首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent behavioural studies have demonstrated that honeybees use visual feedback to stabilize their gaze. However, little is known about the neural circuits that perform the visual motor computations that underlie this ability. We investigated the motor neurons that innervate two neck muscles (m44 and m51), which produce stabilizing yaw movements of the head. Intracellular recordings were made from five (out of eight) identified neuron types in the first cervical nerve (IK1) of honeybees. Two motor neurons that innervate muscle 51 were found to be direction-selective, with a preference for horizontal image motion from the contralateral to the ipsilateral side of the head. Three neurons that innervate muscle 44 were tuned to detect motion in the opposite direction (from ipsilateral to contralateral). These cells were binocularly sensitive and responded optimally to frontal stimulation. By combining the directional tuning of the motor neurons in an opponent manner, the neck motor system would be able to mediate reflexive optomotor head turns in the direction of image motion, thus stabilising the retinal image. When the dorsal ocelli were covered, the spontaneous activity of neck motor neurons increased and visual responses were modified, suggesting an ocellar input in addition to that from the compound eyes.  相似文献   

2.
Summary The well known optomotor yaw torque response in flies is part of a 3-dimensional system. Optomotor responses around the longitudinal and transversal body axes (roll and pitch) with strinkingly similar properties to the optomotor yaw response are described here forDrosophila melanogaster. Stimulated by visual motion from a striped drum rotating around an axis aligned with the measuring axis, a fly responds with torque of the same polarity as that of the rotation of the pattern. In this stimulus situation the optomotor responses for yaw, pitch and roll torque have about the same amplitudes and dynamic properties (Fig. 2). Pronounced negative responses are measured with periodic gratings of low pattern wavelengths due to geometrical interference (Fig. 3). The responses depend upon the contrast frequency rather than the angular velocity of the pattern (Fig. 4). Like the optomotor yaw response, roll and pitch responses can be elicited by small field motion in most parts of the visual field; only for motion below and behind the fly roll and pitch responses have low sensitivity.The mutantoptomotor-blind H31 (omb H31) in which the giant neurones of the lobula plate are missing or severely reduced, is impaired in all 3 optomotor torque responses (Fig. 5) whereas other visual responses like the optomotor lift/thrust response and the landing response (elicited by horizontal front-to-back motion) are not affected (Heisenberg et al. 1978).We propose that the lobula plate giant neurons mediate optomotor torque responses and that the VS-cells in particular are involved in roll and pitch but not in lift/thrust control. This hypothesis accommodates various electrophysiological and anatomical observations about these neurons in large flies.Abbreviation EMD elementary movement detector  相似文献   

3.
Rosner R  Warzecha AK 《PloS one》2011,6(10):e26886
Behavioral responses of an animal vary even when they are elicited by the same stimulus. This variability is due to stochastic processes within the nervous system and to the changing internal states of the animal. To what extent does the variability of neuronal responses account for the overall variability at the behavioral level? To address this question we evaluate the neuronal variability at the output stage of the blowfly''s (Calliphora vicina) visual system by recording from motion-sensitive interneurons mediating head optomotor responses. By means of a simple modelling approach representing the sensory-motor transformation, we predict head movements on the basis of the recorded responses of motion-sensitive neurons and compare the variability of the predicted head movements with that of the observed ones. Large gain changes of optomotor head movements have previously been shown to go along with changes in the animals'' activity state. Our modelling approach substantiates that these gain changes are imposed downstream of the motion-sensitive neurons of the visual system. Moreover, since predicted head movements are clearly more reliable than those actually observed, we conclude that substantial variability is introduced downstream of the visual system.  相似文献   

4.

Background

Global motion detection is one of the most important abilities in the animal kingdom to navigate through a 3-dimensional environment. In the visual system of teleost fish direction-selective neurons in the pretectal area (APT) are most important for global motion detection. As in all other vertebrates these neurons are involved in the control of slow phase eye movements during gaze stabilization. In contrast to mammals cortical pathways that might influence motion detection abilities of the optokinetic system are missing in teleost fish.

