首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:建立耐三苯氧胺(TAM)人乳腺癌的裸鼠移植瘤模型,为研究和治疗乳腺癌对TAM耐药提供研究工具。方法:采用雌激素受体阳性,对TAM耐药的人乳腺癌细胞系LCC2,接种于BALB/c裸鼠皮下,观察肿瘤生长趋势,用免疫组化方法进行鉴定。结果:在接种细胞数大于5×106/只时,Matrigel能够显著促进移植瘤的生长。肿瘤组织病理学检测证实为浸润性导管癌,且Pgp和Her-2为阳性表达。结论:该方法建立的耐TAM人乳腺癌移植瘤模型,周期短,成瘤率高,保留了与细胞系相同的肿瘤生物学特征。  相似文献   

2.
Brain metastasis of breast cancer is an important clinical problem, with few therapeutic options and a poor prognosis. Recent data have implicated mixed lineage kinase 3 (MLK3) in controlling the in vitro migratory capacity of breast cancer cells, as well as the metastasis of MDA-MB-231 breast cancer cells from the mammary fat pad to distant lymph nodes in a mouse xenograft model. We therefore set out to test whether MLK3 plays a role in brain metastasis of breast cancer cells. To address this question, we used a novel, brain penetrant, MLK3 inhibitor, URMC099. URMC099 efficiently inhibited the migration of breast cancer cells in an in vitro cell monolayer wounding assay, and an in vitro transwell migration assay, but had no effect on in vitro cell growth. We also tested the effect of URMC099 on tumor formation in a mouse xenograft model of breast cancer brain metastasis. This analysis showed that URMC099 had no effect on the either the frequency or size of breast cancer brain metastases. We conclude that pharmacologic inhibition of MLK3 by URMC099 can reduce the in vitro migratory capacity of breast cancer cells, but that it has no effect on either the frequency or size of breast cancer brain metastases, in a mouse xenograft model.  相似文献   

3.
The recent development of immunotherapy represents a significant breakthrough in cancer therapy. Several immunotherapies provide robust efficacy gains in a wide variety of cancers. However, in some patients the immune checkpoint blockade remains ineffective due to poor therapeutic response and tumor relapse. An improved understanding of the mechanisms underlying tumor-immune system interactions can improve clinical management of cancer. Here, we report preclinical data evaluating two murine antibodies corresponding to recent FDA-approved antibodies for human therapy, e.g. anti-CTLA-4 and anti-PD-1. We demonstrated in two mouse syngeneic grafting models of triple negative breast or colon cancer that the two antibodies displayed an efficient anticancer activity, which is enhanced by combination treatment in the breast cancer model. We also demonstrated that CTLA-4 targeting reduced metastasis formation in the colon cancer metastasis model. In addition, using cytometry-based multiplex analysis, we showed that anti-CTLA-4 and anti-PD-1 affected the tumor immune microenvironment differently and in particular the tumor immune infiltration. This work demonstrated anti-cancer effect of CTLA-4 or PD-1 blockade on mouse colon and triple negative breast and on tumor-infiltrating immune cell subpopulations that could improve our knowledge and benefit the breast and colon cancer tumor research community.  相似文献   

4.
5.
HER2-ECD (human epidermal growth factor receptor 2 – extracellular domain) is a prominent therapeutic target validated for treating HER2-positive breast and gastric cancer, but HER2-specific therapeutic options for treating advanced gastric cancer remain limited. We have developed antibody-drug conjugates (ADCs), comprising IgG1 linked via valine-citrulline to monomethyl auristatin E, with potential to treat HER2-positive gastric cancer in humans. The antibodies optimally selected from the ADC discovery platform, which was developed to discover antibody candidates suitable for immunoconjugates from synthetic antibody libraries designed using antibody-antigen interaction principles, were demonstrated to be superior immunoconjugate targeting modules in terms of efficacy and off-target toxicity. In comparison with the two control humanized antibodies (trastuzumab and H32) derived from murine antibody repertoires, the antibodies derived from the synthetic antibody libraries had enhanced receptor-mediated internalization rate, which could result in ADCs with optimal efficacies. Along with the ADCs, two other forms of immunoconjugates (scFv-PE38KDEL and IgG1-AL1-PE38KDEL) were used to test the antibodies for delivering cytotoxic payloads to xenograft tumor models in vivo and to cultured cells in vitro. The in vivo experiments with the three forms of immunoconjugates revealed minimal off-target toxicities of the selected antibodies from the synthetic antibody libraries; the off-target toxicities of the control antibodies could have resulted from the antibodies’ propensity to target the liver in the animal models. Our ADC discovery platform and the knowledge gained from our in vivo tests on xenograft models with the three forms of immunoconjugates could be useful to anyone developing optimal ADC cancer therapeutics.  相似文献   

