首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A good system for the naming and classification of peptidases can contribute much to the study of these enzymes. Having already described the building of families and clans in the MEROPS system, we here focus on the lowest level in the hierarchy, in which the huge number of individual peptidase proteins are assigned to a lesser number of what we term 'species' of peptidases. Just over 2000 peptidase species are recognised today, but we estimate that 25 000 will one day be known. Each species is built around a peptidase protein that has been adequately characterised. The cluster of peptidase proteins that represent the single species is then assembled primarily by analysis of a sequence 'tree' for the family. Each peptidase species is given a systematic identifier and a summary page of data regarding it is assembled. Because the characterisation of new peptidases lags far behind the sequencing, the majority of peptidase proteins are so far known only as amino acid sequences and cannot yet be assigned to species. We suggest that new forms of analysis of the sequences of the unassigned peptidases may give early indications of how they will cluster into the new species of the future.  相似文献   

2.
In metazoan organisms protein inhibitors of peptidases are important factors essential for regulation of proteolytic activity. In vertebrates genes encoding peptidase inhibitors constitute up to 1% of genes reflecting a need for tight and specific control of proteolysis especially in extracellular body fluids. In stark contrast unicellular organisms, both prokaryotic and eukaryotic consistently contain only few, if any, genes coding for putative peptidase inhibitors. This may seem perplexing in the light of the fact that these organisms produce large numbers of proteases of different catalytic classes with the genes constituting up to 6% of the total gene count with the average being about 3%. Apparently, however, a unicellular life-style is fully compatible with other mechanisms of regulation of proteolysis and does not require protein inhibitors to control their intracellular and extracellular proteolytic activity. So in prokaryotes occurrence of genes encoding different types of peptidase inhibitors is infrequent and often scattered among phylogenetically distinct orders or even phyla of microbiota. Genes encoding proteins homologous to alpha-2-macroglobulin (family I39), serine carboxypeptidase Y inhibitor (family I51), alpha-1-peptidase inhibitor (family I4) and ecotin (family I11) are the most frequently represented in Bacteria. Although several of these gene products were shown to possess inhibitory activity, with an exception of ecotin and staphostatins, the biological function of microbial inhibitors is unclear. In this review we present distribution of protein inhibitors from different families among prokaryotes, describe their mode of action and hypothesize on their role in microbial physiology and interactions with hosts and environment.  相似文献   

3.
Mitochondrial processing peptidases   总被引:11,自引:0,他引:11  
Three peptidases are responsible for the proteolytic processing of both nuclearly and mitochondrially encoded precursor polypeptides targeted to the various subcompartments of the mitochondria. Mitochondrial processing peptidase (MPP) cleaves the vast majority of mitochondrial proteins, while inner membrane peptidase (IMP) and mitochondrial intermediate peptidase (MIP) process specific subsets of precursor polypeptides. All three enzymes are structurally and functionally conserved across species, and their human homologues begin to be recognized as potential players in mitochondrial disease.  相似文献   

4.
Evolutionary lines of cysteine peptidases   总被引:2,自引:0,他引:2  
The proteolytic enzymes that depend upon a cysteine residue for activity have come from at least seven different evolutionary origins, each of which has produced a group of cysteine peptidases with distinctive structures and properties. We show here that the characteristic molecular topologies of the peptidases in each evolutionary line can be seen not only in their three-dimensional structures, but commonly also in the two-dimensional structures. Clan CA contains the families of papain (C1), calpain (C2), streptopain (C10) and the ubiquitin-specific peptidases (C12, C19), as well as many families of viral cysteine endopeptidases. Clan CD contains the families of clostripain (C11), gingipain R (C25), legumain (C13), caspase-1 (C14) and separin (C50). These enzymes have specificities dominated by the interactions of the S1 subsite. Clan CE contains the families of adenain (C5) from adenoviruses, the eukaryotic Ulp1 protease (C48) and the bacterial YopJ proteases (C55). Clan CF contains only pyroglutamyl peptidase I (C15). The picornains (C3) in clan PA have probably evolved from serine peptidases, which still form the majority of enzymes in the clan. The cysteine peptidase activities in clans PB and CH are autolytic only. In conclusion, we suggest that although almost all the cysteine peptidases depend for activity on catalytic dyads of cysteine and histidine, it is worth noting some important differences that they have inherited from their distant ancestral peptidases.  相似文献   

5.
Lysosomal serine and cysteine proteases are reported to play a role in collagen degradation. In this study, the activities of the lysosomal cysteine proteases cathepsin B and H, dipeptidyl peptidase I, and the serine protease tripeptidyl peptidase I and dipeptidyl peptidase II, all ascribed a role in collagen digestion, were compared with those of the aspartate protease cathepsin D, and lysosomal glycosidases in leukocytes from rheumatoid arthritis patients at different stages of the disease. In all patients the activities of cysteine protease cathepsin B, dipeptidyl peptidase I, aspartate protease cathepsin D, and two glycosidases were elevated, but the activities of the serine proteases tripeptidyl peptidase I, dipeptidyl peptidase II, and the cysteine protease cathepsin H was unchanged. The magnitude of the increased activity was correlated with the duration of the disease. Patients with long-standing RA (10 years or more) had higher cysteine protease activity in their leukocytes than did those with disease of shorter duration. This tendency suggests that elevated lysosomal cysteine protease activities, together with aspartate protease cathepsin D and lysosomal glycosidases (but not serine proteases), are associated with progression of rheumatoid arthritis.  相似文献   

