首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
Nematodes play vital roles in soil ecosystems. To understand how their communities and coexistence patterns change along the elevation as well as to determine the best explanatory factors underlying these changes, we investigated free‐living soil nematodes on Mt. Halla, South Korea, using an amplicon sequencing approach targeting the 18S rRNA gene. Our results showed that there was significant variation in the community diversity and composition of soil nematodes in relation to elevation. The network interactions between soil nematodes were more intensive at the lower elevations. Climatic variables were responsible explaining the elevational variation in community composition and co‐occurrence pattern of the nematode community. Our study indicated that climatic factors served as the critical environmental filter that influenced not only the community structure but also the potential associations of soil nematodes in the mountain ecosystem of Mt. Halla. These findings enhance the understanding of the community structure and co‐occurrence network patterns and mechanisms of soil nematode along elevation, and the response of soil nematodes to climate change on the vertical scale of mountain ecosystems.  相似文献   

2.
Loss of plant biodiversity can result in reduced abundance and diversity of associated species with implications for ecosystem functioning. In ecosystems low in plant species diversity, such as Neotropical mangrove forests, it is thought that genetic diversity within the dominant plant species could play an important role in shaping associated communities. Here, we used a manipulative field experiment to study the effects of maternal genotypic identity and genetic diversity of the red mangrove Rhizophora mangle on the composition and richness of associated soil bacterial communities. Using terminal restriction fragment length polymorphism (T‐RFLP) community fingerprinting, we found that bacterial community composition differed among R. mangle maternal genotypes but not with genetic diversity. Bacterial taxa richness, total soil nitrogen, and total soil carbon were not significantly affected by maternal genotypic identity or genetic diversity of R. mangle. Our findings show that genotype selection in reforestation projects could influence soil bacterial community composition. Further research is needed to determine what impact these bacterial community differences might have on ecosystem processes, such as carbon and nitrogen cycling.  相似文献   

3.
Long‐term biodiversity experiments have shown increasing strengths of biodiversity effects on plant productivity over time. However, little is known about rapid evolutionary processes in response to plant community diversity, which could contribute to explaining the strengthening positive relationship. To address this issue, we performed a transplant experiment with offspring of seeds collected from four grass species in a 14‐year‐old biodiversity experiment (Jena Experiment). We used two‐ and six‐species communities and removed the vegetation of the study plots to exclude plant–plant interactions. In a reciprocal design, we transplanted five “home” phytometers (same origin and actual environment), five “away‐same” phytometers (same species richness of origin and actual environment, but different plant composition), and five “away‐different” phytometers (different species richness of origin and actual environment) of the same species in the study plots. In the establishment year, plants transplanted in home soil produced more shoots than plants in away soil indicating that plant populations at low and high diversity developed differently over time depending on their associated soil community and/or conditions. In the second year, offspring of individuals selected at high diversity generally had a higher performance (biomass production and fitness) than offspring of individuals selected at low diversity, regardless of the transplant environment. This suggests that plants at low and high diversity showed rapid evolutionary responses measurable in their phenotype. Our findings provide first empirical evidence that loss of productivity at low diversity is not only caused by changes in abiotic and biotic conditions but also that plants respond to this by a change in their micro‐evolution. Thus, we conclude that eco‐evolutionary feedbacks of plants at low and high diversity are critical to fully understand why the positive influence of diversity on plant productivity is strengthening through time.  相似文献   

4.
5.
Edge disturbance can drive liana community changes and alter liana‐tree interaction networks, with ramifications for forest functioning. Understanding edge effects on liana community structure and liana‐tree interactions is therefore essential for forest management and conservation. We evaluated the response patterns of liana community structure and liana‐tree interaction structure to forest edge in two moist semi‐deciduous forests in Ghana (Asenanyo and Suhuma Forest Reserves: AFR and SFR, respectively). Liana community structure and liana‐tree interactions were assessed in 24 50 × 50 m randomly located plots in three forest sites (edge, interior and deep‐interior) established at 0–50 m, 200 m and 400 m from edge. Edge effects positively and negatively influenced liana diversity in forest edges of AFR and SFR, respectively. There was a positive influence of edge disturbance on liana abundance in both forests. We observed anti‐nested structure in all the liana‐tree networks in AFR, while no nestedness was observed in the networks in SFR. The networks in both forests were less connected, and thus more modular and specialised than their null models. Many liana and tree species were specialised, with specialisation tending to be symmetrical. The plant species played different roles in relation to modularity. Most of the species acted as peripherals (specialists), with only a few species having structural importance to the networks. The latter species group consisted of connectors (generalists) and hubs (highly connected generalists). Some of the species showed consistency in their roles across the sites, while the roles of other species changed. Generally, liana species co‐occurred randomly on tree species in all the forest sites, except edge site in AFR where lianas showed positive co‐occurrence. Our findings deepen our understanding of the response of liana communities and liana‐tree interactions to forest edge disturbance, which are useful for managing forest edge.  相似文献   

