首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Intestinal reclamation of bile salts is mediated in large part by the apical sodium-dependent bile acid transporter (ASBT). The bile acid responsiveness of ASBT is controversial. Bile acid feeding in mice results in decreased expression of ASBT protein and mRNA. Mouse but not rat ASBT promoter activity was repressed in Caco-2, but not IEC-6, cells by chenodeoxycholic acid. A potential liver receptor homologue-1 (LRH-1) cis-acting element was identified in the bile acid-responsive region of the mouse but not rat promoter. The mouse, but not rat, promoter was activated by LRH-1, and this correlated with nuclear protein binding to the mouse but not rat LRH-1 element. The short heterodimer partner diminished the activity of the mouse promoter and could partially offset its activation by LRH-1. Interconversion of the potential LRH-1 cis-elements between the mouse and rat ASBT promoters was associated with an interconversion of LRH-1 and bile acid responsiveness. LRH-1 protein was found in Caco-2 cells and mouse ileum, but not IEC-6 cells or rat ileum. Bile acid response was mediated by the farnesoid X receptor, as shown by the fact that overexpression of a dominant-negative farnesoid X-receptor eliminated the bile acid mediated down-regulation of ASBT. In addition, ASBT expression in farnesoid X receptor null mice was unresponsive to bile acid feeding. In summary cell line- and species-specific negative feedback regulation of ASBT by bile acids is mediated by farnesoid X receptor via small heterodimer partner-dependent repression of LRH-1 activation of the ASBT promoter.  相似文献   

9.
10.
11.
12.
The CDX2 and CDX1 homeobox genes have respectively a tumour suppressor and proliferative role in the intestinal epithelium. We analyzed DNA methylation and histones modifications associated with CDX2 and CDX1 promoters in two human colon cancer cell lines expressing differentially these genes, Caco2/TC7 [CDX2 positive-CDX1 negative] and HT29 [CDX2 negative-CDX1 negative] cells. Chromatin immunoprecipitation experiments indicated that CDX2 and CDX1 gene expression correlated with a histone modifications pattern characterizing active chromatin (H3K4 trimethylated and H3 acetylated). Bisulfite DNA sequencing and methylation-specific PCR showed that CDX2 and CDX1 promoters display no methylation in HT29 cells even though both genes are not expressed. In contrast, the CDX1 promoter is methylated in Caco2/TC7. DNA demethylation by 5aza-dC or the combination of 5aza-dC plus SAHA, an inhibitor of histone deacetylases, restored CDX1 expression in Caco2/TC7 cells but these treatments were inefficient on both CDX2 and CDX1 in HT29 cells. Thus, in colon cancer cells the changes in chromatin conformation are heterogeneous and repression of CDX2 and CDX1 in HT29 cells is not due to epigenetic mechanisms. In vivo, dietary deprivation of methyl groups in rats upregulated CDX1 mRNA and downregulated to a lesser extent CDX2 mRNA expression. Moreover, methyl group deprivation downregulated CDX2 protein by changing its phosphorylation pattern. The changes in CDX2 and CDX1 expression determined by methyl group deprivation may constitute one of the mechanisms sustaining the protective role attributed to folate in colon cancer.  相似文献   

13.
14.
15.
16.
17.
To attenuate injury during cholestasis, adaptive changes in bile acid transporter expression in the liver provide alternative bile acid excretory pathways. Apical sodium-dependent bile acid transporter (ASBT) (SLC10A2), only expressed in the liver on the cholangiocyte apical membrane, is rapidly regulated in response to inflammation and bile acids. Here, we studied the mechanisms controlling ASBT protein levels in cholangiocytes to determine whether ASBT expression is regulated by ubiquitination and disposal through the proteasome. Protein turnover assays demonstrated that ASBT is an unstable and short-lived protein. Treatment with MG-132, a proteasome inhibitor, causes time-dependent increased ASBT levels and increased intracellular accumulation of ASBT. In cells cotransfected with green fluorescent protein-tagged ASBT and hemagglutinin-tagged ubiquitin, we demonstrated coimmunoprecipitation and colocalization of ASBT and ubiquitin. Interleukin-1beta (IL-1beta) induced down-regulation of ASBT is abrogated by a JNK inhibitor and is accompanied by an increase in ASBT polyubiquitin conjugates and a reduced ASBT half-life. In phosphorylation-deficient S335A and T339A mutants, the ASBT half-life is markedly prolonged, IL-1beta-induced ASBT ubiquitination is significantly reduced, and IL-1beta fails to increase ASBT turnover. These results indicate that ASBT undergoes ubiquitin-proteasome degradation under basal conditions and that ASBT proteasome disposal is increased by IL-1beta due to JNK-regulated serine/threonine phosphorylation of ASBT protein at both Ser-335 and Thr-339. These studies are the first report of regulation of a bile acid transporter expression by the ubiquitin-proteasome pathway.  相似文献   