6.
Loss of xanthine oxidoreductase (XOR) has been linked to aggressive breast cancer in vivo and to breast cancer cell aggressiveness in vitro. In the present study, we hypothesized that the contribution of XOR to the development of the normal mammary gland may underlie its capacity to modulate breast cancer. We contrasted in vitro and in vivo developmental systems by differentiation marker and microarray analyses. Human breast cancer microarray was used for clinical outcome studies. The role of XOR in differentiation and proliferation was examined in human breast cancer cells and in a mouse xenograft model. Our data show that XOR was required for functional differentiation of mammary epithelial cells both in vitro and in vivo. Poor XOR expression was observed in a mouse ErbB2 breast cancer model, and pharmacologic inhibition of XOR increased breast cancer tumor burden in mouse xenograft. mRNA microarray analysis of human breast cancer revealed that low XOR expression was significantly associated with time to tumor relapse. The opposing expression of XOR and inhibitor of differentiation-1 (Id1) during HC11 differentiation and mammary gland development suggested a potential functional relationship. While overexpression of Id1 inhibited HC11 differentiation and XOR expression, XOR itself modulated expression of Id1 in differentiating HC11 cells. Overexpression of XOR both inhibited Id1-induced proliferation and -stimulated differentiation of Heregulin-β1-treated human breast cancer cells. These results show that XOR is an important functional component of differentiation whose diminished expression contributes to breast cancer aggressiveness, and they support XOR as both a breast cancer biomarker and a target for pharmacologic activation in therapeutic management of aggressive breast cancer.  相似文献   

7.
Breast cancer metastasis is a major clinical problem. The molecular basis of breast cancer progression to metastasis remains poorly understood. PELP1 is an estrogen receptor (ER) coregulator that has been implicated as a proto-oncogene whose expression is deregulated in metastatic breast tumors and whose expression is retained in ER-negative tumors. We examined the mechanism and significance of PELP1-mediated signaling in ER-negative breast cancer progression using two ER-negative model cells (MDA-MB-231 and 4T1 cells) that stably express PELP1-shRNA. These model cells had reduced PELP1 expression (75% of endogenous levels) and exhibited less propensity to proliferate in growth assays in vitro. PELP1 downregulation substantially affected migration of ER-negative cells in Boyden chamber and invasion assays. Using mechanistic studies, we found that PELP1 modulated expression of several genes involved in the epithelial mesenchymal transition (EMT), including MMPs, SNAIL, TWIST, and ZEB. In addition, PELP1 knockdown reduced the in vivo metastatic potential of ER-negative breast cancer cells and significantly reduced lung metastatic nodules in a xenograft assay. These results implicate PELP1 as having a role in ER-negative breast cancer metastasis, reveal novel mechanism of coregulator regulation of metastasis via promoting cell motility/EMT by modulating expression of genes, and suggest PELP1 may be a potential therapeutic target for metastatic ER-negative breast cancer.  相似文献   

8.
Because the degree of labeling (DOL) of cell-bound antibodies, often required in quantitative fluorescence measurements, is largely unknown, we investigated the effect of labeling with two different fluorophores (AlexaFluor546, AlexaFluor647) in a systematic way using antibody stock solutions with different DOLs. Here, we show that the mean DOL of the cell-bound antibody fraction is lower than that of the stock using single molecule fluorescence measurements. The effect is so pronounced that the mean DOL levels off at approximately two fluorophores/IgG for some antibodies. We developed a method for comparing the average DOL of antibody stocks to that of the isolated, cell-bound fraction based on fluorescence anisotropy measurements confirming the aforementioned conclusions. We created a model in which individual antibody species with different DOLs, present in an antibody stock solution, were assumed to have distinct affinities and quantum yields. The model calculations confirmed that a calibration curve constructed from the anisotropy of antibody stocks can be used for determining the DOL of the bound fraction. The fluorescence intensity of the cell-bound antibody fractions and of the antibody stocks exhibited distinctly different dependence on the DOL. The behavior of the two dyes was systematically different in this respect. Fitting of the model to these data revealed that labeling with each dye affects quantum yield and antibody affinity differentially. These measurements also implied that fluorophores in multiply labeled antibodies exhibit self-quenching and lead to decreased antibody affinity, conclusions directly confirmed by steady-state intensity measurements and competitive binding assays. Although the fluorescence lifetime of antibodies labeled with multiple fluorophores decreased, the magnitude of this change was not sufficient to account for self-quenching indicating that both dynamic and static quenching processes occur involving H-aggregate formation. Our results reveal multiple effects of fluorophore conjugation, which must not be overlooked in quantitative cell biological measurements.  相似文献   

