首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Numatrin is a nuclear matrix phosphoprotein whose synthesis and abundance were shown to be regulated during the cell cycle in mitogen-stimulated lymphocytes (Feuerstein, N., and Mond, J. (1987) J. Biol. Chem. 262, 11389-11397). We examined the effect of (a) CTD-kinase, which contains the cdc2 catalytic component (p34) in a complex with a p58 subunit (cdc2/p58) and (b) the M phase-specific histone H1 kinase, which contains the cdc2 kinase in association with a p62 subunit (cdc2/p62), on phosphorylation of numatrin. We show that both cdc2 kinase complexes can phosphorylate numatrin. However, cdc2/p58 at conditions that caused a similar effect to cdc2/p62 on phosphorylation of histone H1 (dpm/micrograms of substrate/micrograms of enzyme) was found to have a 5-25-fold higher catalytic activity in the phosphorylation of numatrin. Analysis of the tryptic phosphopeptide map of numatrin phosphorylated by these cdc2 kinase complexes showed that both kinase complexes phosphorylated two major identical peptides, but minor additional peptides were differentially phosphorylated by each of these kinases. This indicates that under certain experimental conditions cdc2/p58 and cdc2/p62 may express some differences in their catalytic activity. In vitro phosphorylation by CTD kinase of a whole nuclear protein extract from murine fibroblasts showed that numatrin is the most prominent substrate for CTD kinase in this nuclear extract. CTD kinase cdc2/p58 was found to induce significantly the phosphorylation of five other discrete nuclear substrates. Particularly, two nuclear proteins at 75 kDa/pI approximately 6.5 and 85 kDa/pI approximately 5.3, which were not Coomassie Blue stainable, were found to be markedly phosphorylated by CTD kinase. The results of this study call for further study of the role of CTD kinase cdc2/p58 in the phosphorylation of numatrin under physiological conditions and to further characterization of the other nuclear substrates for CTD kinase.  相似文献   

3.
Ghosh A  Shuman S  Lima CD 《Molecular cell》2011,43(2):299-310
Physical interaction between the phosphorylated RNA polymerase II carboxyl-terminal domain (CTD) and cellular capping enzymes is required for efficient formation of the 5' mRNA cap, the first modification of nascent mRNA. Here, we report the crystal structure of the RNA guanylyltransferase component of mammalian capping enzyme (Mce) bound to a CTD phosphopeptide. The CTD adopts an extended β-like conformation that docks Tyr1 and Ser5-PO(4) onto the Mce nucleotidyltransferase domain. Structure-guided mutational analysis verified that the Mce-CTD interface is a tunable determinant of CTD binding and stimulation of guanylyltransferase activity, and of Mce function in?vivo. The location and composition of the CTD binding site on mammalian capping enzyme is distinct from that of a yeast capping enzyme that recognizes the same CTD primary structure. Thus, capping enzymes from different taxa have evolved different strategies to read the CTD code.  相似文献   

4.
蛋白质可逆磷酸化涉及到几乎所有细胞活动的调节.着重探讨了影响蛋白激酶作用专一性的几个因素和磷酸化影响蛋白质功能的结构基础及作用机制.  相似文献   

5.
Interactions linking the Eph receptor tyrosine kinase and ephrin ligands transduce short-range repulsive signals regulating several motile biological processes including axon path-finding, angiogenesis and tumor growth. These ephrin-induced effects are believed to be mediated by alterations in actin dynamics and cytoskeleton reorganization. The members of the small Rho GTPase family elicit various effects on actin structures and are probably involved in Eph receptor-induced actin modulation. In particular, some ephrin ligands lead to a decrease in integrin-mediated cell adhesion and spread. Here we show that the ability of ephrinA1 to inhibit cell adhesion and spreading in prostatic carcinoma cells is strictly dependent on the decrease in the activity of the small GTPase Rac1. Given the recognized role of Rac-driven redox signaling for integrin function, reported to play an essential role in focal adhesion formation and in the overall organization of actin cytoskeleton, we investigated the possible involvement of oxidants in ephrinA1/EphA2 signaling. We now provide evidence that Reactive Oxygen Species are an integration point of the ephrinA1/integrin interplay. We identify redox circuitry in which the ephrinA1-mediated inhibition of Rac1 leads to a negative regulation of integrin redox signaling affecting the activity of the tyrosine phosphatase LMW-PTP. The enzyme in turn actively dephosphorylates its substrate p190RhoGAP, finally leading to RhoA activation. Altogether our data suggest a redox-based Rac-dependent upregulation of Rho activity, concurring with the inhibitory effect elicited by ephrinA1 on integrin-mediated adhesion strength.Key Words: EphA2 kinase, reactive oxygen species, integrin, cell repulsion, tumorigenesis  相似文献   

