首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
益生菌Escherichia coli Nissle1917功能研究进展   总被引:1,自引:0,他引:1  
潘秋莎  苏式兵  赵明 《微生物学通报》2019,46(11):3133-3139
大肠埃希菌Nissle1917,简称EcN,是益生菌中为数不多的革兰氏阴性菌,在临床上主要用于克罗恩病、溃疡性结肠炎等胃肠功能障碍。其机制在于EcN能在人体肠道定殖,并阻止病原菌对肠道黏膜的侵袭,对肠道黏膜屏障具有保护和修护作用。EcN还参与机体的免疫调控,平衡免疫因子的分泌,增强宿主免疫能力,进而缓解和治疗炎症。最进研究发现,EcN具有肿瘤靶向作用,是良好的药物载体,且与化疗药物联用可增强药物抗肿瘤的疗效,为抗肿瘤治疗提供了新的思路。  相似文献   

2.
3.
Nonpathogenic Escherichia coli strain Nissle 1917 (O6:K5:H1) is used as a probiotic agent in medicine, mainly for the treatment of various gastroenterological diseases. To gain insight on the genetic level into its properties of colonization and commensalism, this strain's genome structure has been analyzed by three approaches: (i) sequence context screening of tRNA genes as a potential indication of chromosomal integration of horizontally acquired DNA, (ii) sequence analysis of 280 kb of genomic islands (GEIs) coding for important fitness factors, and (iii) comparison of Nissle 1917 genome content with that of other E. coli strains by DNA-DNA hybridization. PCR-based screening of 324 nonpathogenic and pathogenic E. coli isolates of different origins revealed that some chromosomal regions are frequently detectable in nonpathogenic E. coli and also among extraintestinal and intestinal pathogenic strains. Many known fitness factor determinants of strain Nissle 1917 are localized on four GEIs which have been partially sequenced and analyzed. Comparison of these data with the available knowledge of the genome structure of E. coli K-12 strain MG1655 and of uropathogenic E. coli O6 strains CFT073 and 536 revealed structural similarities on the genomic level, especially between the E. coli O6 strains. The lack of defined virulence factors (i.e., alpha-hemolysin, P-fimbrial adhesins, and the semirough lipopolysaccharide phenotype) combined with the expression of fitness factors such as microcins, different iron uptake systems, adhesins, and proteases, which may support its survival and successful colonization of the human gut, most likely contributes to the probiotic character of E. coli strain Nissle 1917.  相似文献   

4.
Escherichia coli Nissle 1917 (EcN) is a probiotic used for the treatment of intestinal disorders. EcN improves gastrointestinal homeostasis and microbiota balance; however, little is known about how this probiotic delivers effector molecules to the host. Outer membrane vesicles (OMVs) are constitutively produced by Gram‐negative bacteria and have a relevant role in bacteria–host interactions. Using 1D SDS–PAGE and highly sensitive LC–MS/MS analysis we identified in this study 192 EcN vesicular proteins with high confidence in three independent biological replicates. Of these proteins, 18 were encoded by strain‐linked genes and 57 were common to pathogen‐derived OMVs. These proteins may contribute to the ability of this probiotic to colonize the human gut as they fulfil functions related to adhesion, immune modulation or bacterial survival in host niches. This study describes the first global OMV proteome of a probiotic strain and provides evidence that probiotic‐derived OMVs contain proteins that can target these vesicles to the host and mediate their beneficial effects on intestinal function. All MS data have been deposited in the ProteomeXchange with identifier PXD000367 ( http://proteomecentral.proteomexchange.org/dataset/PXD000367 ).  相似文献   

5.
AIMS: To verify the presence of Escherichia coli Nissle 1917 as a natural isolate in swine and to characterize in vitro probiotic properties as well as in vivo persistence in a feeding experiment. METHODS AND RESULTS: During studies on the intestinal microflora of pigs, we isolated E. coli Nissle 1917 sporadically from a pig population over a period of 1 year. The identity of the isolates as E. coli Nissle 1917 was verified by serotyping, Nissle-specific PCR, macrorestriction analysis (pulsed field gel electrophoresis) and the determination of in vitro probiotic properties in invasion and adhesion assays using a porcine intestinal epithelial cell line. Both the E. coli isolates and the E. coli Nissle 1917 strain showed strong reductions in adhesion of porcine enteropathogenic E. coli and invasion of Salmonella typhimurium with epithelial cells in vitro, with a probiotic effect. Screening of five epidemiologically unlinked swine farms and two wild boar groups showed one farm positive for E. coli Nissle 1917. A feeding experiment with four piglets showed viable E. coli Nissle 1917 in the intestine of three animals. CONCLUSIONS: The results of this study suggest that the E. coli Nissle 1917 strain is already partially established in swine herds, but the colonization of individual animals is variable. SIGNIFICANCE AND IMPACT OF THE STUDY: We report natural, long-term colonization and transmission of the probiotic E. coli Nissle 1917 strain in a swine herd, characterized individual persistence and colonization properties in swine and established an in vitro porcine intestinal epithelial cell model of probiotic action. The results of this study would have implications in the use of this strain as a probiotic in swine and contribute to a better understanding of the individual nature of intestinal bacterial persistence and establishment.  相似文献   

