首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colchicine, podophylotoxin, and indibulin are natural cytostatics that are used in the treatment of neoplasms. However, application of the compounds is restricted due to their high toxicity and low specificity. Computational experiments modeling tubulin interactions with the cytostatics seem a promising approach to design new analogues of the above-mentioned drugs with higher cytostatic activity and lower toxicity. Therefore, the CHARMM software was used to examine the macromolecules using molecular dynamics and mechanics methods. Particularly, a procedure was applied according to which molecules of each studied cytostatics were placed at several various random positions around the predicted binding site on tubulin. As a result, cytostatic binding regions were identified on the tubulin molecule. It was shown that, during the interaction, structural alterations occurred in these regions that may be responsible for tubulin polymerization. Thus, alterations have been revealed for the first time in the structure of tubulin in the regions of cytostatic binding that can substantially affect its function.  相似文献   

2.
Cytostatic colchicine is widely used in the treatment of Familial Mediterranean fever, but it has several side effects. For finding new, more effective drugs with higher affinity and diminishside effects we carried out virtual screening of potential inhibitors of the main target of colchicine, the polymerization of tubulin by evaluating affinity 25745 compounds, structurally related to the colchicine. We have identified 11 commercially available compounds with higher affinity to tubulin. Compounds with highest binding scores include trimethoxybenzene and its derivatives; these compounds bind to the same site in similar orientation. Information provided can form the basis for design of new cytostatics.  相似文献   

3.
Localization of the high affinity calcium-binding site on tubulin molecule   总被引:7,自引:0,他引:7  
Tubulin is a calcium-binding protein. Two different modes of interaction of calcium with tubulin have been described: a high affinity interaction to one or two binding sites and lower affinity interactions to several other binding sites. In the present study, we have used limited proteolysis of tubulin with trypsin, chymotrypsin, and subtilisin to localize the high affinity calcium-binding sites. Our results indicate that two sites are located in the carboxyl-terminal region of both tubulin subunits, and that tubulin deprived of its carboxyl-terminal region is able to polymerize in the presence of 0.5 mM calcium.  相似文献   

4.
Tubulin, the major structural component of the microtubules, participates actively in mitotic spindle formation and chromosomal organization during cell division. Tubulin is the major target for a variety of anti-mitotic drugs. Some of the drugs, such as Vinca alkaloids and taxol, are routinely used for cancer chemotherapy. It is unfortunate that our knowledge of the binding sites on tubulin of these drugs is limited because of lack of a useful and appropriate tool. The photoaffinity labeling approach is the major technique available at present to detect the binding sites of drugs on tubulin. This method, however, has several limitations. First, only part of the binding site can be identified, namely, the residues which react with the photoaffinity label. Second, there are regions of tubulin which are not at the binding site but are affected by the binding of the drug; these regions can not be detected by the photoaffinity labeling approach. The third, and perhaps most serious, limitation is that the traditional approach can detect areas which have nothing to do with the binding of the ligand but which are within a certain distance of the binding site, that distance being less than the length of the photoreactive moiety attached to the ligand. There has been a great deal of controversy on the localization of the binding site of colchicine on tubulin, with some reports suggesting that the binding site is on alpha and some supporting a binding site on beta. Colchicine also has significant effects on tubulin conformation, but the regions which are affected have not been identified. We have attempted here to address these questions by a novel "footprinting" method by which the drug-binding sites and as well as the domain of tubulin affected by drug-induced conformational changes could be determined. Here, we report for the first time that the interaction of the B-ring of colchicine with the alpha-subunit affects a domain of tubulin which appears to be far from its binding site. This domain includes the cysteine residues at positions 295, 305, 315 and 316 on alpha-tubulin; these residues are located well away from the alpha/beta interface where colchicine appears to bind. This is correlated with the stabilizing effect of colchicine on the tubulin molecule. Furthermore, we also found that the B-ring of colchicine plays a major role in the stability of tubulin while the A and the C-rings have little effect on it. Our results therefore, support a model whereby colchicine binds at the alpha/beta interface of tubulin with the B-ring on the alpha-subunit and the A and the C-rings on the beta-subunit.  相似文献   