9.
Photoimmunotherapy (PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. We performed PIT in a model of disseminated gastric cancer peritoneal carcinomatosis and monitored efficacy with in vivo GFP fluorescence imaging. In vitro and in vivo experiments were conducted with a HER2-expressing, GFP-expressing, gastric cancer cell line (N87-GFP). A conjugate comprised of a photosensitizer, IR-700, conjugated to trastuzumab (tra-IR700), followed by NIR light was used for PIT. In vitro PIT was evaluated by measuring cytotoxicity with dead staining and a decrease in GFP fluorescence. In vivo PIT was evaluated in a disseminated peritoneal carcinomatosis model and a flank xenograft using tumor volume measurements and GFP fluorescence intensity. In vivo anti-tumor effects of PIT were confirmed by significant reductions in tumor volume (at day 15, p<0.0001 vs. control) and GFP fluorescence intensity (flank model: at day 3, PIT treated vs. control p<0.01 and peritoneal disseminated model: at day 3 PIT treated vs. control, p<0.05). Cytotoxic effects in vitro were shown to be dependent on the light dose and caused necrotic cell rupture leading to GFP release and a decrease in fluorescence intensity in vitro. Thus, loss of GFP fluorescence served as a useful biomarker of cell necrosis after PIT.  相似文献   

10.
Despite the improved contemporary multidisciplinary regimens treating cancer, majority of cancer patients still suffer from adverse effects and relapse, therefore posing a significant challenge to uncover more efficacious molecular therapeutics targeting signaling pathways central to tumorigenesis. Here, our study have demonstrated that Triparanol, a cholesterol synthesis inhibitor, can block proliferation and induce apoptosis in multiple human cancer cells including lung, breast, liver, pancreatic, prostate cancer and melanoma cells, and growth inhibition can be rescued by exogenous addition of cholesterol. Remarkably, we have proved Triparanol can significantly repress Hedgehog pathway signaling in these human cancer cells. Furthermore, study in a mouse xenograft model of human lung cancer has validated that Triparanol can impede tumor growth in vivo. We have therefore uncovered Triparanol as potential new cancer therapeutic in treating multiple types of human cancers with deregulated Hedgehog signaling.  相似文献   

11.
12.
Certain immune cells and inflammatory cytokines are essential components in the tumor microenvironment to promote breast cancer progression. To identify key immune players in the tumor microenvironment, we applied highly invasive MDA-MB-231 breast cancer cell lines to co-culture with human monocyte THP-1 cells and identified CXCL7 by cytokine array as one of the increasingly secreted cytokines by THP-1 cells. Further investigations indicated that upon co-culturing, breast cancer cells secreted CSF1 to induce expression and release of CXCL7 from monocytes, which in turn acted on cancer cells to promote FAK activation, MMP13 expression, migration, and invasion. In a xenograft mouse model, administration of CXCL7 antibodies significantly reduced abundance of M2 macrophages in tumor microenvironment, as well as decreased tumor growth and distant metastasis. Clinical investigation further suggested that high CXCL7 expression is correlated with breast cancer progression and poor overall survival of patients. Overall, our study unveils an important immune cytokine, CXCL7, which is secreted by tumor infiltrating monocytes, to stimulate cancer cell migration, invasion, and metastasis, contributing to the promotion of breast cancer progression.Subject terms: Breast cancer, Cancer microenvironment, Target identification, Chemokines  相似文献   

13.
Homophilic antibodies have been discovered in mice and primates and can also be engineered. Compared to conventional antibodies, homophilic antibodies form lattices on targets leading to enhanced binding via polyvalent attachment. Previously, we have observed a paradoxical dose/potency effect with an engineered homophilic antibody against a human lung cancer tumor. Here, we have investigated some biophysical properties of homophilic antibodies and also studied the inhibition of human tumor growth in a xenograft model using homophilic Herceptin. Dimerization and viscosity of two homophilic antibodies are greater at physiological temperature than at 4°C. Similarly, binding to solid-phase antigen is greater at 37°C than at room temperature or 4°C. Dimer formation is higher at therapeutic concentration, supporting the notion that preformed dimers in solution are the effective molecular species responsible for polyvalent target binding and enhanced therapeutic potency.  相似文献   

