首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A G Zabka  G S Mitchell  E B Olson  M Behan 《Journal of applied physiology》2003,95(6):2614-23; discussion 2604
Age and the estrus cycle affect time-dependent respiratory responses to episodic hypoxia in female rats. Respiratory long-term facilitation (LTF) is enhanced in middle-aged vs. young female rats (72). We tested the hypothesis that phrenic and hypoglossal (XII) LTF are diminished in acyclic geriatric rats when fluctuating sex hormone levels no longer establish conditions that enhance LTF. Chronic intermittent hypoxia (CIH) enhances LTF (41); thus we further predicted that CIH would restore LTF in geriatric female rats. LTF was measured in young (3-4 mo) and geriatric (20-22 mo) female Sasco Sprague-Dawley rats and in a group of geriatric rats exposed to 1 wk of nocturnal CIH (11 vs. 21% O2 at 5-min intervals, 12 h/night). In anesthetized, paralyzed, vagotomized, and ventilated rats, time-dependent hypoxic phrenic and XII responses were assessed. The short-term hypoxic response was measured during the first of three 5-min episodes of isocapnic hypoxia (arterial Po2 35-45 Torr). LTF was assessed 15, 30, and 60 min postepisodic hypoxia. Phrenic and XII short-term hypoxic response was not different among groups, regardless of CIH treatment (P > 0.05). LTF in geriatric female rats was smaller than previously reported for middle-aged rats but comparable to that in young female rats. CIH augmented phrenic and XII LTF to levels similar to those of middle-aged female rats without CIH (P < 0.05). The magnitude of phrenic and XII LTF in all groups was inversely related to the ratio of progesterone to estradiol serum levels (P < 0.05). Thus CIH and sex hormones influence the magnitude of LTF in geriatric female rats.  相似文献   

2.
3.
We have investigated the recovery of sympathetic control following reinnervation of denervated rat tail arteries by relating the reappearance of noradrenergic terminals to the amplitude of nerve-evoked contractions of isometrically mounted artery segments in vitro. We have also assessed reactivity to vasoconstrictor agonists. Freezing the collector nerves near the base of the tail in adult rats denervated the artery from ~40 mm along the tail. Restoration of the perivascular plexus declined along the length of the tail, remaining incomplete for >6 mo. After 4 mo, nerve-evoked contractions were prolonged but of comparable amplitude to control at ~60 mm along the tail; they were smaller at ~110 mm. At ~60 mm, facilitation of contractions to short trains of stimuli by the norepinephrine transporter blocker, desmethylimipramine, and by the α2-adrenoceptor antagonist, idazoxan, was reduced in reinnervated arteries. Blockade of nerve-evoked contractions by the α1-adrenoceptor antagonist, prazosin, was less and by idazoxan greater than control after 8 wk but similar to control after 16 wk. Sensitivity of reinnervated arteries to the α1-adrenoceptor agonist, phenylephrine, was raised in the absence but not in the presence of desmethylimipramine. Sensitivity to the α2-adrenoceptor agonist, clonidine, was maintained in 16-wk reinnervated arteries when it had declined in controls. Thus regenerating sympathetic axons have a limited capacity to reinnervate the rat tail artery, but nerve-evoked contractions match control once a relatively sparse perivascular plexus is reestablished. Functional recovery involves prolongation of contractions and deficits in both clearance of released norepinephrine and autoinhibition of norepinephrine release.  相似文献   

