首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neural cell-adhesion molecule L1 is involved in intercellular recognition and neuronal migration in the CNS. Recently, we have shown that mutations in the gene encoding L1 are responsible for three related disorders; X-linked hydrocephalus, MASA (mental retardation, aphasia, shuffling gait, and adducted thumbs) syndrome, and spastic paraplegia type I (SPG1). These three disorders represent a clinical spectrum that varies not only between families but sometimes also within families. To date, 14 independent L1 mutations have been reported and shown to be disease causing. Here we report nine novel L1 mutations in X-linked hydrocephalus and MASA-syndrome families, including the first examples of mutations affecting the fibronectin type III domains of the molecule. They are discussed in relation both to phenotypes and to the insights that they provide into L1 function.  相似文献   

2.
Etiological heterogeneity in X-linked spastic paraplegia.   总被引:12,自引:4,他引:8       下载免费PDF全文
We describe a large family (K313) having 12 males affected with X chromosome-linked recessive hereditary spastic paraplegia (HSP). The disease phenotype in K313 is characterized by hyperreflexia and a spastic gait, but intelligence is normal. Carrier females have normal gait and unremarkable neurologic profiles. Eight widely spaced X-linked DNA markers were used to genotype 43 family members. In contrast to a published study of another family, in whom complete linkage of X-linked recessive HSP to distal chromosome Xq markers DXS15 and DXS52 was reported, we observed complete linkage with two DNA markers, pYNH3 and DXS17, located on the middle of the long arm of the X chromosome. These data have been combined with linkage data from a large reference panel of normal families to localize the new X-chromosome marker, pYNH3, and to provide evidence of significant locus heterogeneity between phenotypically distinct forms of X-linked recessive HSP.  相似文献   

3.
X-linked hydrocephalus (HSAS) is the most common form of inherited hydrocephalus characterized by hydrocephalus due to stenosis of the aqueduct of Sylvius, mental retardation, clasped thumbs, and spastic paraparesis. MASA syndrome (mental retardation, aphasia, shuffling gait and adducted thumbs) and SPG1 (X-linked complicated spastic paraplegia) are also X-linked disorders with overlapping clinical signs. Linkage analysis studies implicated the neural cell adhesion molecule L1 (LICAM) gene as a candidate gene for these X-linked disorders. This genetic study analyzes the LICAM gene in a Japanese family with members suffering from HSAS, and describes a deletion of five nucleotides in exon 8. Screening byBg1I digestion of polymerase chain reaction (PCR) products revealed that two siblings have the same mutation and a sister was identified as a heterozygous carrier. The 5 nucleotide deletion causes a shift of the reading frame and introduces a premature stop codon 72 nucleotides downstream, which might result in a truncated protein. The mutation identified herein is a novel L1 CAM mutation, which triggers hydrocephalus. We report a unique LlCAM mutation that causes HSAS: the first report of such a mutation in a Japanese family.  相似文献   

4.
Hereditary spastic paraplegia is a genetically and phenotypically heterogeneous disorder. Both pure and complicated forms have been described, with autosomal dominant, autosomal recessive, and X-linked inheritance. Various loci (SPG1-SPG6) associated with this disorder have been mapped. Here, we report linkage analysis of a large consanguineous family affected with autosomal recessive spastic paraplegia with age at onset of 25-42 years. Linkage analysis of this family excluded all previously described spastic paraplegia loci. A genomewide linkage analysis showed evidence of linkage to chromosome 16q24.3, with markers D16S413 (maximum LOD score 3.37 at recombination fraction [theta] of .00) and D16S303 (maximum LOD score 3.74 at straight theta=.00). Multipoint analysis localized the disease gene in the most telomeric region, with a LOD score of 4.2. These data indicate the presence of a new locus linked to pure recessive spastic paraplegia, on chromosome 16q24.3, within a candidate region of 6 cM.  相似文献   

5.
Evidence of a third locus in X-linked recessive spastic paraplegia   总被引:2,自引:0,他引:2  
We have investigated a family with severe X-linked spastic paraplegia and assigned the disease locus to Xq11.2-q23 by linkage and haplotype analysis. This region harbors the gene coding for proteolipid protein, which is mutated in one of the two established forms of X-linked spastic paraplegia, i.e., SPG2. We have performed extensive mutation analysis of this gene. Our failure to detect a mutation in this family suggests a third locus in X-linked recessive spastic paraplegia. Received: 7 March 1997 / Accepted: 14 April 1997  相似文献   

6.
X-linked hydrocephalus is a variable condition caused by mutations in the gene encoding for L1CAM. This gene is located at Xq28. Clinically the spectrum ranges from males with lethal congenital hydrocephalus to mild/moderate mental retardation and spastic paraplegia. Few carrier females show minimal signs of the syndrome. Although most cases are familial, de novo situations have been reported. We report two new families with the syndrome and a L1 mutation. Family 1 has two patients and family 2 a single patient. Clinical diagnosis in all three affected boys was beyond doubt. Prenatal testing through chorionic villus biopsy is possible only with a demonstrated L1 mutation. In lethal sporadic cases neuropathology is very important in order to evaluate for features of the syndrome. We stress the importance of further clinical reports including data on neuropathology and DNA analysis in order to further understand the mechanisms involved in this disorder.  相似文献   

