首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biliary secretion of bile salts in mammals is mediated in part by the liver-specific ATP-dependent canalicular membrane protein Bsep/Spgp, a member of the ATP-binding cassette superfamily. We examined whether a similar transport activity exists in the liver of the evolutionarily primitive marine fish Raja erinacea, the little skate, which synthesizes mainly sulfated bile alcohols rather than bile salts. Western blot analysis of skate liver plasma membranes using antiserum raised against rat liver Bsep/Spgp demonstrated a dominant protein band with an apparent molecular mass of 210 kDa, a size larger than that in rat liver canalicular membranes, approximately 160 kDa. Immunofluorescent localization with anti-Bsep/Spgp in isolated, polarized skate hepatocyte clusters revealed positive staining of the bile canaliculi, consistent with its selective apical localization in mammalian liver. Functional characterization of putative ATP-dependent canalicular bile salt transport activity was assessed in skate liver plasma membrane vesicles, with [(3)H]taurocholate as the substrate. [(3)H]taurocholate uptake into the vesicles was mediated by ATP-dependent and -independent mechanisms. The ATP-dependent component was saturable, with a Michaelis-Menten constant (K(m)) for taurocholate of 40+/-7 microM and a K(m) for ATP of 0.6+/-0.1 mM, and was competitively inhibited by scymnol sulfate (inhibition constant of 23 microM), the major bile salt in skate bile. ATP-dependent uptake of taurocholate into vesicles was inhibited by known substrates and inhibitors of Bsep/Spgp, including other bile salts and bile salt derivatives, but not by inhibitors of the multidrug resistance protein-1 or the canalicular multidrug resistance-associated protein, indicating a distinct transport mechanism. These findings provide functional and structural evidence for a Bsep/Spgp-like protein in the canalicular membrane of the skate liver. This transporter is expressed early in vertebrate evolution and transports both bile salts and bile alcohols.  相似文献   

2.
3.
4.
Bile salts from 21 fish species caught during the Zaïre River Expedition (1974–5) have received partial or complete chemical analysis. Conclusions from the results are as follow. (1) Polypterus bile salts are biochemically advanced, but with easily detectable features regarded as relicts from ancestral stock. The bile acids include haemulcholic acid, previously found only in a marine teleost and an unidentified acid also found in a mormyrid. (2) This mormyrid has advanced bile salts, consisting almost entirely of taurine conjugates of haemulcholic acid (present in Polypterus) , and two other C24 acids. (3) Three Alestes and three Distichodus species have no more than traces of primitive bile salts; their bile acids suggest a degree of activity of intestinal microorganisms during the enterohepatic circulation not previously noticed in fishes. (4) The predatory Hydrocynus has bile acids of an omnivorous rather than a carnivorous type. (5) The Barbus species have primitive bile salts closely similar to those of Cyprinidae previously examined but containing also (in two species) a newly-discovered bile alcohol sulphate: in contrast, a Varicorhinus does not have this new substance and has a chief bile salt found so far only as a minor constituent in the Cyprinidae. (6) Two Labeo species are different from all other cyprinids examined: diey both have a new major bile alcohol sulphate. (7) Four Siluriformes show evidence of enterohepatic changes that might be characteristic of some tropical freshwater fish; three have taurine-conjugated haemulcholic acid. (8) Synodontis species are remarkable in having a high proportion of unconjugated bile acid ions and this finding was confirmed with fresh material.  相似文献   

5.
Difructose anhydride III (DFAIII) is a prebiotic involved in the reduction of secondary bile acids (BAs). We investigated whether DFAIII modulates BA metabolism, including enterohepatic circulation, in the rats fed with a diet supplemented with cholic acid (CA), one of the 12α-hydroxylated BAs. After acclimation, the rats were fed with a control diet or a diet supplemented with DFAIII. After 2 weeks, each group was further divided into two groups and was fed diet with or without CA supplementation at 0.5 g/kg diet. BA levels were analyzed in aortic and portal plasma, liver, intestinal content, and feces. As a result, DFAIII ingestion reduced the fecal deoxycholic acid level via the partial suppression of deconjugation and 7α-dehydroxylation of BAs following CA supplementation. These results suggest that DFAIII suppresses production of deoxycholic acid in conditions of high concentrations of 12α-hydroxylated BAs in enterohepatic circulation, such as obesity or excess energy intake.