5.
Compounds that bind at the colchicine site of tubulin have drawn considerable attention with studies indicating that these agents suppress microtubule dynamics and inhibit tubulin polymerization. Data for 18 polysubstituted pyrrole compounds are reported, including antiproliferative activity against human MDA-MB-435 cells and calculated free energies of binding following docking the compounds into models of alphabeta-tubulin. These docking calculations coupled with HINT interaction analyses are able to represent the complex structures and the binding modes of inhibitors such that calculated and measured free energies of binding correlate with an r(2) of 0.76. Structural analysis of the binding pocket identifies important intermolecular contacts that mediate binding. As seen experimentally, the complex with JG-03-14 (3,5-dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2-carboxylic acid ethyl ester) is the most stable. These results illuminate the binding process and should be valuable in the design of new pyrrole-based colchicine site inhibitors as these compounds have very accessible syntheses.  相似文献   

6.
Characteristics of the interaction of dinitroaniline compounds with tubulin molecules have an extremely high selectivity: these substances efficiently bind to the tubulins of both plant and protozoan origins and practically do not interact with any animal and fungal tubulins despite a very high similarity between the corresponding sequences. This work summarizes and comprehensively analyzes the specific structural features and mechanisms of these interactions, in particular, the patterns of the structure and arrangement of dinitroaniline binding sites on the surface of different tubulin subunits and tubulins of various origins. Dinitroaniline binding sites are localized to the surface of longitudinal contacts between tubulin subunits and contain diamine amino acid residues (lysine or arginine), which bind the nitrile group of dinitroanilines. The localizations of these sites on the surface of identical subunits of different origins (for example, α-tubulins of plants and protozoans) coincide; however, the location of these binding sites on the surfaces of tubulin α- and β-subunits is different. The characterized sites can also be potential binding sites for other antimicrotubule compounds, in particular, cyanoacrylates.  相似文献   

7.
The interaction of tubulin-microtubule poison complexes with anti-tubulin antisera has been investigated using radioimmunoassay. The binding of the major antiserum used in this study to tubulin does not interfere with the binding of colchicine to the tubulin or affect the decay of the colchicine-binding activity of the tubulin. Conversely, if colchicine is incubated with the tubulin, forming tubulin-colchicine complexes, the tubulin-colchicine complexes are less efficient competitors for antibody-binding sites than tubulin alone. This is the result of the formation of specific colchicine-tubulin complexes, since tubulin, incubated with lumicolchicine or isocolchicine, behaves as if the tubulin were incubated alone in the radioimmunoassay. When tubulin is incubated with other microtubule poisons, podophyllotoxin or vinblastine, the tubulin-drug complexes have diminished ability to compete with tubulin as did the tubulin-colchicine complexes. These changes observed in the binding of tubulin-microtubule poison complexes to anti-tubulin antisera in a tubulin radioimmunoassay suggest that the binding of colchicine, podophyllotoxin, or vinblastine to tubulin induces subtle conformational changes on the surface of the tubulin dimer involving antigenic determinant sites.  相似文献   

8.
Spectrophotometric, calorimetric and chrioptical techniques have been used to investigate the interaction of two new anthracenedione derivatives, 1-(ω-diethylaminopropylamido)-4-hydroxy-9,10-anthracenedione hydrochloride (I) and 1-(ω)-diethylaminopropylamido)-2-methoxy-4-hydroxy-9,10-anthracenedione hydrochloride (II) to DNA. Measurements were carried out at four different Na+ concenetrations. From the dependence of the binding constant on ionic strength the number of ion pairs formed between the ligand and DNA, along with the binding free energy were estimated. Calorimetric measurements show that the binding process is exothermic for both ligands. Experiments carried out with DNA from various sources indicate no marked preference for G-C or A-T binding sites. Compounds I and II increase the Tm for DNA melting by more than 25°C at high drug/base pair ratios. Circular dichroism studies indicate that the structural properties of DNA are substantially affected by the interaction with the above mentioned compounds. All data from these studies are consistent with an intercalative mechanism of binding for the anthracendione derivatives to DNA.  相似文献   

9.
Paclitaxel (Taxol) and the epothilones are antimitotic agents that promote the assembly of mammalian tubulin and stabilization of microtubules. The epothilones competitively inhibit the binding of paclitaxel to mammalian brain tubulin, suggesting that the two types of compounds share a common binding site in tubulin, despite the lack of structural similarities. It is known that paclitaxel does not stabilize microtubules formed in vitro from Saccharomyces cerevisiae tubulin; thus, it would be expected that the epothilones would not affect yeast microtubules. However, we found that epothilone A and B do stimulate the formation of microtubules from purified yeast tubulin. In addition, epothilone B severely dampens the dynamics of yeast microtubules in vitro in a manner similar to the effect of paclitaxel on mammalian microtubules. We used current models describing paclitaxel and epothilone binding to mammalian beta-tubulin to explain why paclitaxel apparently fails to bind to yeast tubulin. We propose that three amino acid substitutions in the N-terminal region and at position 227 in yeast beta-tubulin weaken the interaction of the 3'-benzamido group of paclitaxel with the protein. These results also indicate that mutagenesis of yeast tubulin could help define the sites of interaction with paclitaxel and the epothilones.  相似文献   