4.
Chronic intermittent hypoxia (CIH) leads to increased sympathetic nerve activity and arterial hypertension. In this study, we tested the hypothesis that CIH impairs baroreflex (BR) control of heart rate (HR) in mice, and that decreased cardiac chronotropic responsiveness to vagal efferent activity contributes to such impairment. C57BL/6J mice were exposed to either room air (RA) or CIH (6-min alternations of 21% O(2) and 5.7% O(2), 12 h/day) for 90 days. After the treatment period, mice were anesthetized (Avertin) and arterial blood pressure (ABP) was measured from the femoral artery. Mean ABP (MABP) was significantly increased in mice exposed to CIH (98.7 +/- 2.5 vs. RA: 78.9 +/- 1.4 mmHg, P < 0.001). CIH increased HR significantly (584.7 +/- 8.9 beats/min; RA: 518.2 +/- 17.9 beats/min, P < 0.05). Sustained infusion of phenylephrine (PE) at different doses (0.1-0.4 microg/min) significantly increased MABP in both CIH and RA mice, but the ABP-mediated decreases in HR were significantly attenuated in mice exposed to CIH (P < 0.001). In contrast, decreases in HR in response to electrical stimulation of the left vagus nerve (30 microA, 2-ms pulses) were significantly enhanced in mice exposed to CIH compared with RA mice at low frequencies. We conclude that CIH elicits a sustained impairment of baroreflex control of HR in mice. The blunted BR-mediated bradycardia occurs despite enhanced cardiac chronotropic responsiveness to vagal efferent stimulation. This suggests that an afferent and/or a central defect is responsible for the baroreflex impairment following CIH.  相似文献   

5.
Previous studies have yielded conflicting results concerning the role of noradrenergic afferents to the dorsal raphe nucleus in regulating the activity of serotonergic neurons. In the present study, we recorded the activity of serotonin-containing dorsal raphe neurons in mouse brain slices in vitro under the following conditions: (a) no treatment, (b) phenylephrine added to the incubation medium, (c) in tissue obtained from mice that were anesthetized with halothane, (d) same condition as c, with phenylephrine added to the incubation medium, and (e) same as condition c, with the addition of bicuculline to the incubation medium. The data revealed that the neurons recorded with no treatment exhibited a spontaneous discharge rate of 3.40 ± 0.29 spikes/sec and a cell/tract ratio of 1.15, while cells recorded from tissue slices obtained from halothane anesthetized mice exhibited a discharge rate of 2.01 ± 0.27 spikes/sec and a cell/track ratio of 0.58. Addition of phenylephrine to the incubation media in slices obtained from anesthetized mice increased both the discharge rate (4.23 ± 0.30 spikes/sec) and cell/tract ratio (1.28). Similarly, addition of bicuculline to the incubation media increased both the discharge rate (4.09 ± 0.46 spikes/sec) and cell/tract ratio (1.21) in mouse brain slices obtained from anesthetized animals. Thus, we conclude that a noradrenergic input (which is removed in the tissue slice preparation) is not necessary to maintain the spontaneous activity of serotonergic dorsal raphe units. Halothane anesthesia depressed the activity of these neurons, presumably by releasing GABA from interneurons. Finally, while dorsal raphe neurons are not dependent upon an excitatory noradrenergic input to maintain their spontaneous activity, these neurons can be excited by noradrenergic a fferents under certain conditions.  相似文献   

6.
7.
The density of [3H]prazosin binding to alpha 1-adrenoceptors in the rat cortex was measured after selective and mixed noradrenergic or dopaminergic lesions. DSP-4 produced a selective noradrenergic lesion and increased the density of alpha 1-adrenoceptors. 6-Hydroxydopamine produced a selective dopaminergic lesion (after desipramine protection of noradrenergic neurons) and a mixed noradrenergic and dopaminergic lesion that did not change the cortical alpha 1-adrenoceptor binding. On the basis of the results obtained, a hypothesis is put forward that the central dopaminergic system controls the denervation-induced cortical alpha 1-adrenoceptor up-regulation.  相似文献   