6.
7.
Residue Ser151 of cardiac troponin I (cTnI) is known to be phosphorylated by p21-activated kinase 3 (PAK3). It has been found that PAK3-mediated phosphorylation of cTnI induces an increase in the sensitivity of myofilament to Ca2+, but the detailed mechanism is unknown. We investigated how the structural and kinetic effects mediated by pseudo-phosphorylation of cTnI (S151E) modulates Ca2+-induced activation of cardiac thin filaments. Using steady-state, time-resolved Förster resonance energy transfer (FRET) and stopped-flow kinetic measurements, we monitored Ca2+-induced changes in cTnI-cTnC interactions. Measurements were done using reconstituted thin filaments, which contained the pseudo-phosphorylated cTnI(S151E). We hypothesized that the thin filament regulation is modulated by altered cTnC-cTnI interactions due to charge modification caused by the phosphorylation of Ser151 in cTnI. Our results showed that the pseudo-phosphorylation of cTnI (S151E) sensitizes structural changes to Ca2+ by shortening the intersite distances between cTnC and cTnI. Furthermore, kinetic rates of Ca2+ dissociation-induced structural change in the regulatory region of cTnI were reduced significantly by cTnI (S151E). The aforementioned effects of pseudo-phosphorylation of cTnI were similar to those of strong crossbridges on structural changes in cTnI. Our results provide novel information on how cardiac thin filament regulation is modulated by PAK3 phosphorylation of cTnI.  相似文献   

8.
9.
10.
《Biophysical journal》2020,118(3):698-707
Multisite phosphorylation is an important mechanism of post-translational control of protein kinases. The effects of combinations of possible phosphorylation states on protein kinase activity are difficult to study experimentally because of challenges in isolating a particular phosphorylation state; surprising little effort on this topic has been expended in computational studies. To understand the effects of multisite phosphorylation on the plant protein kinase brassinosteroid insensitive 1-associated kinase 1 (BAK1) conformational ensemble, we performed Gaussian accelerated molecular dynamics simulations on eight BAK1 mod-forms involving phosphorylation of the four activation-loop threonine residues and binding of ATP-Mg2+. We find that unphosphorylated BAK1 transitions into an inactive conformation with a “cracked” activation loop and with the αC helix swung away from the active site. T450 phosphorylation can prevent the activation loop from cracking and keep the αC helix in an active-like conformation, whereas phosphorylation of T455 only slightly stabilizes the activation loop. There is a general trend of reduced flexibility in interlobe motion with increased phosphorylation. Interestingly, the αC helix is destabilized when the activation loop is fully phosphorylated but is again stabilized with ATP-Mg2+ bound. Our results provide insight into the mechanism of phosphorylation-controlled BAK1 activation while at the same time represent the first, to our knowledge, comprehensive, comparative study of the effects of combinatorial phosphorylation states on protein kinase conformational dynamics.  相似文献   