Abbreviation: BA: bile acid; BSH: bile salt hydrolase; CA: cholic acid; DCA: deoxycholic acid; DFAIII: difructose anhydride III; MCA: muricholic acid; MS: mass spectrometry; NCDs: non-communicable diseases; LC: liquid chromatography; SCFA: short-chain fatty acid; TCA: taurocholic acid; TCDCA: taurochenodeoxycholic acid; TDCA: taurodeoxycholic acid; TUDCA: tauroursodeoxychlic acid; TαMCA: tauro-α-muricholic acid; TβMCA: tauro-β-muricholic acid; TωMCA: tauro-ω-muricholic acid  相似文献   


6.
The ABC transporters bile salt export pump (BSEP; encoded by the ABCB11 gene), MDR3 P-glycoprotein (ABCB4), and sterolin 1 and 2 (ABCG5 and ABCG8) are crucial for the excretion of bile salt, phospholipid, and cholesterol, respectively, into the bile of mammals. The current paradigm is that phospholipid excretion mainly serves to protect membranes of the biliary tree against bile salt micelles. Bile salt composition and cytotoxicity, however, differ greatly between species. We investigated whether biliary phospholipid and cholesterol excretion occurs in a primitive species, the little skate, which almost exclusively excretes the sulphated bile alcohol scymnolsulphate. We observed no phospholipid and very little cholesterol excretion into bile of these animals. Conversely, when scymnolsulphate was added to the perfusate of isolated mouse liver perfusions, it was very well capable of driving biliary phospholipid and cholesterol excretion. Furthermore, in an erythrocyte cytolysis assay, scymnolsulphate was found to be at least as cytotoxic as taurocholate. These results demonstrate that the little skate does not have a system for the excretion of phospholipid and cholesterol and that both the MDR3 and the two half-transporter genes, ABCG5 and ABCG8, have evolved relatively late in evolution to mediate biliary lipid excretion. Little skate plasma membranes may be protected against bile salt micelles mainly by their high sphingomyelin content.  相似文献   

7.
8.
The apical sodium-dependent bile acid transporter (ASBT, SLC10A2) facilitates the enterohepatic circulation of bile salts and plays a key role in cholesterol metabolism. The membrane topology of ASBT was initially scanned using a consensus topography analysis that predominantly predicts a seven transmembrane (TM) domain configuration adhering to the "positive inside" rule. Membrane topology was further evaluated and confirmed by N-glycosylation-scanning mutagenesis, as reporter sites inserted in the putative extracellular loops 1 and 3 were glycosylated. On the basis of a 7TM topology, we built a three-dimensional model of ASBT using an approach of homology-modeling and remote-threading techniques for the extramembranous domains using bacteriorhodopsin as a scaffold for membrane attachment points; the model was refined using energy minimizations and molecular dynamics simulations. Ramachandran scores and other geometric indicators show that the model is comparable in quality to the crystal structures of similar proteins. Simulated annealing and docking of cholic acid, a natural substrate, onto the protein surface revealed four distinct binding sites. Subsequent site-directed mutagenesis of the predicted binding domain further validated the model. This model agrees further with available data for a pathological mutation (P290S) because the mutant model after in silico mutagenesis loses the ability to bind bile acids.  相似文献   

9.
Bile acids are biosynthesized from cholesterol in hepatocytes and usually localize in the enterohepatic circulation system. This system is regulated by several transporters that are expressed in the liver and intestine. Organic solute transporter (OST) α/β, which is known as a bidirectional transporter for some organic anions, contributes to the transport of bile acids; however, the transport properties of individual bile acids are not well understood. In this study, we investigated the transport properties of five bile acids (cholic acid [CA], chenodeoxycholic acid [CDCA], deoxycholic acid [DCA], ursodeoxycholic acid [UDCA], and lithocholic acid [LCA]) together with their glycine and taurine conjugates mediated by OSTα/β. Of the unconjugated bile acids, CA, CDCA, DCA, and LCA were taken up by OSTαβ/MDCKII cells more rapidly than mock cells, but no significant increase in the uptake of UDCA was observed. On the contrary, all glycine- and taurine-conjugated bile acids showed a significant increase in the uptake by OSTαβ/MDCKII cells. Saturable OSTα/β-mediated transports of CDCA, DCA, glycochenodeoxycholic acid (GCDCA), glycodeoxycholic acid (GDCA), glycolithocholic acid (GLCA), taurochenodeoxycholic acid (TCDCA), and taurolithocholic acid (TLCA) were observed. The apparent Michaelis constants of CDCA, DCA, GCDCA, GDCA, GLCA, TCDCA, and TLCA for OSTα/β were 23.0 ± 4.0, 14.9 ± 1.9, 864.2 ± 80.7, 586.4 ± 43.2, 12.8 ± 0.5, 723.7 ± 4.8, and 23.9 ± 0.3 μM, respectively. However, the transport of other bile acids was not saturable. Our results indicate that OSTα/β has a low affinity but a high capacity for transporting bile acids.  相似文献   