6.
Host nutrient supply can mediate host–pathogen and pathogen–pathogen interactions. In terrestrial systems, plant nutrient supply is mediated by soil microbes, suggesting a potential role of soil microbes in plant diseases beyond soil‐borne pathogens and induced plant defenses. Long‐term nitrogen (N) enrichment can shift pathogenic and nonpathogenic soil microbial community composition and function, but it is unclear if these shifts affect plant–pathogen and pathogen–pathogen interactions. In a growth chamber experiment, we tested the effect of long‐term N enrichment on infection by Barley Yellow Dwarf Virus (BYDV‐PAV) and Cereal Yellow Dwarf Virus (CYDV‐RPV), aphid‐vectored RNA viruses, in a grass host. We inoculated sterilized growing medium with soil collected from a long‐term N enrichment experiment (ambient, low, and high N soil treatments) to isolate effects mediated by the soil microbial community. We crossed soil treatments with a N supply treatment (low, high) and virus inoculation treatment (mock‐, singly‐, and co‐inoculated) to evaluate the effects of long‐term N enrichment on plant–pathogen and pathogen–pathogen interactions, as mediated by N availability. We measured the proportion of plants infected (i.e., incidence), plant biomass, and leaf chlorophyll content. BYDV‐PAV incidence (0.96) declined with low N soil (to 0.46), high N supply (to 0.61), and co‐inoculation (to 0.32). Low N soil mediated the effect of N supply on BYDV‐PAV: instead of N supply reducing BYDV‐PAV incidence, the incidence increased. Additionally, ambient and low N soil ameliorated the negative effect of co‐inoculation on BYDV‐PAV incidence. BYDV‐PAV infection only reduced chlorophyll when plants were grown with low N supply and ambient N soil. There were no significant effects of long‐term N soil on CYDV‐RPV incidence. Soil inoculant with different levels of long‐term N enrichment had different effects on host–pathogen and pathogen–pathogen interactions, suggesting that shifts in soil microbial communities with long‐term N enrichment may mediate disease dynamics.  相似文献   

7.
The consequences of the introduction of invasive plants for the diet of herbivorous insects have been little explored in nature where, potentially, abiotic and biotic factors operate. In this study, we examined the larval performance of two Neotropical Danaini butterflies when using either a native or an exotic Apocynaceae species as host plant in both field and laboratory experiments. Hosts greatly differ in their amount of latex exudation and other physicochemical traits, as well as in the amount of evolutionary time they have interacted with herbivores. First, herbivore performance on the hosts was investigated under laboratory conditions. Larvae of both Danaini species took more time to develop on the exotic host; larval survivorship did not vary between hosts. Second, first instar survivorship on both hosts was evaluated in two field sites, one site per host. To do so, in both sites half of the larvae were bagged (protected against both abiotic and biotic factors) while the remainder were nonbagged (exposed). The interaction between larval exposure with the use of the exotic host reduced larval survival. We concluded that the combined effects of host plant traits and abiotic factors reduced survival of herbivores in field conditions. Therefore, the performance of herbivores when using hosts of different origins should be considered together with the multiple ecological factors found in natural environments, as these factors can modify the result of plant–herbivore interactions.  相似文献   