10.
Microtubule cytoskeletons are involved in many essential functions throughout the life cycle of cells, including transport of materials into cells, cell movement, and proper progression of cell division. Small compounds that can bind at the colchicine site of tubulin have drawn great attention because these agents can suppress or inhibit microtubule dynamics and tubulin polymerization. To find novel tubulin polymerization inhibitors as anti-mitotic agents, we performed a virtual screening study of the colchicine binding site on tubulin. Novel tubulin inhibitors were identified and characterized by their inhibitory activities on tubulin polymerization in vitro. The structural basis for the interaction of novel inhibitors with tubulin was investigated by molecular modeling, and we have proposed binding models for these hit compounds with tubulin. The proposed docking models were very similar to the binding pattern of colchicine or podophyllotoxin with tubulin. These new hit compound derivatives exerted growth inhibitory effects on the HL60 cell lines tested and exhibited strong cell cycle arrest at G2/M phase. Furthermore, these compounds induced apoptosis after cell cycle arrest. In this study, we show that the validated derivatives of compound 11 could serve as potent lead compounds for designing novel anti-cancer agents that target microtubules.  相似文献   

11.
Isocolcemid, a colcemid analogue in which the positions of the C-ring methoxy and carbonyl are exchanged, is virtually inactive in binding to tubulin and inhibiting the formation of microtubule assembly. We have found that the substitution of a NBD group in the side chain of the B-ring of isocolcemid can reverse the effect of these structural alterations (at the C-ring) and the newly synthesized NBD-isocolcemid restores the lost biological activity. It inhibits microtubule assembly with an IC(50) of 12 microM and competes efficiently with [(3)H]colchicine, for binding to tubulin. NBD-isocolcemid has two binding sites on tubulin; one is characterized by fast binding, whereas the binding to the other site is slow. These two sites are independent and unrelated to each other. Colchicine and its analogues compete with NBD-isocolcemid for the slow site. Association and dissociation rate constants for the fast site, obtained from the stopped-flow measurements, are (7.37 +/- 0. 70) x 10(5) M(-1) s(-1) and 7.82 +/- 2.74 s(-1), respectively. While the interaction of colchicine and its analogues with tubulin involves two steps, NBD-isocolcemid binding to tubulin at the slow site has been found to be a one-step reaction. This is evident from the linear dependence of the observed rate constant (k(obs)) with both NBD-isocolcemid and tubulin concentrations. The interaction of NBD-isocolcemid with tubulin does not involve the conformational change of NBD-isocolcemid, as is evident from the unchanged CD spectra of the drug. The absence of enhanced GTPase activity of tubulin and the native-like protease cleavage pattern of the NBD-isocolcemid-tubulin complex suggest an unaltered conformation of tubulin upon NBD-isocolcemid binding to it as well. Implications of this on the mechanism of polymerization inhibition have been discussed.  相似文献   

12.
gamma-Tubulin is essential to microtubule organization in eukaryotic cells. It is believed that gamma-tubulin interacts with tubulin to accomplish its cellular functions. However, such an interaction has been difficult to demonstrate and to characterize at the molecular level. gamma-Tubulin is a poorly soluble protein, not amenable to biochemical studies in a purified form as yet. Therefore basic questions concerning the existence and properties of tubulin binding sites on gamma-tubulin have been difficult to address. Here we have performed a systematic search for tubulin binding sites on gamma-tubulin using the SPOT peptide technique. We find a specific interaction of tubulin with six distinct domains on gamma-tubulin. These domains are clustered in the central part of the gamma-tubulin primary amino acid sequence. Synthetic peptides corresponding to the tubulin binding domains of gamma-tubulin bind with nanomolar K(d)s to tubulin dimers. These peptides do not interfere measurably with microtubule assembly in vitro and associate with microtubules along the polymer length. On the tertiary structure, the gamma-tubulin peptides cluster to surface regions on both sides of the molecule. Using SPOT analysis, we also find peptides interacting with gamma-tubulin in both the alpha- and beta-tubulin subunits. The tubulin peptides cluster to surface regions on both sides of the alpha- and beta- subunits. These data establish gamma-tubulin as a tubulin ligand with unique tubulin-binding properties and suggests that gamma-tubulin and tubulin dimers associate through lateral interactions.  相似文献   