10.
Structural basis for bile salt inhibition of pancreatic phospholipase A2   总被引:1,自引:0,他引:1  
Bile salt interactions with phospholipid monolayers of fat emulsions are known to regulate the actions of gastrointestinal lipolytic enzymes in order to control the uptake of dietary fat. Specifically, on the lipid/aqueous interface of fat emulsions, the anionic portions of amphipathic bile salts have been thought to interact with and activate the enzyme group-IB phospholipase A2 (PLA2) derived from the pancreas. To explore this regulatory process, we have determined the crystal structures of the complexes of pancreatic PLA2 with the naturally occurring bile salts: cholate, glycocholate, taurocholate, glycochenodeoxycholate, and taurochenodeoxycholate. The five PLA2-bile salt complexes each result in a partly occluded active site, and the resulting ligand binding displays specific hydrogen bonding interactions and extensive hydrophobic packing. The amphipathic bile salts are bound to PLA2 with their polar hydroxyl and sulfate/carboxy groups oriented away from the enzyme's hydrophobic core. The impaired catalytic and interface binding functions implied by these structures provide a basis for the previous numerous observations of a biphasic dependence of the rate of PLA2 catalyzed hydrolysis of zwitterionic glycerophospholipids in the presence of bile salts. The rising or activation phase is consistent with enhanced binding and activation of the bound PLA2 by the bile salt induced anionic charge in a zwitterionic interface. The falling or inhibitory phase can be explained by the formation of a catalytically inert stoichiometric complex between PLA2 and any bile salts in which it forms a stable complex. The model provides new insight into the regulatory role that specific PLA2-bile salt interactions are likely to play in fat metabolism.  相似文献   

11.
SUMMARY Vertebrate hearts have evolved from undivided tubular hearts of chordate ancestors. One of the most intriguing issues in heart evolution is the abrupt appearance of multichambered hearts in the agnathan vertebrates. To explore the developmental mechanisms behind the drastic morphological changes that led to complex vertebrate hearts, we examined the developmental patterning of the agnathan lamprey Lethenteron japonicum . We isolated lamprey orthologs of genes thought to be essential for heart development in chicken and mouse embryos, including genes responsible for differentiation and proliferation of the myocardium ( LjTbx20, LjTbx4/5 , and LjIsl1/2A ), establishment of left–right heart asymmetry ( LjPitxA ), and partitioning of the heart tube ( LjTbx2/3A ), and studied their expression patterns during lamprey cardiogenesis. We confirmed the presence of the cardiac progenitors expressing LjIsl1/2A in the pharyngeal and splanchnic mesoderm and the heart tube of the lamprey. The presence of LjIsl1/2A -positive cardiac progenitor cells in cardiogenesis may have permitted an increase of myocardial size in vertebrates. We also observed LjPitxA expression in the left side of lamprey cardiac mesoderm, suggesting that asymmetric expression of Pitx in the heart has been acquired in the vertebrate lineage. Additionally, we observed LjTbx2/3A expression in the nonchambered myocardium, supporting the view that acquisition of Tbx2/3 expression may have allowed primitive tubular hearts to partition, giving rise to multichambered hearts.  相似文献   

12.
Abcb11 encodes for the liver bile salt export pump, which is rate-limiting for hepatobiliary bile salt secretion. We employed transthyretin-Abcb11 and BAC-Abcb11 transgenes to develop mice overexpressing the bile salt export pump in the liver. The mice manifest increases in bile flow and biliary secretion of bile salts, phosphatidylcholine, and cholesterol. Hepatic gene expression of cholesterol 7alpha-hydroxylase and ileal expression of the apical sodium bile salt transporter are markedly reduced, whereas gene expression of targets of the nuclear bile salt receptor FXR (ileal lipid-binding protein, short heterodimer partner (SHP) is increased. Because these changes in gene expression are associated with an increased overall hydrophobicity of the bile salt pool and a 4-fold increase of the FXR ligand taurodeoxycholate, they reflect bile salt-mediated regulation of FXR and SHP target genes. Despite the increased biliary secretion of bile salts, fecal bile salt excretion is unchanged, suggestive of an enhanced enterohepatic cycling of bile salts. Abcb11 transgenic mice fed a lithogenic (high cholesterol/fat/cholic acid) diet display markedly reduced hepatic steatosis compared with wild-type controls. We conclude that mice overexpressing Abcb11 display an increase in biliary bile salt secretion and taurodeoxycholate content, which is associated with FXR/SHP-mediated changes in hepatic and ileal gene expression. Because these mice are resistant to hepatic lipid accumulation, regulation of Abcb11 may be important for the pathogenesis and treatment of steatohepatitis.  相似文献   