14.
Ge Y  Rajkumar L  Guzman RC  Nandi S  Patton WF  Agnew BJ 《Proteomics》2004,4(11):3464-3467
The Multiplexed Proteomics (MP) technology is a new approach that permits quantitative, multicolor fluorescence detection of proteins in one-dimensional or two-dimensional gels. This methodology allows for multiplexed identification and differential analysis of phosphoproteins, glycoproteins, and total proteins within a single gel electrophoresis experiment. Here the MP system was applied to the differential proteomic analysis of pregnancy-induced refractoriness to breast cancer using a rat model system. Differential analyses identified multiple proteins with altered phosphorylation, glycosylation, or protein expression patterns.  相似文献   

15.
Herein we describe the design, efficient synthesis, and photophysical properties of two macrocycle dyes for cancer theranostics. This study compares a glycosylated chlorin with a glycosylated phthalocyanine designed to specifically target cancer, wherein the photophysical properties enable both fluorescence imaging and the sensitization of the formation of reactive oxygen species (ROS) for photodynamic therapy. Both the compounds show low darktoxicity (IC50 > 100 μM). The glycosylated phthalocyanine showed low phototoxicity (IC50 > 100 μM) while glycosylated chlorin showed high phototoxicity (IC50 = 1–2 μM). ZnPcGlc8 has low solubility and also form aggregates in aqueous media, thus resulting in minimal uptake in two different human breast cancer cell lines: MDA-MB-231 and MCF-7. The glycosylated chlorin however was efficiently taken up by these two cell lines, thus allows fluorescence imaging in cells and in xenograft tumor model in mice. In this study, we find that the chlorin conjugate is the more promising theranostic agent.  相似文献   

16.
The acyl-CoA synthetase 4 (ACSL4), which esterify mainly arachidonic acid (AA) into acyl-CoA, is increased in breast, colon and hepatocellular carcinoma. The transfection of MCF-7 cells with ACSL4 cDNA transforms the cells into a highly aggressive phenotype and controls both lipooxygenase-5 (LOX-5) and cyclooxygenase-2 (COX-2) metabolism of AA, suggesting a causal role of ACSL4 in tumorigenesis. We hypothesized that ACSL4, LOX-5 and COX-2 may constitute potential therapeutic targets for the control of tumor growth. Therefore, the aim of this study was to use a tetracycline Tet-Off system of MCF-7 xenograft model of breast cancer to confirm the effect of ACSL4 overexpression on tumor growth in vivo. We also aim to determine whether a combinatorial inhibition of the ACSL4-LOX-COX-2 pathway affects tumor growth in vivo using a xenograft model based on MDA-MB-231 cells, a highly aggressive breast cancer cell line naturally overexpressing ACSL4. The first novel finding is that stable transfection of MCF-7 cells with ACSL4 using the tetracycline Tet-Off system of MCF-7 cells resulted in development of growing tumors when injected into nude mice. Tumor xenograft development measured in animals that received doxycycline resulted in tumor growth inhibition. The tumors presented marked nuclear polymorphism, high mitotic index and low expression of estrogen and progesterone receptor. These results demonstrate the transformational capacity of ACSL4 overexpression. We examined the effect of a combination of inhibitors of ACSL4, LOX-5 and COX-2 on MDA-MB-231 tumor xenografts. This treatment markedly reduced tumor growth in doses of these inhibitors that were otherwise ineffective when used alone, indicating a synergistic effect of the compounds. Our results suggest that these enzymes interact functionally and form an integrated system that operates in a concerted manner to regulate tumor growth and consequently may be potential therapeutic targets for the control of proliferation as well as metastatic potential of cancer cells.  相似文献   