8.
In the present study, we observed the effects of an α(1)-adrenoceptor agonist (phenylephrine), β-adrenoceptor agonist (isoprenaline), muscarinic cholinoceptor agonist (carbachol), and α(1)-adrenoceptor antagonist (doxazosin) on the bladder micturition function in anesthetized mice. Changes in bladder pressure in response to filling and blood pressure were recorded by using a data acquisition system. Phenylephrine (50 to 800 μg/kg) increased vesical micturition pressure in a dose-dependent manner but increased micturition basal pressure only at 800 μg/kg. Carbachol (3 to 7 μg/kg) increased the intercontraction interval and micturition time in a dose-dependent manner but increased micturition basal pressure only at 7 μg/kg. Isoprenaline (10 to 1000 μg/kg) increased micturition time and decreased vesical micturition pressure in a dose-dependent manner. Doxazosin (10 to 1000 μg/kg) did not affect bladder micturition function but dose-dependently inhibited phenylephrine-induced increases in vesical micturition pressure. Carbachol (7 μg/kg) and isoprenaline (1 mg/kg) caused a transient fall in blood pressure, whereas doxazosin (1 mg/kg) had a long-lasting hypotensive effect. The maximal decrease in systolic and mean blood pressure by carbachol did not differ from that by doxazosin and isoprenaline, respectively. Phenylephrine (800 μg/kg) transiently increased the blood pressure of anesthetized mice. These results indicate that activation of muscarinic cholinoceptors decreases voiding frequency and increases bladder capacity in anesthetized mice. Activation of α(1)-adrenoceptors mainly increases vesical micturition pressure, whereas activation of β-adrenoceptors decreases vesical micturition pressure and prolongs micturition time in anesthetized mice.  相似文献   

9.
The subtypes of postjunctional alpha adrenoceptors in the feline pulmonary vascular bed were studied by using selective alpha-adrenoceptor agonists and antagonists. Under conditions of controlled pulmonary blood flow and constant left atrial pressure, intralobar injections of the alpha 1 agonists phenylephrine and methoxamine, and the alpha 2 agonists UK 14,304 and B-HT 933, increased lobar arterial pressure in a dose-related manner. Prazosin, an alpha 1-adrenoceptor antagonist, reduced responses to phenylephrine and methoxamine to a greater extent than responses to UK 14,304 and B-HT 933. Yohimbine, an alpha 2 blocker, decreased responses to UK 14,304 and B-HT 933 without altering responses to phenylephrine or methoxamine. The same pattern of blockade was observed in animals pretreated with 6-hydroxydopamine, an adrenergic neuronal blocking agent. However, in propranolol-treated animals, prazosin antagonized responses to phenylephrine and methoxamine without altering responses to UK 14,304 or B-HT 933, and the selectivity of the blocking effects of yohimbine were preserved. Responses to intralobar injections of norepinephrine (NE) were markedly decreased by prazosin, whereas yohimbine had only a small effect. These data suggest the presence of both postjunctional alpha 1 and alpha 2 adrenoceptors mediating vasoconstriction in the pulmonary vascular bed. These results also indicate that the vasoconstrictor responses to injected NE in the cat pulmonary vascular bed result mainly from activation of alpha 1 adrenoceptors.  相似文献   

10.
The A5 noradrenergic neurons are considered important for cardiorespiratory regulation. We hypothesized that A5 cells are silenced during rapid eye movement (REM) sleep, thereby contributing to cardiorespiratory changes and suppression of hypoglossal (XII) motoneuronal activity. We used an anesthetized, paralyzed, and artificially ventilated rat in which pontine microinjections of carbachol trigger signs of REM sleep, including hippocampal theta rhythm, motor suppression, and silencing of locus coeruleus neurons. All 16 putative noradrenergic A5 cells recorded were strongly suppressed when the REM sleep-like episodes were elicited and also after intravenous clonidine. Antidromic mapping showed that none of six neurons tested projected to the XII nucleus, whereas three of five projected to the nucleus of the solitary tract and two of four to the rostral ventrolateral medulla. Bilateral microinjections of clonidine into the A5 regions did not alter XII nerve activity. These data suggest that A5 neurons are silenced during natural REM sleep. This will lead to decreased norepinephrine release and may alter synaptic transmission in the nucleus of the solitary tract and rostral ventrolateral medulla without, however, a detectable impact on XII motoneurons.  相似文献   