13.
14.
Amphibian holoblastic cleavage in which all blastomeres contribute to any one of the three primary germ layers has been widely thought to be a developmental pattern in the stem lineage of vertebrates, and meroblastic cleavage to have evolved independently in each vertebrate lineage. In extant primitive vertebrates, agnathan lamprey and basal bony fishes also undergo holoblastic cleavage, and their vegetal blastomeres have been generally thought to contribute to embryonic endoderm. However, the present marker analyses in basal ray-finned fish bichir and agnathan lamprey embryos indicated that their mesoderm and endoderm develop in the equatorial marginal zone, and their vegetal cell mass is extraembryonic nutritive yolk cells, having non-cell autonomous meso-endoderm inducing activity. Eomesodermin (eomes), but not VegT, orthologs are expressed maternally in these animals, suggesting that VegT is a maternal factor for endoderm differentiation only in amphibian. The study raises the viewpoint that the lamprey/bichir type holoblastic development would have been ancestral to extant vertebrates and retained in their stem lineage; amphibian-type holoblastic development would have been acquired secondarily, accompanied by the exploitation of new molecular machinery such as maternal VegT.  相似文献   

15.
Biliary bile salt composition of 677 vertebrate species (103 fish, 130 reptiles, 271 birds, 173 mammals) was determined. Bile salts were of three types: C27 bile alcohols, C27 bile acids, or C24 bile acids, with default hydroxylation at C-3 and C-7. C27 bile alcohols dominated in early evolving fish and amphibians; C27 bile acids, in reptiles and early evolving birds. C24 bile acids were present in all vertebrate classes, often with C27 alcohols or with C27 acids, indicating two evolutionary pathways from C27 bile alcohols to C24 bile acids: a) a ‘direct’ pathway and b) an ‘indirect’ pathway with C27 bile acids as intermediates. Hydroxylation at C-12 occurred in all orders and at C-16 in snakes and birds. Minor hydroxylation sites were C-1, C-2, C-5, C-6, and C-15. Side chain hydroxylation in C27 bile salts occurred at C-22, C-24, C-25, and C-26, and in C24 bile acids, at C-23 (snakes, birds, and pinnipeds). Unexpected was the presence of C27 bile alcohols in four early evolving mammals. Bile salt composition showed significant variation between orders but not between families, genera, or species. Bile salt composition is a biochemical trait providing clues to evolutionary relationships, complementing anatomical and genetic analyses.  相似文献   

16.
Tochtrop GP  Bruns JL  Tang C  Covey DF  Cistola DP 《Biochemistry》2003,42(40):11561-11567
Human ileal bile acid binding protein (I-BABP) is a member of the intracellular lipid binding protein family. This protein is thought to function in the transcellular transport and enterohepatic circulation of bile salts. Human I-BABP binds two molecules of glycocholate, the physiologically most abundant bile salt, with modest intrinsic affinity but a remarkably high degree of positive cooperativity. Here we report a calorimetric analysis for the binding of a broad panel of bile salts to human I-BABP. The interaction of I-BABP with nine physiologically relevant derivatives of cholic acid, chenodeoxycholic acid, and deoxycholic acid in their conjugated (glycine and taurine) and unconjugated forms was monitored by isothermal titration calorimetry. All bile salts bound to I-BABP with a 2:1 stoichiometry and similar overall affinity, but the derivatives of cholic acid displayed much higher Hill coefficients, a measure of macroscopic positive cooperativity. To test whether the cooperativity was dependent on individual structural features of the bile salt side chain, a series of side-chain-extended bile salts that lacked a hydrogen bond donor or acceptor at C-24 were chemically synthesized. These synthetic variants exhibited the same energetic and cooperativity profile as the naturally occurring bile salts. Our findings indicate that cooperativity in bile salt-I-BABP recognition is governed by the pattern of steroid B- and C-ring hydroxylation and not the presence or type of side-chain conjugation.  相似文献   