17.
Proper antibody labeling is a fundamental step in the positive selection/isolation of rare cancer cells using immunomagnetic cell separation technology. Using either a two-step or single-step labeling protocol, we examined a combination of six different antibodies specific for three different antigens (epithelial specific antigen, epithelial membrane antigen, and HER-2/Neu) on two different breast cancer cell lines (HCC1954 and MCF-7). When a two-step labeling protocol was used (i.e., anti-surface marker-fluoroscein-isothiocyanate [FITC] [primary Ab], anti-FITC magnetic colloid [secondary Ab]) saturation of the primary antibody was determined using fluorescence intensity measurements from flow cytometry (FCM). The saturation of the secondary antibody (or saturation of a single-step labeling) was determined using magnetophoretic mobility measurements from cell tracking velocimetry (CTV). When the maximum magnetophoretic mobility was the primary objective, our results demonstrate that the quantities necessary for antibody saturation with respect to fluorescence intensity were generally higher than those recommended by the manufacturer. The results demonstrate that magnetophoretic mobility varies depending on the types of cell lines, primary antibodies, and concentration of secondary magnetic colloid-conjugated antibody. It is concluded that saturation studies are a vital preparatory step in any separation method involving antibody labeling, especially those that require the specificity of rare cell detection.  相似文献   

18.
目的:建立耐三苯氧胺(TAM)人乳腺癌的裸鼠移植瘤模型,为研究和治疗乳腺癌对TAM耐药提供研究工具。方法:采用雌激素受体阳性,对TAM耐药的人乳腺癌细胞系LCC2,接种于BALB/c裸鼠皮下,观察肿瘤生长趋势,用免疫组化方法进行鉴定。结果:在接种细胞数大于5×106/只时,Matrigel能够显著促进移植瘤的生长。肿瘤组织病理学检测证实为浸润性导管癌,且Pgp和Her-2为阳性表达。结论:该方法建立的耐TAM人乳腺癌移植瘤模型,周期短,成瘤率高,保留了与细胞系相同的肿瘤生物学特征。  相似文献   

19.

Background

Multidrug resistance is a major problem in the treatment of breast cancer, and a number of studies have attempted to find an efficient strategy with which to overcome it. In this study, we investigate the synergistic anticancer effects of resveratrol (RSV) and doxorubicin (Dox) against human breast cancer cell lines.

Methods

The synergistic effects of RSV on chemosensitivity were examined in Dox-resistant breast cancer (MCF-7/adr) and MDA-MB-231 cells. In vivo experiments were performed using a nude mouse xenograft model to investigate the combined sensitization effect of RSV and Dox.

Results and conclusion

RSV markedly enhanced Dox-induced cytotoxicity in MCF-7/adr and MDA-MB-231 cells. Treatment with a combination of RSV and Dox significantly increased the cellular accumulation of Dox by down-regulating the expression levels of ATP-binding cassette (ABC) transporter genes, MDR1, and MRP1. Further in vivo experiments in the xenograft model revealed that treatment with a combination of RSV and Dox significantly inhibited tumor volume by 60%, relative to the control group.

General significance

These results suggest that treatment with a combination of RSV and Dox would be a helpful strategy for increasing the efficacy of Dox by promoting an intracellular accumulation of Dox and decreasing multi-drug resistance in human breast cancer cells.  相似文献   

20.
Alterations in cellular pathways related to both endocrine and vascular endothelial growth factors (VEGF) may contribute to breast cancer progression. Inhibition of the elevated levels of these pathways is associated with clinical benefits. However, molecular mechanisms by which endocrine-related pathways and VEGF signalling cooperatively promote breast cancer progression remain poorly understood. In the present study, we show that the A-type cyclin, cyclin A1, known for its important role in the initiation of leukemia and prostate cancer metastasis, is highly expressed in primary breast cancer specimens and metastatic lesions, in contrasting to its barely detectable expression in normal human breast tissues. There is a statistically significant correlation between cyclin A1 and VEGF expression in breast cancer specimens from two patient cohorts (p<0.01). Induction of cyclin A1 overexpression in breast cancer cell line MCF-7 results in an enhanced invasiveness and a concomitant increase in VEGF expression. In addition, there is a formation of protein–protein complexes between cyclin A1 and estrogen receptor ER-α cyclin A1 overexpression increases ER-α expression in MCF-7 and T47D cells. In mouse tumor xenograft models in which mice were implanted with MCF-7 cells that overexpressed cyclin A1 or control vector, cyclin A1 overexpression results in an increase in tumor growth and angiogenesis, which is coincident with an enhanced expression of VEGF, VEGFR1 and ER-α Our findings unravel a novel role for cyclin A1 in growth and progression of breast cancer, and suggest that multiple cellular pathways, including cell cycle regulators, angiogenesis and estrogen receptor signalling, may cooperatively contribute to breast cancer progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号