11.
Hypoglossal (XII) motoneurons (MNs) contribute to diverse behaviors. Their innervation of the genioglossus muscle, a tongue protruder, plays a critical role in maintaining upper airway patency during breathing. Indeed, reduced activity in these motoneurons is implicated in sleep related disorders of breathing such as obstructive sleep apnea (OSA). The excitability of these MNs is modulated by multiple neurotransmitter systems. The focus of this review is on the modulation of XII MN excitability by norepinephrine (NE), which increases MN excitability through a variety of mechanisms. The level of noradrenergic drive, however, is very dynamic, varying on developmental, sleep-wake and even millisecond timescales relevant to transitions between behaviours. Here we review and provide new data on the maturation of the noradrenergic modulatory system, focusing on those elements specifically relevant to XII MN excitability including the: i) ontogeny of the noradrenergic cell group that provides the majority of the noradrenergic innervation to the XII nucleus, the Locus subcoeruleus (LsC); ii) time course over which the XII nucleus is innervated by noradrenergic nerve fibres, and; iii) ontogeny of XII MN sensitivity to NE. In the context of state-dependent changes in noradrenergic cell activity, we review mechanisms of NE action most relevant to its role in the muscle atonia of REM sleep. We conclude with a discussion of the hypothesis that the dynamics of MN modulation by NE extend to the spatial domain and recent data suggesting that noradrenergic modulation of the dendritic tree is not uniform but compartmentalized. Implications for information processing are discussed.  相似文献   

12.
Acute isocapnic intermittent hypoxia elicits time-dependent, serotonin-dependent enhancement of phrenic motor output in anesthetized rats (phrenic long-term facilitation, pLTF). In adult rats, pLTF is enhanced by chronic intermittent hypoxia (CIH). To test the hypothesis that early postnatal CIH induces persistent modifications of ventilation and pLTF, we exposed male Sprague-Dawley rat pups on their first day of life to a CIH profile consisting of alternating room air and 10% oxygen every 90 s for 30 days during daylight hours (RAIH) or to comparable exposures consisting of room air throughout (RARA). One month after cessation of CIH, respiratory responses were recorded using whole body plethysmography, and integrated phrenic nerve activity was recorded in urethane-anesthetized, vagotomized, paralyzed, and ventilated rats at baseline and after exposures to three 5-min hypoxic episodes [inspired O2 fraction (FiO2)=0.11] separated by 5 min of hyperoxia (FiO2=0.5). RAIH rats displayed greater normoxic ventilation and also increased burst frequency compared with RARA rats (P<0.01). Ventilatory responses to hypoxia and short-term phrenic responses during acute hypoxic challenges were reduced in RAIH rats (P<0.01). Although pLTF was present in both RAIH and RARA rats, it was diminished in RAIH rats (minute activity: 74+/-2% in RARA vs. 55+/-5% in RAIH at 60 min; P<0.01). Thus we conclude that early postnatal CIH modifies normoxic and hypoxic ventilatory and phrenic responses that persist at 1 mo after cessation of CIH (i.e., metaplasticity) and markedly differ from previously reported increased neural plasticity changes induced by CIH in adult rats.  相似文献   

13.
To determine which subtype of α1-adrenergic receptors plays a role in the regulation of blood pressure, with α1A-adrenergic receptor-mediated vasoconstriction in perfused hindlimb as a control, we compared the inhibitory effects of various α1-adrenergic receptor selective antagonists on the vasopressure responses to phenylephrine between the mean arterial pressure and hindlimb perfusion pressure in anesthetized rats. In Normotensive Wistar rats, the results showed that the inhibitory effects (dose ratios of ED50, Dr) of α1-adrenoceptor selective antagonist (prazosin, Dr 13.5 ± 3.6 vs.15.1 ± 4.3, n = 11), α1A-adrenoceptor selective antagonist (5-methyl-urapidil, Dr 2.4 ± 0.9 vs. 3.7 ± 2.3, n = 12; RS-17053, Dr 3.2 ± 1.6 vs. 4.4 ± 3.3, n = 12) and α1D-adrenoceptor selective antagonist (BMY7378, Dr 1.9 ± 0.9 vs. 2.2 ± 0.8, n = 8) on phenylephrine-induced increases of perfusion pressure in the autoperfused femoral beds were the same as that in the mean arterial blood pressure in normotensive Wistar rats. The inhibitory effects of antagonists (RS-17053, Dr 3.4 ± 0.6 vs. 4.3 ± 0.9, n = 5; BMY7378, Dr 1.7±0.5 vs. 1.7 ± 0.5, n = 8) in spontaneous hypertensive rats were similar with the Wistar rats. These results suggest that the mean arterial pressure induced by phenylephrine was mainly mediated by α1A-adrenergic receptor in both the anesthetized Wistar rats and spontaneous hypertensive rats.  相似文献   