Results

To test global motion detection in goldfish we first measured the coherence threshold of random dot patterns to elicit horizontal slow phase eye movements. In addition, the coherence threshold of the optomotor response was determined by the same random dot patterns. In a second approach the coherence threshold to elicit a direction selective response in neurons of the APT was assessed from a neurometric function. Behavioural thresholds and neuronal thresholds to elicit slow phase eye movements were very similar, and ranged between 10% and 20% coherence. In contrast to these low thresholds for the optokinetic reaction and APT neurons the optomotor response could only be elicited by random dot patterns with coherences above 40%.

Conclusion

Our findings suggest a high sensitivity for global motion in the goldfish optokinetic system. Comparison of neuronal and behavioural thresholds implies a nearly one-to-one transformation of visual neuron performance to the visuo-motor output. In addition, we assume that the optomotor response is not mediated by the optokinetic system, but instead by other motion detection systems with higher coherence thresholds.  相似文献   

5.
Summary Neck muscles of Calliphora erythrocephala, situated in the anterior prothorax, are innervated on each side by 8 motor neurons arising in the brain (cervical nerve neurons, CN1–8) and at least 13 motor neurons arising in the prothoracic ganglion (anterior dorsal and frontal nerve neurons, ADN1,2 and FN1-11). Three prominent motor neurons (CN6 and FN1,2) are described in detail with special emphasis on their relationships with giant visual interneurons from the lobula plate, haltere interneurons, and primary afferents from the prosternal organs and halteres. These sensory organs detect head movement and body yaw, respectively. Neuronal relationships indicate that head movement is under multimodal sensory control that includes giant motion-sensitive neurons previously supposed to mediate the optomotor response in flying flies. The described pathways provide anatomical substrates for the control of optokinetic and yaw-incurred head movements that behavioural studies have shown must exist.  相似文献   

6.
For sensory signals to control an animal's behavior, they must first be transformed into a format appropriate for use by its motor systems. This fundamental problem is faced by all animals, including humans. Beyond simple reflexes, little is known about how such sensorimotor transformations take place. Here we describe how the outputs of a well-characterized population of fly visual interneurons, lobula plate tangential cells (LPTCs), are used by the animal's gaze-stabilizing neck motor system. The LPTCs respond to visual input arising from both self-rotations and translations of the fly. The neck motor system however is involved in gaze stabilization and thus mainly controls compensatory head rotations. We investigated how the neck motor system is able to selectively extract rotation information from the mixed responses of the LPTCs. We recorded extracellularly from fly neck motor neurons (NMNs) and mapped the directional preferences across their extended visual receptive fields. Our results suggest that-like the tangential cells-NMNs are tuned to panoramic retinal image shifts, or optic flow fields, which occur when the fly rotates about particular body axes. In many cases, tangential cells and motor neurons appear to be tuned to similar axes of rotation, resulting in a correlation between the coordinate systems the two neural populations employ. However, in contrast to the primarily monocular receptive fields of the tangential cells, most NMNs are sensitive to visual motion presented to either eye. This results in the NMNs being more selective for rotation than the LPTCs. Thus, the neck motor system increases its rotation selectivity by a comparatively simple mechanism: the integration of binocular visual motion information.  相似文献   

7.
Is there an effect on binocular coordination during reading of oculomotor imbalance (heterophoria, strabismus and inadequate convergence) and of functional lateral characteristics (eye preference and perceptually privileged visual laterality)? Recordings of the binocular eye-movements of ten-year-old children show that oculomotor imbalances occur most often among children whose left visual perceptual channel is privileged, and that these subjects can present optomotor dissociation and manifest lack of motor coordination. Close binocular motor coordination is far from being the norm in reading. The faster reader displays saccades of differing spatial amplitude and the slower reader an oculomotor hyperactivity, especially during fixations. The recording of binocular movements in reading appears to be an excellent means of diagnosing difficulties related to visual laterality and to problems associated with oculomotor imbalance.  相似文献   