6.
Nuclear localization of the tight junction protein ZO-2 in epithelial cells   总被引:6,自引:0,他引:6  
The tight junction constitutes the major barrier to solute and water flow through the paracellular space of epithelia and endothelia. It is formed by transmembrane proteins and submembranous molecules such as the MAGUKs ZOs. We have previously found that several MAGUKs, including those of the tight (ZO-1, ZO-2, and ZO-3) and septate junction (tamou and Dlg), contain one or two nuclear sorting signals located at their first PDZ and GK domains. Now we show that these proteins also contain a nuclear export signal and focus our study on the nuclear membrane shuttling of ZO-2. In sparse cultures this molecule concentrates at the nucleus in clusters, where it partially colocalizes with splicing factor SC35. Nuclear staining diminishes as the monolayer acquires confluence through a process sensitive to the nuclear export inhibitor leptomycin B. Nuclear localization can be induced by impairing cell-cell contacts, by mechanical injury. ZO-2 that shuttles from the cell periphery into the nucleus is not newly synthesized but originates from a preexistent pool. The movement of this protein is mediated by the actin cytoskeleton.  相似文献   

7.
8.
The probiotic Escherichia coli strain Nissle 1917 (Mutaflor) of serotype O6:K5:H1 was reported to protect gnotobiotic piglets from infection with Salmonella enterica serovar Typhimurium. An important virulence property of Salmonella is invasion of host epithelial cells. Therefore, we tested for interference of E. coli strain Nissle 1917 with Salmonella invasion of INT407 cells. Simultaneous administration of E. coli strain Nissle 1917 and Salmonella resulted in up to 70% reduction of Salmonella invasion efficiency. Furthermore, invasion of Yersinia enterocolitica, Shigella flexneri, Legionella pneumophila and even of Listeria monocytogenes were inhibited by the probiotic E. coli strain Nissle 1917 without affecting the viability of the invasive bacteria. The observed inhibition of invasion was not due to the production of microcins by the Nissle 1917 strain because its isogenic microcin-negative mutant SK22D was as effective as the parent strain. Reduced invasion rates were also achieved if strain Nissle 1917 was separated from the invasive bacteria as well as from the INT407 monolayer by a membrane non-permeable for bacteria. We conclude E. coli Nissle 1917 to interfere with bacterial invasion of INT407 cells via a secreted component and not relying on direct physical contact with either the invasive bacteria or the epithelial cells.  相似文献   

9.
Probiotic microorganisms are defined as viable nutritional agents conferring benefit to the health of the human host. Especially, Escherichia coli strain Nissle 1917 (EcN) was shown to be equally effective as mesalazine in the maintenance of remission in ulcerative colitis (UC). Presumably, the therapeutic effect of EcN is linked to the presence of the strain in the region of interest; however, it remains difficult to follow the orally administered strain on its passage through the complex microbial environment of the intestine in vivo, inhabited dominantly by various E. coli strains, using traditional culturing methods. In this study we transformed EcN and a wild-type E. coli from a laboratory rat (EcR) with a plasmid carrying a gfp gene (pUC-gfp) to obtain EcN- and EcR-GFP to allow in vivo detection without alteration of strain-specific characteristics. Analysis of different strain-specific characteristics included the measurement of stimulation of IL-8 secretion and adhesion in vitro using the epithelial cell line HT-29. The kinetics of intestinal distribution in mice and colonization properties in rats following oral administration was studied in vivo. Detectability of the strain in histologic specimens was analysed using fluorescence microscopy and immunohistochemistry. The identity of fluorescent E. coli strains isolated from stool samples, Peyer's patches (PP) and mesenteric lymph nodes (MLN) was determined by REP-PCR. We were able to demonstrate that EcN and EcN-GFP do not differ in stimulation of IL-8 secretion or adhesion to HT-29 cells. In vivo, EcN-GFP colonies were readily detectable by fluorescence microscopy in luminal samples and also by immunohistochemistry in histological sections allowing analysis of the kinetics of the intestinal passage following oral administration. Translocation of fluorescent and non-fluorescent bacteria into PP and MLN was noted at 6 h post oral administration. EcN-GFP was detectable initially for 14 days in faecal samples of rats, while EcR-GFP was detectable throughout the whole experiment (45 days). Challenge with ampicillin at day 45 demonstrated continuing presence of EcN-GFP in small numbers by reappearing fluorescent colonies. The plasmid was not stable in vivo since non-fluorescent EcN colonies were detected also in faecal samples by REP-PCR. In summary, transformation of EcN to obtain EcN-GFP in our study had no detectable influence on the probiotic microorganism regarding adhesion on and induction of IL-8 secretion of HT-29 cells and allows the detection in mixed microbial environments in vivo but the stability of EcN-GFP in vivo is limited.  相似文献   