14.
We investigated the effect of inter-renal aortic coarctation on the function and expression of vascular α(1A)- and α(1D)-adrenoceptors and plasma angiotensin II (ATII) in rats. Male Wistar rats, either sham operated (SO), or with aortic coarctation for 7 (AC7) and 14?days (AC14) were used for agonist-induced pressor responses in vehicle (physiological saline)- and antagonist-treated anesthetized animals, immunoblot analysis (α(1A)- and α(1D)-adrenoceptor in aorta and caudal arteries), and immunoassay (plasma ATII). The α(1D)-adrenoceptor antagonist, BMY-7378 (BMY) blocked noradrenaline-induced responses in the order SO?> AC7?? AC14; in contrast, the α(1A)-adrenoceptor antagonist RS-100329 (RS), produced a marginal shift to the right of the dose-response curve to noradrenaline, along with a strong decrease of the maximum pressor effect in the order SO?> AC7?= AC14. The potency of the α(1A)-adrenoceptor agonist A-61603 increased in rats with AC14, and responses were inhibited by RS in the order AC14?> AC7?> SO. In aorta, α(1D)-adrenoceptor protein increased in AC7 and decreased in AC14; α(1A)-adrenoreceptor protein increased in the caudal artery of AC7 and returned to control values in AC14. Plasma ATII increased in AC7 and AC14, compared with SO rats. These results suggest an early and direct relationship between ATII and α(1D)-adrenoreceptors in the development of hypertension in this experimental model.  相似文献   

15.
Binding of high-Mr kininogen and factor XII/factor XIIa to phospholipids coated on to polystyrene microtiter plates was investigated by ELISA. Both high-Mr kininogen and factor XII/factor XIIa bound specifically to the phospholipid surface. Binding was observed to negatively charged phospholipids only. The binding of high-Mr kininogen was not affected by the presence of zinc ions. At a surface concentration of 20% phosphatidylinositol phosphate in phosphatidylcholine a dissociation constant (kD) of 10 nM for the binding of high-Mr kininogen was calculated. The amount of bound purified alpha-factor XIIa could be increased 4-5-fold in the presence of zinc ions. The lowest zinc ion concentration giving maximal binding was 0.1 mM. The binding of alpha-factor XIIa was inhibited by high-Mr kininogen. Independent of the presence of zinc ions or high-Mr kininogen, a kD of 7.9 nM was calculated for alpha-factor XIIa binding. The binding of prekallikrein was dependent upon the presence and the concentration of high-Mr kininogen. In plasma containing aprotinin, the binding of high-Mr kininogen was apparently inhibited in the presence of zinc ions, which was a prerequisite for the binding of factor XII. This apparently inhibitory effect of zinc ions on the binding of high-Mr kininogen was probably due to the increased binding of factor XII, which displaced high-Mr kininogen.  相似文献   

