首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
SRF and MCM1 have related but distinct DNA binding specificities.   总被引:8,自引:0,他引:8       下载免费PDF全文
  相似文献   

3.
The zif268 gene, which encodes a protein with three typical zinc finger sequences, is induced in mouse 3T3 cells by serum, phorbol 12-myristate 13-acetate platelet-derived growth factor, and fibroblast growth factor. The induction is coordinate with that of c-fos. The 5'-flanking region of zif268 contains sequences that resemble known regulatory elements, including four CC(A or T)6GG sequences similar to the core serum response elements (SREs) found upstream of c-fos and actin genes. To determine whether the zif268 SRE-like elements mediate induction, CAT (chloramphenicol acetyltransferase) plasmids with different lengths of zif268 upstream sequences were tested for inducibility in 3T3 cells by serum, platelet-derived growth factor, or phorbol 12-myristate 13-acetate. In addition, double-stranded oligonucleotides corresponding to each of the four zif268 putative SREs were tested individually for responsiveness when placed upstream of a thymidine kinase gene promoter. Each of the four SREs conferred inducibility by the agents tested, and multiple SREs resulted in greater inducibility than did a single element. Each of the zif268 SREs also competed with the c-fos SRE for binding by serum response factor present in HeLa cell nuclear extract. We conclude that the zif268 SRE-like sequences are functional and probably account for the coordinate induction of zif268 and c-fos.  相似文献   

4.
We have previously reported on the presence of a CArG motif at -100 in the Rous sarcoma virus long terminal repeat which binds an avian nuclear protein termed enhancer factor III (EFIII) (A. Boulden and L. Sealy, Virology 174:204-216, 1990). By all analyses, EFIII protein appears to be the avian homolog of the serum response factor (SRF). In this study, we identify a second CArG motif (EFIIIB) in the Rous sarcoma virus long terminal repeat enhancer at -162 and show only slightly lower binding affinity of the EFIII/SRF protein for this element in comparison with c-fos serum response element (SRE) and EFIII DNAs. Although all three elements bind the SRF with similar affinities, serum induction mediated by the c-fos SRE greatly exceeds that effected by the EFIII or EFIIIB sequence. We postulated that this difference in serum inducibility might result from binding of factors other than the SRF which occurs on the c-fos SRE but not on EFIII and EFIIIB sequences. Upon closer inspection of nuclear proteins which bind the c-fos SRE in chicken embryo fibroblast and NIH 3T3 nuclear extracts, we discovered another binding factor, SRE-binding protein (SRE BP), which fails to recognize EFIII DNA with high affinity. Competition analyses, methylation interference, and site-directed mutagenesis have determined that the SRE BP binding element overlaps and lies immediately 3' to the CArG box of the c-fos SRE. Mutation of the c-fos SRE so that it no longer binds SRE BP reduces serum inducibility to 33% of the wild-type level. Conversely, mutation of the EFIII sequence so that it binds SRE BP with high affinity results in a 400% increase in serum induction, with maximal stimulation equaling that of the c-fos SRE. We conclude that binding of both SRE BP and SRF is required for maximal serum induction. The SRE BP binding site coincides with the recently reported binding site for rNF-IL6 on the c-fos SRE. Nonetheless, we show that SRE BP is distinct from rNF-IL6, and identification of this novel factor is being pursued.  相似文献   

5.
Serum response factor (SRF) was identified as an activity binding upon serum stimulation of HeLa cells to a motif known as the serum response element in the c-fos promoter. This element is also found in the regulatory regions of many muscle-specific genes. We have characterized srf expression during early zebrafish embryogenesis. In addition to low-level expression in many or even all cells, elevated levels of srf RNA and protein are transiently expressed in skeletal muscle lineages during their differentiation.  相似文献   

6.
7.
8.
9.
10.
DNA elements with the CC(A/T)6GG, or CArG, motif occur in promoters that are under different regulatory controls. CArG elements from the skeletal actin, c-fos, and myogenin genes were tested for their abilities to confer tissue-specific expression on reporter genes when the individual elements were situated immediately upstream from a TATA element. The c-fos CArG element, also referred to as the serum response element (SRE), conferred basal, constitutive expression on the test promoter. The CArG motif from the myogenin gene was inactive. The skeletal actin CArG motif functioned as a muscle regulatory element (MRE) in that basal expression was detected only in muscle cultures. Muscle-specific expression from the 28-bp MRE and the 2.3-kb skeletal actin promoter was trans repressed by the Fos and Jun proteins. The expression and factor-binding properties of a series of synthetic CArG elements were analyzed. Muscle-specific expression was conferred by perfect 28-bp palindromes on the left and right halves of the skeletal actin MRE. Chimeric elements of the skeletal actin MRE and the c-fos SRE differed in their expression properties. Muscle-specific expression was observed when the left half of the MRE was fused to the right half of the SRE. Constitutive expression was conferred by a chimera with the right half of the MRE fused to the left half of the SRE and by chimeras which exchanged the central CC(A/T)6GG sequences. At least three distinct proteins specifically bound to these CArG elements. The natural and synthetic CArG elements differed in their affinities for these proteins; however, muscle-specific expression could not be attributed to differences in the binding of a single protein. Furthermore, the MRE did not bind MyoD or the myogenin-E12 heterodimer, indicating that muscle-specific expression from this element does not involve a direct interaction with these helix-loop-helix proteins. These data demonstrate that the conserved CArG motifs form the core of a family of functionally different DNA regulatory elements that may contribute to the tissue-specific expression properties of their cognate promoters.  相似文献   

11.
We previously described a 110-kDa tyrosine phosphoprotein, Sob 1, that regulates formation of the DNA binding complex Band A at the c-fos serum response element (SRE) during T cell activation. Using competition and mutant oligonucleotide analysis, we have determined that both the core CArG box of the c-fos SRE and the 3' sequences flanking the CArG box are necessary for stable Band A complex formation. Moreover, using transient transfection and reporter assays, we show that mutations affecting Band A complex formation in vitro also impaired serum induction of c-fos gene expression in vivo. Since mutation at this site has no effect on SRF binding, our results suggest that in combination with SRE/SRF, Sob 1-regulated factor(s) bind at the 3' side of SRE to form Band A, and this confers maximal serum induction of c-fos gene expression via the SRE.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
S Dalton  R Treisman 《Cell》1992,68(3):597-612
We used a yeast genetic screen to isolate cDNAs that encode a protein, SRF accessory protein-1 (SAP-1), that is recruited to the c-fos serum response element (SRE) as part of a ternary complex that includes serum response factor (SRF). SAP-1 requires DNA-bound SRF for ternary complex formation and makes extensive DNA contacts to the 5' side of SRF, but does not bind DNA autonomously. Ternary complex formation by SAP-1 requires only the DNA-binding domain of SRF, which can be replaced by that of the related yeast protein MCM1. We isolated cDNAs encoding two forms of SAP-1 protein, SAP-1a and SAP-1b, which differ at their C termini. Both SAP-1 proteins contain three regions of striking homology with the elk-1 protein, including an N-terminal ets domain. Ternary complex formation by SAP-1 requires both the ets domain and a second conserved region 50 amino acids to its C-terminal side. SAP-1 has similar DNA binding properties to the previously characterized HeLa cell protein p62/TCF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号