7.
Linkage studies of X-linked recessive spastic paraplegia using DNA probes   总被引:22,自引:0,他引:22  
Summary A family with six males affected by X-linked spastic paraplegia (McKusick No. 31290) is described. The disease was accompanied by mental retardation in all patients (severe in four cases with IQ of 40) and by absence of extensor pollicis longus (in four cases). The following X chromosome DNA probes were used in linkage studies: 782, RC8, 99-6, 754, OTC, L128, pDP34, p43-15, DX13, and St14. The mutation is closely linked to the loci DX13 (DXS15) and Stl4 (DXS52) (no recombinants in 11 meioses) and therefore localised to the telomeric region of the long arm of the human X chromosome.  相似文献   

8.
A family is described in which three normal females transmitted to seven males X-linked mental retardation associated with macro-orchidism and a fragile site on the long arm of the X chromosome -- fra(X)(q27). The affected males also had minor clinical features in common: a large forehead, long face, large ears, a long upper lip and large extremities.  相似文献   

9.
Among mental disorders, mental retardation has been shown to be caused by various factors including a large array of genetic mutations. On the basis of remarkable progress, the emerging view is that defects in the regulation of synaptic activity and morphogenesis of dendritic spines are apparently common features associated with mutations in several genes implicated in mental retardation. In this review, we will discuss X-linked MR-related gene products that are potentially involved in the normal structure and function of the synapses, with a particular focus on pre- and/or post-synaptic plasticity mechanisms. Progress in understanding the underlying conditions leading to mental retardation will undoubtedly be gained from a closer collaboration of geneticists, physiologists and cognitive neuroscientists, which should enable the establishment of standardized approaches.  相似文献   

10.
Fragile X-linked mental retardation is an enigmatic inheritable syndrome in which severe mental retardation, a cytogenetically detectable fragile site at Xq27.3 (FraX) and a number of dysmorphic features are associated. Genetic analysis shows that the mode of inheritance is more complex than a straightforward X-linked recessive trait and probably involves a two-step process for which several models have been proposed. Early attempts at 'cloning the fragile site' provided several DNA segments lying in its general vicinity, and large scale DNA mapping methods were extensively applied in an effort to generate maps including this region. These efforts were complemented by more focussed methods such as microdissection; together these approaches have now provided a number of DNA segments within a 5 cM interval around FraX, and with the help of these new probes the site is indeed being cloned. Unravelling the nature of the sequence(s) responsible for the mental retardation syndrome will probably take some time, however.  相似文献   

11.
Fourteen families with X-linked mental retardation (XMR) have been studied clinically and cytogenetically. All affected males failed to show a fragile site (FS) on Xq of their peripheral lymphocytes. Five families may be considered examples of Renpenning syndrome while the remaining may be divided in two groups: one of seven (type I) and one of two (type II). The seven families of type I had some physical features of the Martin-Bell syndrome but with normal to large sized testes whence the name of X-linked MR with slight macroorchidism (XMR +/- MO). The two families of type II showed unremarkable facial appearance, mild to moderate degree of MR and a certain microorchidism whence the possible name of X-linked MR with different degree of microorchidism (XMR +/- MiO).  相似文献   

12.
In contrast to the preponderance of affected males in families with X-linked mental retardation, Rett syndrome (RTT) is a neurological disorder occurring almost exclusively in females. The near complete absence of affected males in RTT families has been explained by the lethal effect of an X-linked gene mutation in hemizygous affected males. We report here on a novel mutation (A140V) in the MECP2 gene detected in one female with mild mental retardation. In a family study, the A140V mutation was found to segregate in the affected daughter and in four adult sons with severe mental retardation. These results indicate that MECP2 mutations are not necessarily lethal in males and that they can be causative of non-specific X-linked mental retardation.  相似文献   

13.
The AP (adaptor protein) complexes are heterotetrameric protein complexes that mediate intracellular membrane trafficking along endocytic and secretory transport pathways. There are five different AP complexes: AP-1, AP-2 and AP-3 are clathrin-associated complexes; whereas AP-4 and AP-5 are not. These five AP complexes localize to different intracellular compartments and mediate membrane trafficking in distinct pathways. They recognize and concentrate cargo proteins into vesicular carriers that mediate transport from a donor membrane to a target organellar membrane. AP complexes play important roles in maintaining the normal physiological function of eukaryotic cells. Dysfunction of AP complexes has been implicated in a variety of inherited disorders, including: MEDNIK (mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis and keratodermia) syndrome, Fried syndrome, HPS (Hermansky–Pudlak syndrome) and HSP (hereditary spastic paraplegia).  相似文献   