16.
The aim was to determine whether increased oxidative stress during the adaptation to chronic intermittent hypoxia (CIH) plays a role in the induction of improved cardiac ischemic tolerance. Adult male Wistar rats were exposed to CIH in a hypobaric chamber (7,000 m, 8 h/day, 5 days/wk, 24-30 exposures). Half of the animals received antioxidant N-acetylcysteine (NAC; 100 mg/kg) daily before the exposure; the remaining rats received saline. Control rats were kept under normoxia and treated in a corresponding manner. One day after the last exposure (and/or NAC injection), anesthetized animals were subject to 20 min of coronary artery occlusion and 3 h of reperfusion for determination of infarct size. In parallel subgroups, biochemical analyses of the left ventricular myocardium were performed. Adaptation to CIH reduced infarct size from 56.7 +/- 4.5% of the area at risk in the normoxic controls to 27.7 +/- 4.9%. NAC treatment decreased the infarct size in the controls to 42.0 +/- 3.4%, but it abolished the protection provided by CIH (to 41.1 +/- 4.9%). CIH decreased the reduced-to-oxidized glutathione ratio and increased the relative amount of PKC isoform-delta in the particulate fraction; NAC prevented these effects. The expression of PKC-epsilon was decreased by CIH and not affected by NAC. Activities of superoxide dismutase, catalase, and glutathione peroxidase were affected by neither CIH nor NAC treatment. It is concluded that oxidative stress associated with CIH plays a role in the development of increased cardiac ischemic tolerance. The infarct size-limiting mechanism of CIH seems to involve the PKC-delta-dependent pathway but apparently not the increased capacity of major antioxidant enzymes.  相似文献   

17.

Background

Hypoglossal (XII) motoneurons innervate tongue muscles and are vital for maintaining upper-airway patency during inspiration. Depression of XII nerve activity by opioid analgesics is a significant clinical problem, but underlying mechanisms are poorly understood. Currently there are no suitable pharmacological approaches to counter opiate-induced suppression of XII nerve activity while maintaining analgesia. Ampakines accentuate α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor responses. The AMPA family of glutamate receptors mediate excitatory transmission to XII motoneurons. Therefore the objectives were to determine whether the depressant actions of μ-opioid receptor activation on inspiratory activity includes a direct inhibitory action at the inspiratory premotoneuron to XII motoneuron synapse, and to identify underlying mechanism(s). We then examined whether ampakines counteract opioid-induced depression of XII motoneuron activity.

Methodology/Principal Findings

A medullary slice preparation from neonatal rat that produces inspiratory-related output in vitro was used. Measurements of inspiratory burst amplitude and frequency were made from XII nerve roots. Whole-cell patch recordings from XII motoneurons were used to measure membrane currents and synaptic events. Application of the μ-opioid receptor agonist, DAMGO, to the XII nucleus depressed the output of inspiratory XII motoneurons via presynaptic inhibition of excitatory glutamatergic transmission. Ampakines (CX614 and CX717) alleviated DAMGO-induced depression of XII MN activity through postsynaptic actions on XII motoneurons.

Conclusions/Significance

The inspiratory-depressant actions of opioid analgesics include presynaptic inhibition of XII motoneuron output. Ampakines counteract μ-opioid receptor-mediated depression of XII motoneuron inspiratory activity. These results suggest that ampakines may be beneficial in countering opiate-induced suppression of XII motoneuron activity and resultant impairment of airway patency.  相似文献   

18.
We examined the influence of dietary fatty acid (FA) classes on the expression of protein kinase C (PKC) delta and epsilon in relation to the cardioprotective effects of chronic intermittent hypoxia (CIH). Adult male Wistar rats were fed a nonfat diet enriched with 10% lard (saturated FA [SFA]), fish oil (n-3 polyunsaturated FA [n-3 PUFA]), or corn oil (n-6 PUFA) for 10 weeks. After 4 weeks on the diet, each group was divided into two subgroups that were either exposed to CIH in a barochamber (7000 m, 8 hrs/ day) or kept at normoxia for an additional 5-6 weeks. A FA phospholipid profile and Western blot analysis of PKC were performed in left ventricles. Infarct size was assessed in anesthetized animals subjected to 20-min coronary artery occlusion and 3-hr reperfusion. CIH decreased the n-6/n-3 PUFA ratio in all groups by 23% independently of the initial value set by various diets. The combination of n-3 diet and CIH had a stronger antiarrhythmic effect during reperfusion than the n-3 diet alone; this effect was less pronounced in rats fed the n-6 diet. The normoxic n-6 group exhibited smaller infarctions (by 22%) than the n-3 group. CIH decreased the infarct size in n-3 and SFA groups (by 20% and 23%, respectively) but not in the n-6 group. Unlike PKC epsilon, the abundance of PKC delta in the myocardial particulate fraction was increased by CIH except for the n-6 group. Myocardial infarct size was negatively correlated (r=- 0.79) with the abundance of PKC delta in the particulate fraction. We conclude that lipid diets modify the infarct size-limiting effect of CIH by a mechanism that involves the PKC delta-dependent pathway.  相似文献   