11.
12.
13.
Intrinsically disordered proteins are found extensively in cell signaling pathways where they often are targets of posttranslational modifications e.g. phosphorylation. Such modifications can sometimes induce or disrupt secondary structure elements present in the modified protein. CD79a and CD79b are membrane-spanning, signal-transducing components of the B-cell receptor. The cytosolic domains of these proteins are intrinsically disordered and each has an immunoreceptor tyrosine-based activation motif (ITAM). When an antigen binds to the receptor, conserved tyrosines located in the ITAMs are phosphorylated which initiate further downstream signaling. Here we use NMR spectroscopy to examine the secondary structure propensity of the cytosolic domains of CD79a and CD79b in vitro before and after phosphorylation. The phosphorylation patterns are identified through analysis of changes of backbone chemical shifts found for the affected tyrosines and neighboring residues. The number of the phosphorylated sites is confirmed by mass spectrometry. The secondary structure propensities are calculated using the method of intrinsic referencing, where the reference random coil chemical shifts are measured for the same protein under denaturing conditions. Our analysis revealed that CD79a and CD79b both have an overall propensity for α-helical structure that is greatest in the C-terminal region of the ITAM. Phosphorylation of CD79a caused a decrease in helical propensity in the C-terminal ITAM region. For CD79b, the opposite was observed and phosphorylation resulted in an increase of helical propensity in the C-terminal part.  相似文献   

14.
Molecular Biology - The hormone leptin is produced in adipocytes of white adipose tissue and crosses the blood–brain barrier. Leptin receptors are present in the brain regions that are...  相似文献   

15.
拟南芥基因密码子偏爱性分析   总被引:22,自引:0,他引:22  
密码子偏爱性对外源基因的表达强度有一定影响,特别是编码蛋白质N端7~8个氨基酸残基的密码子.通过对拟南芥染色体中26 827个蛋白质对应的基因密码子进行分析,得到了编码氨基酸的61种密码子在拟南芥中的使用频率,并与大肠杆菌和哺乳动物进行了比较,结果表明三者间的密码子偏爱性有较大差异.这一分析结果对于动物基因在植物中的表达,及植物基因在微生物中的表达具有一定指导意义.同时提供了一种直接以XML文档为数据源解析巨型XML格式染色体数据的方法.  相似文献   

16.
Three-dimensional structures of NagZ of Bacillus subtilis, the first structures of a two-domain β-N-acetylglucosaminidase of family 3 of glycosidases, were determined with and without the transition state mimicking inhibitor PUGNAc bound to the active site, at 1.84- and 1.40-Å resolution, respectively. The structures together with kinetic analyses of mutants revealed an Asp-His dyad involved in catalysis: His234 of BsNagZ acts as general acid/base catalyst and is hydrogen bonded by Asp232 for proper function. Replacement of both His234 and Asp232 with glycine reduced the rate of hydrolysis of the fluorogenic substrate 4′-methylumbelliferyl N-acetyl-β-d-glucosaminide 1900- and 4500-fold, respectively, and rendered activity pH-independent in the alkaline range consistent with a role of these residues in acid/base catalysis. N-Acetylglucosaminyl enzyme intermediate accumulated in the H234G mutant and β-azide product was formed in the presence of sodium azide in both mutants. The Asp-His dyad is conserved within β-N-acetylglucosaminidases but otherwise absent in β-glycosidases of family 3, which instead carry a “classical” glutamate acid/base catalyst. The acid/base glutamate of Hordeum vulgare exoglucanase (Exo1) superimposes with His234 of the dyad of BsNagZ and, in contrast to the latter, protrudes from a second domain of the enzyme into the active site. This is the first report of an Asp-His catalytic dyad involved in hydrolysis of glycosides resembling in function the Asp-His-Ser triad of serine proteases. Our findings will facilitate the development of mechanism-based inhibitors that selectively target family 3 β-N-acetylglucosaminidases, which are involved in bacterial cell wall turnover, spore germination, and induction of β-lactamase.  相似文献   