13.
Previous work has shown that the total hepatic tubulin pool and the hepatic microtubule-derived tubulin pool do not have identical [3H]colchicine binding properties. Rapid loss of colchicine-binding activity was noted in the microtubule-derived fractions of liver tubulin. Furthermore, quantitative determination of the total and polymerized tubulin in the liver by the [3H]colchicine-binding assay was hampered by rapid and unequal loss of binding sites under assay conditions. The organic acids, glutamate and glucose 1-phosphate, have been shown to stabilize calf brain tubulin against loss of colchicine-binding sites. Therefore, these compounds were tested as possible protecting agents against loss of colchicine binding activity of liver tubulin. It was found that these agents stabilized liver tubulin under [3H]colchicine-binding conditions. Additional experiments showed that these agents also prevented the rapid loss of colchicine-binding activity that occurred when purified brain tubulin was exposed to liver supernates. These results suggest that the inclusion of the organic acids, glutamate and glucose 1-phosphate, may modify the time decay properties of liver tubulin in solution. Further, these data suggest that these protecting agents may be of analytical value in [3H]colchicine-binding assay systems for liver tubulin.  相似文献   

14.
Thiabendazole, 2-(4'-thiazolyl)benzimidazole, at 80 micrometer completely inhibits mitosis in hyphae of Aspergillus nidulans, growing in liquid culture. DNA and RNA synthesis and mycelial growth are only partially inhibited at this concentration. Binding studies with cell-free mycelial extracts from Penicillium expansum showed that thiabendazole competitively inhibits [14C]carbendazim binding to tubulin, which suggests that the antimitotic activity of thiabendazole is based on interference with microtubule assembly. Tubulin from a thiabendazole-resistant and carbendazim-highly sensitive mutant of P. expansum has a lower affinity to thiabendazole and a higher affinity to carbendazim than tubulin from a wide-type strain. This indicates that in this mutant the structure of the binding site is affected. The data presented suggest that several sites of both the tubulin and ligand molecule are involved in the binding of benzimidazole compounds to fungal tubulin.  相似文献   

15.
The protein domain responsible for the interaction of tau with tubulin has been identified. Biophysical studies indicated that the synthetic peptide Val187-Gly204 (VRSKIG-STENLKHQPGGG) from the repetitive sequence on tau binds to two sites on the tubulin heterodimer and to one site on each of the microtubule-associated protein-interacting C-terminal tubulin peptides alpha(430-441) and beta(422-434). The binding data showed a relatively stronger interaction of Val187-Gly204 with beta(422-434) as compared to that with alpha(430-441). The interaction of this tau peptide with either alpha or beta tubulin peptides appears to be associated with conformational changes in both the tau and the tubulin peptides. The beta tubulin peptide also appears to induce a structural change of tau fragment Val218-Gly235. Interestingly, tau peptides Val187-Gly204 and Val218-Gly235 induced tubulin self-assembly in a cold-reversible fashion, and incorporated into the assembled polymers. The specificity of the interaction of the tau peptide was supported by the competition of tau protein for the interaction with the tubulin polymer. In addition, the tau peptide appears to contain the principal antigenic determinant(s) recognized by anti-idiotypic antibodies that react with the tubulin binding domains on microtubule-associated proteins. The present findings together with the demonstration of the presence of multiple sites for the binding of the alpha(430-441) and beta(422-434) tubulin fragments to tau, and the existence of repetitive sequences on tau, strongly support the hypothesis that the region of tau defined by the repetitive sequences is involved in its interaction with tubulin.  相似文献   

16.
A number of naturally occurring compounds such as paclitaxel, vinblastine, combretastatin, and colchicine exert their therapeutic effect by changing the dynamics of tubulin and its polymer form, microtubules. The identification of tubulin as a potential target for anticancer drugs has led to extensive research followed by clinical development of numerous compounds from several families. In this paper we report on the design, synthesis and in vitro evaluation of a group of thiocolchicine derivatives, modified at ring-B, labelled here compounds 414. These compounds have been obtained in a simple reaction of 7-deacetyl-10-thiocolchicine 3 with eleven different alcohols in the presence of triphosgene. These novel agents have been checked for anti-proliferative activity against four human cancer cell lines and their mode of action has been confirmed as colchicine binding site inhibition (CBSI) using molecular docking. Molecular simulations provided rational tubulin binding models for the tested compounds. On the basis of in vitro tests, derivatives 48 and 14 demonstrated the highest potency against MCF-7, LoVo and A549 tumor cell lines (IC50 values = 0.009–0.014 μM). They were more potent and characterized by a higher selectivity index than several standard chemotherapeutics including cisplatin and doxorubicin as well as unmodified colchicine. Further, studies revealed that colchicine and its several derivatives arrested MCF-7 cells in mitosis, while its selected derivatives caused microtubule depolymerization.  相似文献   