14.
It is a well-known fact that males predominate among the mentally retarded. Various explanations for this have been offered—among others, more exposure of the male fetus to external pathogenic influences in the antenatal period, a lower threshold of appearance of mutant polygenes responsible for mental retardation in males, or a high frequency of X-linked mental retardation [1]. The first two hypotheses have not been confirmed. Although a lower threshold of appearance of mental retardation in males has been demonstrated [2], this cannot explain such a major quantitative divergence between males and females as exists in mental retardation. It has not been easy to confirm the third hypothesis since the forms of X-linked hereditary pathology frequently appear sporadically, i.e., in only one boy in a family.  相似文献   

15.
A large French family including members affected by nonspecific X-linked mental retardation, with or without autism or pervasive developmental disorder in affected male patients, has been found to have a 2-base-pair deletion in the Neuroligin 4 gene (NLGN4) located at Xp22.33. This mutation leads to a premature stop codon in the middle of the sequence of the normal protein and is thought to suppress the transmembrane domain and sequences important for the dimerization of neuroligins that are required for proper cell-cell interaction through binding to beta-neurexins. As the neuroligins are mostly enriched at excitatory synapses, these results suggest that a defect in synaptogenesis may lead to deficits in cognitive development and communication processes. The fact that the deletion was present in both autistic and nonautistic mentally retarded males suggests that the NLGN4 gene is not only involved in autism, as previously described, but also in mental retardation, indicating that some types of autistic disorder and mental retardation may have common genetic origins.  相似文献   

16.
Summary Chromosomal, clinical, and psychological data are presented on members of six families with X-linked mental retardation. Affected males in three of these families express the fra(X)(q28) marker, while the retarded males in the other three do not. Similar variable physical and psychological charateristics, such as lop ears, large testes, and perseverative speech, are present in affected males in all six families. Preliminary analysis of the psychological data also shows that males with and without marker expression cannot be differentiated with certainty. On this basis we suggest that there is a type of X-linked mental retardation with many phenotypic features of marker-X mental retardation but without expression of the X chromosome fragile site.  相似文献   

17.
A large kindred is described in which 22 males and 3 females show non-specific mental retardation with impaired speech. An X-linked recessive is the most likely mode of inheritance of this condition. Similar families have been described in the literature, characteristic physical abnormalities are absent and performance I.Q. tends to be higher than verbal I.Q. This possible heterogenous condition may be a major individual cause of mental deficiency in males, and may account for the excess of male retardates in the population.  相似文献   

18.
The frequencies of chromosome and chromatid breaks and gaps were studied in blood lymphocytes of three groups of individuals: 21 males with X-linked mental retardation characterized by fragile X chromosome; 52 males with non-differentiated X-linked mental retardation having no fra(X) chromosome in their cells; 15 intellectually normal males. The lymphocytes were cultured both in medium 199 and in Eagle's medium supplemented with fluoro-deoxyuridine. The significantly higher frequencies of various autosomal lesions were observed in the individuals with the fragile X chromosome syndrome and in those with mental retardations without fra(X) chromosome, in comparison with normal males. The significant difference in some autosome lesions was also found between both groups of the patients. The distribution of chromosome lesions in autosomes of different groups was significantly higher in chromosomes A and lower in groups B, E, F and G, than expected in accordance with their relative length in the haploid set. In all the groups of individuals studied, the predominant localization of chromosome and chromatid breaks and gaps was observed in fragile sites 1p31, 3p14, 6q26 and 16q23.  相似文献   

19.
Renpenning syndrome maps to Xp11.   总被引:3,自引:1,他引:2       下载免费PDF全文
Mutations in genes on the X chromosome are believed to be responsible for the excess of males among individuals with mental retardation. Such genes are numerous, certainly >100, and cause both syndromal and nonsyndromal types of mental retardation. Clinical and molecular studies have been conducted on the Mennonite family with X-linked mental retardation (XLMR) reported, in 1962, by Renpenning et al. The clinical phenotype includes severe mental retardation, microcephaly, up-slanting palpebral fissures, small testes, and stature shorter than that of nonaffected males. Major malformations, neuromuscular abnormalities, and behavioral disturbances were not seen. Longevity is not impaired. Carrier females do not show heterozygote manifestations. The syndrome maps to Xp11.2-p11.4, with a maximum LOD score of 3.21 (recombination fraction 0) for markers between DXS1039 and DXS1068. Renpenning syndrome (also known as "MRXS8"; gene RENS1, MIM 309500) shares phenotypic manifestations with several other XLMR syndromes, notably the Sutherland-Haan syndrome. In none of these entities has the responsible gene been isolated; hence, the possibility that two or more of them may be allelic cannot be excluded at present.  相似文献   

20.
From personal observations and reported cases of translocation X-Autosome, a study of the breakpoint showed that Xp11 is more frequently associated to mental retardation. This finding is in agreement with linkage analysis in families with X-linked mental retardation non X-fra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号