18.
CDX1 is a homeobox protein that inhibits proliferation of intestinal epithelial cells and regulates intestine-specific genes involved in differentiation. CDX1 expression is developmentally and spatially regulated, and its expression is aberrantly down-regulated in colorectal cancers and colon cancer-derived cell lines. However, very little is known about the molecular mechanism underlying the regulation of CDX1 gene expression. In this study, we characterized the CDX1 gene structure and identified that its gene promoter contained a typical CpG island with a CpG observed/expected ratio of 0.80, suggesting that the CDX1 gene is a target of aberrant methylation. Alterations of DNA methylation in the CDX1 gene promoter were investigated in a series of colorectal cancer cell lines. Combined Bisulfite Restriction Analysis (COBRA) and bisulfite sequencing analysis revealed that the CDX1 promoter is methylated in CDX1 non-expressing colorectal cancer cell lines but not in human normal colon tissue and T84 cells, which express CDX1. Treatment with 5'-aza-2'-deoxycytidine (5-azaC), a DNA methyltransferase inhibitor, induced CDX1 expression in the colorectal cancer cell lines. Furthermore, de novo methylation was determined by establishing stably transfected clones of the CDX1 promoter in SW480 cells and demethylation by 5-azaC-activated reporter gene expression. These results indicate that aberrant methylation of the CpG island in the CDX1 promoter is one of the mechanisms that mediate CDX1 down-regulation in colorectal cancer cell lines.  相似文献   

19.
20.
beta-Klotho, a newly described membrane protein, regulates bile acid synthesis. Fibroblast growth factor-15 (FGF-15) and FGF receptor-4 (FGFR4) knockout mice share a similar phenotype with beta-Klotho-deficient mice. FGF-15 secretion by the intestine regulates hepatic bile acid biosynthesis. The effects of beta-Klotho and FGF-15 on the ileal apical sodium bile transporter (ASBT) are unknown. beta-Klotho siRNA treatment of the mouse colon cancer cell line, CT-26, and the human intrahepatic biliary epithelial cells (HIBEC) resulted in upregulation of endogenous ASBT expression that was associated with reduced expression of the farnesoid X receptor (FXR) and the short heterodimer partner (SHP). Silencing beta-Klotho activated the ASBT promoter in CT-26, Mz-ChA-1 (human cholangiocarcinoma), and HIBEC cells. Site-directed mutagenesis of liver receptor homolog-1 (mouse) or retinoic acid receptor/retinoid X receptor (RAR/RXR) (human) cis-elements attenuated the basal activity of the ASBT promoter and abrogated its response to beta-Klotho silencing. siSHP, siFXR, or dominant-negative FXR treatment also eliminated the beta-Klotho response. FGF-15 secretion into cell culture media by CT-26 cells was diminished after siFGF-15 or sibeta-Klotho treatment and enhanced by chenodeoxycholic acid. Exogenous FGF-19 repressed ASBT protein expression in mouse ileum, gallbladder, and in HIBEC and repressed ASBT promoter activity in Caco-2, HIBEC, and Mz-ChA-1 cells. Promoter repression was dependent on the expression of FGFR4. These results indicate that both beta-Klotho and FGF-15/19 repress ASBT in enterocytes and cholangiocytes. These novel signaling pathways need to be considered in analyzing bile acid homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号