17.
Data on alpha-chymotrypsin interactions with hydrophobic low-molecular compounds have been generalized. Existence of two sites of noncovalent interaction with hydrophobic nuclei of a ligand molecule is shown. When the substance to be bound contains only one hydrophobic nucleus, the interaction is mediated by a "hydrophobic pocket" of the enzyme--a binding site of amino acid residues which are, in the P1-position relative to the cleaved bond. Under these conditions substances with an asymmetric hydrophobic nucleus (of the tryptophan type) are better ligands for binding. In case of compounds containing several hydrophobic groups scattered in the space, interaction with the enzyme proceeds in two binding sites. New data are presented on the ligand specificity for binding sites of chymotrypsin in lower vertebrates. Relative position of hydrophobic groups of the ligand is shown as that of great importance for interaction with the enzyme. It is concluded that the binding sites of trypsin- and chymotrypsin-like proteinases of the lower vertebrates differ but less from each other as compared to binding sites of trypsin and chymotrypsin in mammals.  相似文献   

18.
The cytoskeleton is essential to cell morphology, cargo trafficking, and cell division. As the neuronal cytoskeleton is extremely complex, it is no wonder that a startling number of neurodegenerative disorders (including but not limited to Alzheimer's disease, Parkinson's disease and Huntington's disease) share the common feature of a dysfunctional neuronal cytoskeleton. Recently, concern has been raised about a possible link between anesthesia, post-operative cognitive dysfunction, and the exacerbation of neurodegenerative disorders. Experimental investigations suggest that anesthetics bind to and affect cytoskeletal microtubules, and that anesthesia-related cognitive dysfunction involves microtubule instability, hyper-phosphorylation of the microtubule-associated protein tau, and tau separation from microtubules. However, exact mechanisms are yet to be identified. In this paper the interaction of anesthetics with the microtubule subunit protein tubulin is investigated using computer-modeling methods. Homology modeling, molecular dynamics simulations and surface geometry techniques were used to determine putative binding sites for volatile anesthetics on tubulin. This was followed by free energy based docking calculations for halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on the tubulin body, and C-terminal regions for specific tubulin isotypes. Locations of the putative binding sites, halothane binding energies and the relation to cytoskeleton function are reported in this paper.  相似文献   

19.
Non-covalent hydrophobic probes such as 5, 5'-bis(8-anilino-1-naphthalenesulfonate) (bisANS) have become increasingly popular to gain information about protein structure and conformation. However, there are limitations as bisANS binds non-specifically at multiple sites of many proteins. Successful use of this probe depends upon the development of binding conditions where only specific dye-protein interaction will occur. In this report, we have shown that the binding of bisANS to tubulin occurs instantaneously, specifically at one high affinity site when 1 mM guanosine 5'-triphosphate (GTP) is included in the reaction medium. Substantial portions of protein secondary structure and colchicine binding activity of tubulin are lost upon bisANS binding in absence of GTP. BisANS binding increases with time and occurs at multiple sites in the absence of GTP. Like GTP, other analogs, guanosine 5'-diphosphate, guanosine 5'-monophosphate and adenosine 5'-triphosphate, also displace bisANS from the lower affinity sites of tubulin. We believe that these multiple binding sites are generated due to the bisANS-induced structural changes on tubulin and the presence of GTP and other nucleotides protect those structural changes.  相似文献   

20.
The interaction of promegestone (R-5020), progesterone (P) and its derivatives having and additional carbocyclic D' (pregna-D'-pentrans) with progestin-binding cytosol system of the uterus was studied in different species (rabbits, rats, guinea-pigs and men). A comparative analysis of the competitive binding data for the mentioned compounds has shown interspecies differences in ligand specificity. Two types of binding sites for 3H-D'-pentran (in contrast to R-5020 and P) have been detected in rabbit uterus cytosol, both in intact and estrogenized animals. However, in rabbits, estrogenization altered the values of the apparent equilibrium constants and binding capacities. At the same time, the interaction of pentran with progestin-binding sites in guinea-pig and human uterus cytosol is nonspecific. It is suggested that the features of the interaction of 3H-D'-pentran with its binding sites in rabbit uterus cytosol may be determined by an increase in hydrophobic bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号