8.
Phytoremediation is an attractive alternative to excavating and chemically treating contaminated soils. Certain plants can directly bioremediate by sequestering and/or transforming pollutants, but plants may also enhance bioremediation by promoting contaminant-degrading microorganisms in soils. In this study, we used high-throughput sequencing of bacterial 16S rRNA genes and the fungal internal transcribed spacer (ITS) region to compare the community composition of 66 soil samples from the rhizosphere of planted willows (Salix spp.) and six unplanted control samples at the site of a former petrochemical plant. The Bray–Curtis distance between bacterial communities across willow cultivars was significantly correlated with the distance between fungal communities in uncontaminated and moderately contaminated soils but not in highly contaminated (HC) soils (>2000 mg kg−1 hydrocarbons). The mean dissimilarity between fungal, but not bacterial, communities from the rhizosphere of different cultivars increased substantially in the HC blocks. This divergence was partly related to high fungal sensitivity to hydrocarbon contaminants, as demonstrated by reduced Shannon diversity, but also to a stronger influence of willows on fungal communities. Abundance of the fungal class Pezizomycetes in HC soils was directly related to willow phylogeny, with Pezizomycetes dominating the rhizosphere of a monophyletic cluster of cultivars, while remaining in low relative abundance in other soils. This has implications for plant selection in phytoremediation, as fungal associations may affect the health of introduced plants and the success of co-inoculated microbial strains. An integrated understanding of the relationships between fungi, bacteria and plants will enable the design of treatments that specifically promote effective bioremediating communities.  相似文献   

9.
Positive plant diversity–productivity relationships are known to be driven by complementary resource use via differences in plant functional traits. Moreover, soil properties related to nutrient availability were shown to change with plant diversity over time; however, it is not well‐understood whether and how such plant diversity‐dependent soil changes and associated changes in functional traits contribute to positive diversity–productivity relationships in the long run. To test this, we investigated plant communities of different species richness (1, 2, 6, and 9 species) in a 15‐year‐old grassland biodiversity experiment. We determined community biomass production and biodiversity effects (net biodiversity [NEs], complementarity [CEs], and selection effects [SEs]), as well as community means of plant functional traits and soil properties. First, we tested how these variables changed along the plant diversity gradient and were related to each other. Then, we tested for direct and indirect effects of plant and soil variables influencing community biomass production and biodiversity effects. Community biomass production, NEs, CEs, SEs, plant height, root length density (RLD), and all soil property variables changed with plant diversity and the presence of the dominant grass species Arrhenatherum elatius (increase except for soil pH, which decreased). Plant height and RLD for plant functional traits, and soil pH and organic carbon concentration for soil properties, were the variables with the strongest influence on biomass production and biodiversity effects. Our results suggest that plant species richness and the presence of the dominant species, A. elatius, cause soil organic carbon to increase and soil pH to decrease over time, which increases nutrient availability favoring species with tall growth and dense root systems, resulting in higher biomass production in species‐rich communities. Here, we present an additional process that contributes to the strengthening positive diversity–productivity relationship, which may play a role alongside the widespread plant functional trait‐based explanation.  相似文献   

10.
Ecologically significant symbiotic associations are frequently studied in isolation, but such studies of two-way interactions cannot always predict the responses of organisms in a community setting. To explore this issue, we adopt a community approach to examine the role of plant–microbial and insect–microbial symbioses in modulating a plant–herbivore interaction. Potato plants were grown under glass in controlled conditions and subjected to feeding from the potato aphid Macrosiphum euphorbiae. By comparing plant growth in sterile, uncultivated and cultivated soils and the performance of M. euphorbiae clones with and without the facultative endosymbiont Hamiltonella defensa, we provide evidence for complex indirect interactions between insect– and plant–microbial systems. Plant biomass responded positively to the live soil treatments, on average increasing by 15% relative to sterile soil, while aphid feeding produced shifts (increases in stem biomass and reductions in stolon biomass) in plant resource allocation irrespective of soil treatment. Aphid fecundity also responded to soil treatment with aphids on sterile soil exhibiting higher fecundities than those in the uncultivated treatment. The relative allocation of biomass to roots was reduced in the presence of aphids harbouring H. defensa compared with plants inoculated with H. defensa-free aphids and aphid-free control plants. This study provides evidence for the potential of plant and insect symbionts to shift the dynamics of plant–herbivore interactions.  相似文献   