17.
Biliary lipids, water and cholesterol gallstones   总被引:8,自引:0,他引:8  
Cholesterol supersaturation, hydrophobic bile salts, pronucleating proteins and impaired gall-bladder motility may contribute to gallstone pathogenesis. We here show that both gallstone-susceptible C57L and gallstone-resistant AKR male inbred mice exhibit supersaturated gall-bladder biles during early lithogenesis, whereas bile-salt composition becomes hydrophobic only in susceptible C57L mice. In vitro, cholesterol crystallization occurs depending on relative amounts of lipids; excess cholesterol may exceed solubilizing capacity of mixed bile salt-phospholipid micelles, whereas excess bile salts compared with phospholipids leads to deficient cholesterol-storage capacity in vesicles. In vivo, bile lipid contents are mainly determined at the level of the hepatocyte canalicular membrane, where specific transport proteins enable lipid secretion [ABCG5/G8 (ATP-binding cassette transporter G5/G8) for cholesterol, MDR3 (multi-drug resistant 3) for phospholipid, BSEP (bile salt export pump)]. These transport proteins are regulated by farnesoid X and liver X nuclear receptors. After nascent bile formation, modulation of bile water contents in biliary tract and gall-bladder exerts critical effects on cholesterol crystallization. During progressive bile concentration (particularly in the fasting gall-bladder), cholesterol and, preferentially, phospholipid transfer occurs from cholesterol-unsaturated vesicles to emerging mixed micelles. The remaining unstable cholesterol-enriched vesicles may nucleate crystals. Various aquaporins have recently been discovered throughout the biliary tract, with potential relevance for gallstone formation.  相似文献   

18.
A phylogenetic survey of biliary lipids in vertebrates   总被引:2,自引:0,他引:2  
Biliary lipids (bile salts, phospholipids, cholesterol, plant sterols) were determined in 89 vertebrate species (cartilaginous and bony fish, reptiles, birds, and mammals), and individual phospholipid classes were measured in 35 species. All samples contained conjugated bile salts (C(27) bile alcohol sulfates and/or N-acyl amidates of C(27) and/or C(24) bile acids). Phospholipids were generally absent in the bile of cartilaginous fish and reptiles and were present in low amounts relative to bile salts in bony fish and most birds. In mammals, the phospholipid-bile salt ratio varied widely. The bile from species with low biliary phospholipid-bile salt ratios often contained a high proportion of sphingomyelin, confirmed by HPLC-MS. In species with a high phospholipid-bile salt ratio, the predominant biliary phospholipid was phosphatidylcholine (PC). The phospholipid-bile salt ratio correlated weakly with the calculated weighted hydrophobic index value. Cholesterol was present in the bile of virtually all species, with plant sterols uniformly being present in only trace amounts. The cholesterol-bile salt ratio tended to be higher in mammals than in non-mammals, but bile of all species was unsaturated. Thus, most nonmammalian vertebrates have relatively low levels of biliary phospholipid and cholesterol, suggesting that cholesterol is eliminated predominantly as bile salts. Mammals have a higher phospholipid and cholesterol to bile salt ratio, with the dominant phospholipid being PC.  相似文献   

19.
Although a cholesterol supersaturation of gallbladder bile has been identified as the underlying pathophysiologic defect, the molecular pathomechanism of gallstone formation in humans remains poorly understood. A deficiency of the apical sodium bile acid transporter (ASBT) and ileal lipid binding protein (ILBP) in the small intestine may result in bile acid loss into the colon and might promote gallstone formation by reducing the bile acid pool and increasing the amount of hydrophobic bile salts. To test this hypothesis, protein levels and mRNA expression of ASBT and ILBP were assessed in ileal mucosa biopsies of female gallstone carriers and controls. Neither ASBT nor ILBP levels differed significantly between gallstone carriers and controls. However, when study participants were subgrouped by body weight, ASBT and ILBP protein were 48% and 67% lower in normal weight gallstone carriers than in controls (P < 0.05); similar differences were found for mRNA expression levels. The loss of bile transporters in female normal weight gallstone carriers was coupled with a reduction of protein levels of hepatic nuclear factor 1alpha and farnesoid X receptor. In conclusion, in normal weight female gallstone carriers, the decreased expression of ileal bile acid transporters may form a molecular basis for gallstone formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号