19.
Mirtazapine (MIR) is an antidepressant which enhances noradrenergic and serotonergic 5-HT1A neurotransmission via antagomism of central alpha2-adrenergic autoreceptors and heteroreceptors. The drugs does not inhibit noradrenaline and serotonin reuptake but blocks the 5-HT, and 5-HT3 receptors and has high affinity only for central and peripheral histamine H1 receptors. The present study was aimed at determining whether repeated MIR treatment induced adaptive changes in the alpha1-adrenergic receptors, similar to those reported by us early for tricyclic antidepressants, The experiments were carried out on male mice and rats. MIR was administered at a dose of 10 mg/kg once or repeatedly (twice daily for 14 days). The obtained results showed that MIR administrated repeatedly potentiated the methoxamine- induced exploratory hyperactivity in rats and clonidine-induced aggressiveness in mice, those effects being mediated by alpha1-adrenergic receptors. MIR given repeatedly (but not acutely) increased the binding (Bmax ) of [3H]prazosin to alpha1-adrenergic receptors in cerebral cortex, however, the ability of the alpha1-adrenoceptor agonist phenylephrine to compete for the these sites was not significantly changed. The above results indicate that repeated MIR administration increases the responsiveness of alpha1-adrenergic system (behavioural and biochemical changes), as tricyclics do. However, the question whether the increased functional responsiveness found in the present study is important for the clinical antidepressant efficacy, remains open.  相似文献   

20.
Hypoglossal (XII) nerve recordings indicate that pulmonary C-fiber (PCF) receptor activation reduces inspiratory bursting and triggers tonic discharge. We tested three hypotheses related to this observation: 1) PCF receptor activation inhibits inspiratory activity in XII branches innervating both tongue protrudor muscles (medial branch; XIImed) and retractor muscles (lateral branch; XIIlat); 2) reduced XII neurogram amplitude reflects decreased XII motoneuron discharge rate; and 3) tonic XII activity reflects recruitment of previously silent motoneurons. Phrenic, XIImed, and XIIlat neurograms were recorded in anesthetized, paralyzed, and ventilated rats. Capsaicin delivered to the jugular vein reduced phrenic bursting at doses of 0.625 and 1.25 mug/kg but augmented bursting at 5 mug/kg. All doses reduced inspiratory amplitude in XIImed and XIIlat (P < 0.05), and these effects were eliminated following bilateral vagotomy. Single-fiber recordings indicated that capsaicin causes individual XII motoneurons to either decrease discharge rate (n = 101/153) or become silent (n = 39/153). Capsaicin also altered temporal characteristics such that both XIImed and XIIlat inspiratory burst onset occurred after the phrenic burst (P < 0.05). Increases in tonic discharge after capsaicin were greater in XIImed vs. XIIlat (P < 0.05); single-fiber recordings indicated that tonic discharge reflected recruitment of previously silent motoneurons. We conclude that PCF receptor activation reduces inspiratory XII motoneuron discharge and transiently attenuates neural drive to both tongue protrudor and retractor muscles. However, tonic discharge appears to be selectively enhanced in tongue protrudor muscles. Accordingly, reductions in upper airway stiffness associated with reduced XII burst amplitude may be offset by enhanced tonic activity in tongue protrudor muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号