11.
Ecosystem engineers that modify the soil and ground‐layer properties exert a strong influence on vegetation communities in ecosystems worldwide. Understanding the interactions between animal engineers and vegetation is challenging when in the presence of large herbivores, as many vegetation communities are simultaneously affected by both engineering and herbivory. The superb lyrebird Menura novaehollandiae, an ecosystem engineer in wet forests of south‐eastern Australia, extensively modifies litter and soil on the forest floor. The aim of this study was to disentangle the impacts of engineering by lyrebirds and herbivory by large mammals on the composition and structure of ground‐layer vegetation. We carried out a 2‐year, manipulative exclusion experiment in the Central Highlands of Victoria, Australia. We compared three treatments: fenced plots with simulated lyrebird foraging; fenced plots excluding herbivores and lyrebirds; and open controls. This design allowed assessment of the relative impacts of engineering and herbivory on germination rates, seedling density, vegetation cover and structure, and community composition. Engineering by lyrebirds enhanced the germination of seeds in the litter layer. After 2 years, more than double the number of germinants were present in “engineered” than “non‐engineered” plots. Engineering did not affect the density of seedlings, but herbivory had strong detrimental effects. Herbivory also reduced the floristic richness and structural complexity (<0.5 m) of forest vegetation, including the cover of herbs. Neither process altered the floristic composition of the vegetation within the 2‐year study period. Ecosystem engineering by lyrebirds and herbivory by large mammals both influence the structure of forest‐floor vegetation. The twofold increase in seeds stimulated to germinate by engineering may contribute to the evolutionary adaptation of plants by allowing greater phenotypic expression and selection than would otherwise occur. Over long timescales, engineering and herbivory likely combine to maintain a more‐open forest floor conducive to ongoing ecosystem engineering by lyrebirds.  相似文献   

12.
田玉清  隋晓琳  张婷  李艳梅  李爱荣 《广西植物》2020,40(12):1838-1848
无论在农田还是自然生态系统中,土壤养分异质性普遍存在。植物具有感知土壤养分异质性的能力,并通过调节根系生物量分配及空间分布以获取更多资源。了解寄生胁迫在不同养分条件下对寄主生长发育及根系空间分布的影响,对解析寄主应对寄生胁迫和养分胁迫的适应策略,进而指导寄生性杂草防控具有重要的指导意义。该文采用分根试验,通过对寄主分根,并控制根室两侧氮供应水平及寄生胁迫程度,考察了氮胁迫及两种寄主依赖程度不同的马先蒿的寄生对寄主长芒棒头草生长发育及根系空间分布的影响。结果表明:(1)土壤氮水平与马先蒿寄生均可显著影响长芒棒头草生物量及根冠比,并且两者之间存在显著交互作用,其中土壤氮水平为主要影响因子。(2)两种马先蒿对长芒棒头草的危害程度不同。在NPK和2NPK处理时,三色马先蒿的寄生显著降低长芒棒头草生物量(茎叶:37. 1%、51. 5%;根系:35. 6%、63.6%);在NPK处理时,大王马先蒿的寄生显著增加长芒棒头草生物量(茎叶:29.9%,根系:61.2%)。(3)长芒棒头草的根系生长和空间分布受氮营养的异质分布和寄生的影响,具有明显的感知养分空间分布及调节根系生长能力。  相似文献   

13.
Background and Aims The environmental and biotic context within which plants grow have a great potential to modify responses to climatic changes, yet few studies have addressed both the direct effects of climate and the modulating roles played by variation in the biotic (e.g. competitors) and abiotic (e.g. soils) environment.Methods In a grassland with highly heterogeneous soils and community composition, small seedlings of two native plants, Lasthenia californica and Calycadenia pauciflora, were transplanted into factorially watered and fertilized plots. Measurements were made to test how the effect of climatic variability (mimicked by the watering treatment) on the survival, growth and seed production of these species was modulated by above-ground competition and by edaphic variables.Key Results Increased competition outweighed the direct positive impacts of enhanced rainfall on most fitness measures for both species, resulting in no net effect of enhanced rainfall. Both species benefitted from enhanced rainfall when the absence of competitors was accompanied by high soil water retention capacity. Fertilization did not amplify the watering effects; rather, plants benefitted from enhanced rainfall or competitor removal only in ambient nutrient conditions with high soil water retention capacity.Conclusions The findings show that the direct effects of climatic variability on plant fitness may be reversed or neutralized by competition and, in addition, may be strongly modulated by soil variation. Specifically, coarse soil texture was identified as a factor that may limit plant responsiveness to altered water availability. These results highlight the importance of considering the abiotic as well as biotic context when making future climate change forecasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号