8.
Behavioural and electrophysiological experiments suggest that blowflies employ an active saccadic strategy of flight and gaze control to separate the rotational from the translational optic flow components. As a consequence, this allows motion sensitive neurons to encode during translatory intersaccadic phases of locomotion information about the spatial layout of the environment. So far, it has not been clear whether and how a motor controller could decode the responses of these neurons to prevent a blowfly from colliding with obstacles. Here we propose a simple model of the blowfly visual course control system, named cyberfly, and investigate its performance and limitations. The sensory input module of the cyberfly emulates a pair of output neurons subserving the two eyes of the blowfly visual motion pathway. We analyse two sensory–motor interfaces (SMI). An SMI coupling the differential signal of the sensory neurons proportionally to the yaw rotation fails to avoid obstacles. A more plausible SMI is based on a saccadic controller. Even with sideward drift after saccades as is characteristic of real blowflies, the cyberfly is able to successfully avoid collisions with obstacles. The relative distance information contained in the optic flow during translatory movements between saccades is provided to the SMI by the responses of the visual output neurons. An obvious limitation of this simple mechanism is its strong dependence on the textural properties of the environment.  相似文献   

9.
As animals travel through the environment, powerful reflexes help stabilize their gaze by actively maintaining head and eyes in a level orientation. Gaze stabilization reduces motion blur and prevents image rotations. It also assists in depth perception based on translational optic flow. Here we describe side-to-side flight manoeuvres in honeybees and investigate how the bees’ gaze is stabilized against rotations during these movements. We used high-speed video equipment to record flight paths and head movements in honeybees visiting a feeder. We show that during their approach, bees generate lateral movements with a median amplitude of about 20 mm. These movements occur with a frequency of up to 7 Hz and are generated by periodic roll movements of the thorax with amplitudes of up to ±60°. During such thorax roll oscillations, the head is held close to horizontal, thereby minimizing rotational optic flow. By having bees fly through an oscillating, patterned drum, we show that head stabilization is based mainly on visual motion cues. Bees exposed to a continuously rotating drum, however, hold their head fixed at an oblique angle. This result shows that although gaze stabilization is driven by visual motion cues, it is limited by other mechanisms, such as the dorsal light response or gravity reception.  相似文献   

10.
ABSTRACT. Males of Gomphocerus rufus L. perform a courtship song consisting of repetitive units, each of which is composed of three subunits (S1, S2, S3). S1 is characterized mainly by slow and fast head rolling; S2 and S3 are distinguished by different types of leg-stridulation. These movements and the associated sounds were recorded during presentation of visual stimuli, either linear displacement of a living female or optomotor stimuli generated by a striped drum. Females moved artificially through the binocular visual field of a courting male with a velocity of 1 cm/s or more are mounted by the male from any subunit S1, S2 or S3, although under natural conditions mounting occurs only from S2. Thus above a critical velocity the courtship programme can be modified. Rotation of a striped drum about the yaw axis of the male during the slow S1 induces asymmetrical leg position, following movements of the head, and prolongation of S1. During S2 the male is especially sensitive to optomotor stimuli and responds with marked changes in body position. In S3 the intensity of the song is reduced, and its duration shortened. Fast drum movements interrupt the courtship programme. Rotation of the drum about the roll axis elicits optomotor head turning that interferes with the head rolling of S1. The fast phase of S1 and the frequency of head-rolling during S1 cannot be modified by optomotor stimulation. The results can be interpreted by assuming certain interactions between three central nervous elements: a calling-song generator, a head-rolling generator, and an optomotor centre.  相似文献   

11.
For a moving animal, optic flow is an important source of information about its ego-motion. In flies, the processing of optic flow is performed by motion sensitive tangential cells in the lobula plate. Amongst them, cells of the vertical system (VS cells) have receptive fields with similarities to optic flows generated during rotations around different body axes. Their output signals are further processed by pre-motor descending neurons. Here, we investigate the local motion preferences of two descending neurons called descending neurons of the ocellar and vertical system (DNOVS1 and DNOVS2). Using an LED arena subtending 240° × 95° of visual space, we mapped the receptive fields of DNOVS1 and DNOVS2 as well as those of their presynaptic elements, i.e. VS cells 1–10 and V2. The receptive field of DNOVS1 can be predicted in detail from the receptive fields of those VS cells that are most strongly coupled to the cell. The receptive field of DNOVS2 is a combination of V2 and VS cells receptive fields. Predicting the global motion preferences from the receptive field revealed a linear spatial integration in DNOVS1 and a superlinear spatial integration in DNOVS2. In addition, the superlinear integration of V2 output is necessary for DNOVS2 to differentiate between a roll rotation and a lift translation of the fly.  相似文献   

