study protein ubiquitylation, and to effectively protect ubiquitylated proteins from the action of DUBs and the proteasome in crude cell extracts. We use the resin to show that the Def1 protein becomes ubiquitylated in response to DNA damage, and to isolate ubiquitylated forms of RNA polymerase II.  相似文献   

20.
Covalent modifications of histone proteins have profound consequences on chromatin structure and function. Specific modification patterns constitute a code read by effector proteins. Studies from yeast found that H3 trimethylation at K4 and K79 is dependent on ubiquitylation of H2B K123, which is termed a “trans-tail pathway.” In this study, we show that a strain unable to be ubiquitylated on H2B (K123R) is still proficient for H3 trimethylation at both K4 and K79, indicating that H3 methylation status is not solely dependent on H2B ubiquitylation. However, additional mutations in H2B result in loss of H3 methylation when combined with htb1-K123R. Consistent with this, we find that the original strain used to identify the trans-tail pathway has a genomic mutation that, when combined with H2B K123R, results in defective H3 methylation. Finally, we show that strains lacking the ubiquitin ligase Bre1 are defective for H3 methylation, suggesting that there is an additional Bre1 substrate that in combination with H2B K123 facilitates H3 methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号