10.
Recent genetic and biochemical studies revealed the mechanisms of late stage of homologous recombination in E. coli. A central intermediate of recombination called “Holliday structure”, in which two homologous duplex DNA molecules are linked by a single-stranded crossover, is formed by the functions of RecA and several other proteins. The products of the ruvA and ruvB genes, which constitute an SOS regulated operon, form a functional complex that promotes migration of Holliday junctions by catalyzing strand exchange reaction, thus enlarging the heteroduplex region. RuvA is a DNA-binding protein specific for these junctions, and RuvB is a motor molecule for branch migration providing energy by hydrolyzing ATP. The product of the ruvC gene, which is not regulated by the SOS system, resolves Holliday junctions by introducing nicks at or near the crossover junction in strands with the same polarity at the same sites. The recombination reaction is completed by sealing the nicks with DNA ligase, resulting in spliced or patched recombinants. The product of the recG gene provides an alternative route for resolving Holliday junctions. RecG has been proposed to promote branch migration in the opposite direction to that promoted by RecA protein. The atomic structure of RuvC protein revealed by crystallographic study, when combined with mutational analysis of RuvC, provides mechanistic insights into the interactions of RuvC with Holliday junction.  相似文献   

11.
12.
Most of the information on the structure and function of the tight junction (TJ) has been obtained in MDCK cells. Accordingly, we have sequenced ZO-1 in this cell type, because this protein is involved in the response of the TJ to changes in Ca2+, phosphorylation, and the cytoskeleton. ZO-1 of MDCK cells comprises 6805 bp with a predicted open reading frame of 1769 amino acids. This sequence is 92 and 87% homologous to human and mouse ZO-1, respectively. Two nuclear sorting signals located at the PDZ1 and GK domains and 17 SH3 putative binding sites at the proline-rich domain were detected. We found two new splicing regions at the proline-rich region: beta had not been reported in human and mouse counterparts, and gamma, which was previously sequenced in human and mouse ZO-1, is now identified as a splicing region. The expression of different beta and gamma isoforms varies according to the tissue tested. With the information provided by the sequence, Southern blot, and PCR experiments we can predict a single genomic copy of MDCK-ZO-1 that is at least 13.16 kb long. MDCK-ZO-1 mRNA is 7.4 kb long. Its expression is regulated by calcium, while the expression of MDCK-ZO-1 protein is not.  相似文献   

13.
14.
Probiotic Escherichia coli strain Nissle 1917 (O6:K5:H1) is a commensal E. coli isolate that has a long tradition in medicine for the treatment of various intestinal disorders in humans. To elucidate the molecular basis of its probiotic nature, we started sequencing the genome of this organism with a whole-genome shotgun approach. A 7.8-fold coverage of the genomic sequence has been generated and is now in the finishing stage. To exploit the genome data as early as possible and to generate hypotheses for functional studies, the unfinished sequencing data were analyzed in this work using a new method [Sun, J., Zeng, A.P., 2004. IdentiCS--identification of coding sequence and in silico reconstruction of the metabolic network directly from unannotated low-coverage bacterial genome sequence. BMC Bioinformatics 5, 112] which is particularly suitable for the prediction of coding sequences (CDSs) from unannotated genome sequence. The CDSs predicted for E. coli Nissle 1917 were compared with those of all five other sequenced E. coli strains (E. coli K-12 MG1655, E. coli K-12 W3110, E. coli CFT073, EHEC O157:H7 EDL933 and EHEC O157:H7 Sakai) published to date. Five thousand one hundred and ninety-two CDSs were predicted for E. coli Nissle 1917, of which 1065 were assigned with enzyme EC numbers. The comparison of all predicted CDSs of E. coli Nissle 1917 to the other E. coli strains revealed 108 CDSs specific for this isolate. They are organized as four big genome islands and many other smaller gene clusters. Based on CDSs with EC numbers for enzymes, the potential metabolic network of Nissle 1917 was reconstructed and compared to those of the other five E. coli strains. Overall, the comparative genomic analysis sheds light on the genomic peculiarity of the probiotic E. coli strain Nissle 1917 and is helpful for designing further functional studies long before the sequencing project is completely finished.  相似文献   

15.
16.
Increased numbers of adherent invasive Escherichia coli (AIEC) have been found in Crohn's disease (CD) patients. In this report, we investigate the potential of the probiotic Escherichia coli Nissle 1917 (EcN) to reduce features associated with AIEC pathogenicity in an already established infection with AIEC reference strain LF82.  相似文献   