17.
Adrenodoxin is an iron-sulfur protein which functions as a carrier of reducing equivalents in steroid hydroxylation reactions catalyzed by specific cytochromes P-450 in steroidogenic tissues such as adrenal cortex. Purified bovine adrenocortical adrenodoxin was shown to be selectively phosphorylated upon incubation with purified cAMP-dependent protein kinase, whereas other protein kinases were ineffective. The phosphorylation reaction was completed within 45 min at 30 degrees C and resulted in the optimal incorporation of 1 mol phosphate/mol adrenodoxin. Apoadrenodoxin, lacking the iron-sulfur cluster, was also phosphorylated under similar conditions. An apparent Km of 55 microM with a Vmax of 0.3 pmol 32P incorporated min-1 mg adrenodoxin-1 was calculated. Phosphorylation resulted in a striking change in several molecular properties of adrenodoxin, such as electrophoretic behavior and hydroxyapatite affinity, thus providing the possibility of clearly separating phosphorylated from unphosphorylated adrenodoxin. In addition, phosphoadrenodoxin became refractory to mild trypsin degradation, whereas this was not the case with apoadrenodoxin. The phosphorylated site of adrenodoxin was identified as a serine residue; study of peptide products resulting from CNBr and proteolytic cleavages of phosphoadrenodoxin suggested that Ser-88 was the target of the phosphorylation reaction. The influence of phosphorylation upon adrenodoxin activity was examined using cholesterol side-chain cleavage and 11 beta-hydroxylase (11 beta) systems, reconstituted from purified components. Phosphorylation of adrenodoxin resulted in an average twofold decrease in its Km values for the two specific cytochromes P-450 involved. This effect was paralleled by a positive relationship between the degree of adrenodoxin phosphorylation and its ability to support the overall activity of reconstituted side-chain cleavage and 11 beta-hydroxylase systems. Although it remains to be examined whether adrenodoxin is phosphorylated in the intact cell, the present observations suggest that it represents a potential target in the hormonal regulation of the adrenocortical differentiated functions, especially by stimulatory agents acting through a cyclic-AMP-dependent mechanism, such as adrenocorticotropin.  相似文献   

18.
Artificial abnormal microenvironment caused by microperfusion of l-glutamate (Glu) and Ca2+ in the hippocampus results in neuron damage, which is closely related to cerebral ischemia. Ginsenoside Rb1, a compound from Panax notoginseng, was previously used to counter the artificial abnormal hippocampal environment in a microperfusion model. In addition, while the Akt/mTOR/PTEN signaling pathway has been shown to mediate neuronprotection in cerebral ischemia, whether this pathway is involved in the neuroprotection of ginsenoside Rb1 is unknown. Here SH-SY5Y cells exposed to OGD/R injury in treated with LY294002, ginsenoside Rb1, ginsenoside Rb1+?LY294002. Expressions of phosphorylation (P-)Akt/P-mTOR/P-PTEN (24 h after OGD/R) were detected by Western blotting. Effects were examined via the memory function of rats (by Morris water maze test), morphological changes in pyramidal cell (by histology), and mRNA expression (by qRT-PCR) and phosphorylation (P-) (by Western blotting and immunohistochemical staining) of Akt, P-mTOR, and P-PTEN in the hippocampus. The memory deficit of rats and pyramidal cellular necrosis and apoptosis in the CA1 region of hippocampus after microperfusion of Glu and Ca2+ were dose dependently alleviated by ginsenoside Rb1.Moreover,Western blot showed that ginsenoside Rb1 increased the expressions of P-Akt, P-mTOR and reduced P-PTEN in vivo and vitro. Thus, the potent neuroprotection of ginsenoside Rb1 in artificial abnormal microenvironment is, at least partially, related to the activation of P-AKT/P-mTOR signaling pathway and inhibition of P-PTEN protein.  相似文献   

19.
The third domain of life, the Archaea (formerly Archaebacteria), is populated by a physiologically diverse set of microorganisms, many of which reside at the ecological extremes of our global environment. Although ostensibly prokaryotic in morphology, the Archaea share much closer evolutionary ties with the Eukarya than with the superficially more similar Bacteria. Initial genomic, proteomic, and biochemical analyses have revealed the presence of “eukaryotic” protein kinases and phosphatases and an intriguing set of serine-, threonine-, and tyrosine-phosphorylated proteins in the Archaea that may offer new insights into this important regulatory mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号