12.
Summary Studies of the optomotor response, the tendency to turn in response to a moving pattern, have yielded some understanding of the motion detection capabilities of the fly. We present data from extracellular microelectrode recordings from the optic lobes of the housefly, Musca domestica and the blowflies Eucalliphora lilaea and Calliphora phaenicia. Directionally selective and directionally nonselective motion sensitive units were observed in the region between the medulla and the lobula of all three species. Employing similar stimulus conditions to those used in the optomotor reaction studies, it was found that the response of the directionally selective units exhibited most of the characteristics of the optomotor response torque measurements. It is concluded that these units code the information prerequisite to the optomotor response and hence, that much data processing is achieved in the first few synaptic layers of the insect visual nervous system.  相似文献   

13.
The crystalline-like structure of the optic lobes of the fruit fly Drosophila melanogaster has made them a model system for the study of neuronal cell-fate determination, axonal path finding, and target selection. For functional studies, however, the small size of the constituting visual interneurons has so far presented a formidable barrier. We have overcome this problem by establishing in vivo whole-cell recordings from genetically targeted visual interneurons of Drosophila. Here, we describe the response properties of six motion-sensitive large-field neurons in the lobula plate that form a network consisting of individually identifiable, directionally selective cells most sensitive to vertical image motion (VS cells). Individual VS cell responses to visual motion stimuli exhibit all the characteristics that are indicative of presynaptic input from elementary motion detectors of the correlation type. Different VS cells possess distinct receptive fields that are arranged sequentially along the eye's azimuth, corresponding to their characteristic cellular morphology and position within the retinotopically organized lobula plate. In addition, lateral connections between individual VS cells cause strongly overlapping receptive fields that are wider than expected from their dendritic input. Our results suggest that motion vision in different dipteran fly species is accomplished in similar circuitries and according to common algorithmic rules. The underlying neural mechanisms of population coding within the VS cell network and of elementary motion detection, respectively, can now be analyzed by the combination of electrophysiology and genetic intervention in Drosophila.  相似文献   

14.
Direction-sensitive partitioning of the honeybee optomotor system   总被引:1,自引:0,他引:1  
ABSTRACT. The horizontal motion-detecting system controlling optomotor head-turning behaviour in honeybees, Apis mellifera , was found to be partitioned into two separate subsystems. Each subsystem is direction-specific such that visual stimulation in the preferred direction elicited a high level of responses that correcly followed the movement, whereas stimulation in the non-preferred direction resulted in response levels comparable to or lower than those for blinded controls. The results indicate that medial eye regions are specialized for the detection of posterior-to-anterior movements and lateral regions are specialized for detecting anterior-to-posterior motion. A model suggesting possible neural correlates for this functional subdivision of the optomotor response is proposed.  相似文献   

15.
Measurement of the optomotor response is a common way to determine thresholds of the visual system in animals. Particularly in mice, it is frequently used to characterize the visual performance of different genetically modified strains or to test the effect of various drugs on visual performance. Several methods have been developed to facilitate the presentation of stimuli using computer screens or projectors. Common methods are either based on the measurement of eye movement during optokinetic reflex behavior or rely on the measurement of head and/or body-movements during optomotor responses. Eye-movements can easily and objectively be quantified, but their measurement requires invasive fixation of the animals. Head movements can be observed in freely moving animals, but until now depended on the judgment of a human observer who reported the counted tracking movements of the animal during an experiment. In this study we present a novel measurement and stimulation system based on open source building plans and software. This system presents appropriate 360 stimuli while simultaneously video-tracking the animal''s head-movements without fixation. The on-line determined head gaze is used to adjust the stimulus to the head position, as well as to automatically calculate visual acuity. Exemplary, we show that automatically measured visual response curves of mice match the results obtained by a human observer very well. The spatial acuity thresholds yielded by the automatic analysis are also consistent with the human observer approach and with published results. Hence, OMR-arena provides an affordable, convenient and objective way to measure mouse visual performance.  相似文献   