17.
Escherichia coli is a highly versatile species encompassing a diverse spectrum of strains, i.e. from highly virulent isolates causing serious infectious diseases to commensals and probiotic strains. Although much is known about bacterial pathogenicity in E. coli, the understanding of which genetic determinants differentiates a virulent from an avirulent strain still remains limited. In this study we designed a new comparative genomic hybridization microarray based on 31 sequenced E. coli strains and used it to compare two E. coli strains used as prophylactic agents (i.e. Nissle 1917 and 83972) with the highly virulent uropathogen CFT073. Only relatively minor genetic variations were found between the isolates, suggesting that the three strains may have originated from the same virulent ancestral parent. Interestingly, Nissle 1917 (a gut commensal strain) was more similar to CFT073 with respect to genotype and phenotype than 83972 (an asymptomatic bacteriuria strain). The study indicates that genetic variations (e.g. mutations) and expression differences, rather than genomic content per se, contribute to the divergence in disease-causing ability between these strains. This has implications for the use of virulence factors in epidemiological research, and emphasizes the need for more comparative genomic studies of closely related strains to compare their virulence potential.  相似文献   

18.
ZO-1 is a 210-225-kD peripheral membrane protein associated with cytoplasmic surfaces of the zonula occludens or tight junction. A 160- kD polypeptide, designated ZO-2, was found to coimmunoprecipitate with ZO-1 from MDCK cell extracts prepared under conditions which preserve protein associations (Gumbiner, B., T. Lowenkopf, and D. Apatira. 1991. Proc. Natl. Acad. Sci. USA. 88: 3460-3464). We have isolated ZO-2 from MDCK cell monolayers by bulk coimmunoprecipitation with ZO-1 followed by electroelution from preparative SDS-PAGE gel slices. Amino acid sequence information obtained from a ZO-2 tryptic fragment was used to isolate a partial cDNA clone from an MDCK library. The deduced amino acid sequence revealed that canine ZO-2 contains a region that is very similar to sequences in human and mouse ZO-1. This region includes both a 90-amino acid repeat domain of unknown function and guanylate kinase- like domains which are shared among members of the family of proteins that includes ZO-1, erythrocyte p55, the product of the lethal(1)discs- large-1 (dlg) gene of Drosophila, and a synapse-associated protein from rat brain, PSD-95/SAP90. The dlg gene product has been shown to act as a tumor suppressor in the imaginal disc of the Drosophila larva, although the functions of other family members have not yet been defined. A polyclonal antiserum was raised against a unique region of ZO-2 and found to exclusively label the cytoplasmic surfaces of tight junctions in MDCK plasma membrane preparations, indicating that ZO-2 is a tight junction-associated protein. Immunohistochemical staining of frozen sections of whole tissue demonstrated that ZO-2 localized to the region of the tight junction in a number of epithelia, including liver, intestine, kidney, testis, and arterial endothelium, suggesting that this protein is a ubiquitous component of the tight junction. Double- label immunofluorescence microscopy performed on cryosections of heart, a nonepithelial tissue, revealed the presence of ZO-1 but no ZO-2 staining at the fascia adherens, a specialized junction of cardiac myocytes which has previously been shown to contain ZO-1 (Itoh, M., S. Yonemura, A. Nagafuchi, S. Tsukita, and Sh. Tsukita. 1991. J. Cell Biol. 115:1449-1462). Thus it appears that ZO-2 is not a component of the fascia adherens, and that unlike ZO-1, this protein is restricted to the epithelial tight junction.  相似文献   

19.
20.
EspG, a secreted effector of enteropathogenic Escherichia coli (EPEC), as well as its homologue Orf3, has been shown to disrupt microtubules (MTs) in fibroblasts and non-polarized epithelial cells. The roles of MTs and the effects of MT disruption in these cell types differ significantly. The aim of this study was to investigate the effects of EspG on polarized, host target intestinal epithelial cells. Immunofluorescent labelling of tubulin showed that EPEC caused progressive fragmentation and loss of the MT network in cells harbouring attached organisms. Immunoblots of proteins extracted from EPEC-infected cells showed a corresponding loss of alpha-tubulin. Type III secretion system (TTSS)-deficient strains had no effect on MT suggesting TTSS dependence. Mutation of espG, but not espF or map, ablated EPEC's effects on MTs for up to 6 h. Ectopic expression of EspG in HeLa cells caused MT disruption. While deletion of espG alone had no effect on the EPEC-induced decrease in transepithelial electrical resistance (TER), mutation of both espG and orf3 significantly delayed the kinetics of this response. Complementation of the double mutant with espG alone restored the kinetics of TER drop to that of wild type. Herein, we describe a previously unrecognized phenotype for the EPEC effectors EspG and Orf3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号