16.
Fantoni C  Caudek C  Domini F 《PloS one》2012,7(3):e33911
Humans make systematic errors in the 3D interpretation of the optic flow in both passive and active vision. These systematic distortions can be predicted by a biologically-inspired model which disregards self-motion information resulting from head movements (Caudek, Fantoni, & Domini 2011). Here, we tested two predictions of this model: (1) A plane that is stationary in an earth-fixed reference frame will be perceived as changing its slant if the movement of the observer's head causes a variation of the optic flow; (2) a surface that rotates in an earth-fixed reference frame will be perceived to be stationary, if the surface rotation is appropriately yoked to the head movement so as to generate a variation of the surface slant but not of the optic flow. Both predictions were corroborated by two experiments in which observers judged the perceived slant of a random-dot planar surface during egomotion. We found qualitatively similar biases for monocular and binocular viewing of the simulated surfaces, although, in principle, the simultaneous presence of disparity and motion cues allows for a veridical recovery of surface slant.  相似文献   

17.
Although the behavioral repertoire of crustaceans is largely guided by visual information their visual nervous system has been little explored. In search for central mechanisms of visual integration, this study was aimed at identifying and characterizing brain neurons in the crab involved in binocular visual processing. The study was performed in the intact animal, by recording intracellularly the response to visual stimuli of neurons from one of the two optic lobes. Identified neurons recorded from the medulla (second optic neuropil), which include sustaining neurons, dimming neurons, depolarizing and hyperpolarizing tonic neurons and on-off neurons, all presented exclusively monocular (ipsilateral) responses. In contrast, all wide field movement detector neurons recorded from the lobula (third optic neuropil) responded to moving stimuli presented to the ipsilateral and to the contralateral eye. In these cells, the responses evoked by ipsilateral or contralateral stimulation were almost identical, as revealed by analysing the number and amplitude of the elicited postsynaptic potentials and spikes, and the ability to habituate upon repeated visual stimulation. The results demonstrate that in crustaceans important binocular processing takes place at the level of the lobula.  相似文献   

18.
The retinal image flow a blowfly experiences in its daily life on the wing is determined by both the structure of the environment and the animal’s own movements. To understand the design of visual processing mechanisms, there is thus a need to analyse the performance of neurons under natural operating conditions. To this end, we recorded flight paths of flies outdoors and reconstructed what they had seen, by moving a panoramic camera along exactly the same paths. The reconstructed image sequences were later replayed on a fast, panoramic flight simulator to identified, motion sensitive neurons of the so-called horizontal system (HS) in the lobula plate of the blowfly, which are assumed to extract self-motion parameters from optic flow. We show that under real life conditions HS-cells not only encode information about self-rotation, but are also sensitive to translational optic flow and, thus, indirectly signal information about the depth structure of the environment. These properties do not require an elaboration of the known model of these neurons, because the natural optic flow sequences generate—at least qualitatively—the same depth-related response properties when used as input to a computational HS-cell model and to real neurons.  相似文献   

19.
《Current biology : CB》1999,9(1):R15-R17
Flies use a system of specialised neurons to read the patterns of visual motion – optic flow – induced by the their movements. Recent experiments illustrate how the dendrites of these neurons reach out to assemble patterns of optic flow and encode them reliably.  相似文献   

20.
 The receptive field organization of a class of visual interneurons in the fly brain (vertical system, or VS neurons) shows a striking similarity to certain self-motion-induced optic flow fields. The present study compares the measured motion sensitivities of the VS neurons (Krapp et al. 1998) to a matched filter model for optic flow fields generated by rotation or translation. The model minimizes the variance of the filter output caused by noise and distance variability between different scenes. To that end, prior knowledge about distance and self-motion statistics is incorporated in the form of a “world model”. We show that a special case of the matched filter model is able to predict the local motion sensitivities observed in some VS neurons. This suggests that their receptive field organization enables the VS neurons to maintain a consistent output when the same type of self-motion occurs in different situations. Received: 14 June 1999 / Accepted in revised form: 20 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号