6.
Many type I signal peptidases from eubacterial cells appear to contain a serine/lysine catalytic dyad. In contrast, our data show that the signal peptidase complex from the endoplasmic reticulum lacks an apparent catalytic lysine. Instead, a serine, histidine, and two aspartic acids are important for signal peptidase activity by the Sec11p subunit of the yeast signal peptidase complex. Amino acids critical to the eubacterial signal peptidases and Sec11p are, however, positioned similarly along their primary sequences, suggesting the presence of a common structural element(s) near the catalytic sites of these enzymes.  相似文献   

7.
Equine erythrocyte peptidases were compared to the six human erythrocyte peptidases, A, B, C, D, E, and F, regarding substrate specificity, relative activity, and electrophoretic mobility. Five equine erythrocyte peptidases appeared homologous to human peptidases A, B, D, E, and F. In contrast to human, equine peptidase C was absent in red cells, although it was weakly active in white cells. On the other hand, an equine peptidase, probably homologous to human peptidase S, was weakly active in red cells as well as present in white cells. Polymorphism for equine erythrocyte peptidase A is reported.  相似文献   

8.
Rawlings ND  Morton FR 《Biochimie》2008,90(2):243-259
Many of the 181 families of peptidases contain homologues that are known to have functions other than peptide bond hydrolysis. Distinguishing an active peptidase from a homologue that is not a peptidase requires specialist knowledge of the important active site residues, because replacement or lack of one of these catalytic residues is an important clue that the homologue in question is unlikely to hydrolyse peptide bonds. Now that the rate at which proteins are characterized is outstripped by the rate that genome sequences are determined, many genes are being incorrectly annotated because only sequence similarity is taken into consideration. We present a tool called the MEROPS batch BLAST which not only performs a comparison against the MEROPS sequence collection, but also does a pair-wise alignment with the closest homologue detected and calculates the position of the active site residues. A non-peptidase homologue can be distinguished by the absence or unacceptable replacement of any of these residues. An analysis of peptidase homologues in the genome of the bacterium Erythrobacter litoralis is presented as an example.  相似文献   

9.
Proteolytic enzymes and their homologues have been classified into clans by comparing the tertiary structures of the peptidase domains, into families by comparing the protein sequences of the peptidase domains, and into protein-species by comparing various attributes including domain architecture, substrate preference, inhibitor interactions, subcellular location, and phylogeny. The results are compared with the earlier classification (Rawlings and Barrett, 1993 [1]). The numbers of sequences, protein-species, families, clans and even catalytic type have substantially increased during the intervening 26 years. The alternative classifications by catalytic type and/or activity are shown not to reflect evolutionary relationships.  相似文献   

10.
James MN 《Biological chemistry》2006,387(8):1023-1029
Fungi and viruses encode a variety of peptidases having a plethora of functions. Many fungal peptidases are extracellular and are likely used to degrade proteins in their environment. Viral peptidases are processing enzymes, intimately involved in the virus infectious cycle. The viral RNA genome is translated by the host-cell machinery into a large polyprotein that is cleaved by the viral peptidases into mature capsid proteins, non-structural proteins and enzymes. I review the structure and catalytic mechanism of scytalidoglutamic peptidase isolated from the wood-destroying fungus Scytalidium lignicolum. This enzyme has a unique beta-sandwich fold and a novel catalytic mechanism based on a glutamate, a glutamine and a nucleophilic water molecule. Hepatitis A virus (HAV) 3C peptidase was the first structure identified for a viral 3C enzyme that exhibited the three-dimensional fold of the chymotrypsin family of serine peptidases but had a cysteine sulfur atom instead of the serine oxygen as the nucleophile. The structure of HAV 3C was unusual in that the Asp residue expected as the third member of the catalytic triad did not interact with the general base His. The present structure is of a beta-lactone-inhibited version of HAV 3C that has a restored catalytic triad.  相似文献   

11.
A recent paper in BMC Structural Biology reports the crystal structure of human prolylcarboxypeptidase (PRCP), one of the two members of the S28 peptidase family. Comparison of the substrate-binding site of PRCP with that of its family partner, dipeptidyl dipeptidase 7 (DPP7), helps to explain the different enzymatic activities of these structurally similar proteins, and also reveals a novel apparent charge-relay system in PRCP involving the active-site catalytic histidine.  相似文献   

12.
In this study we investigate the active-site structure and the catalytic mechanism of clostripain by using a combination of three separate techniques: affinity labelling, site-directed mutagenesis and molecular modelling. A benzamidinyl-diazo dichlorotriazine dye (BDD) was shown to act as an efficient active site-directed affinity label for Clostridium histolyticum clostripain. The enzyme, upon incubation with BDD in 0.1 m Hepes/NaOH buffer pH 7.6, exhibits a time-dependent loss of activity. The rate of inactivation exhibits a nonlinear dependence on the BDD concentration, which can be described by reversible binding of dye to the enzyme prior to the irreversible reaction. The dissociation constant of the reversible formation of an enzyme-BDD complex is KD = 74.6 +/- 2.1 micro m and the maximal rate constant of inactivation is k3 = 0.21 x min(-1). Effective protection against inactivation by BDD is provided by the substrate N-benzoyl-L-arginine ethyl ester (BAEE). Cleavage of BDD-modified enzyme with trypsin and subsequent separation of peptides by reverse-phase HPLC gave only one modified peptide. Amino acid sequencing of the modified tryptic peptide revealed the target site of BDD reaction to be His176. Site-directed mutagenesis was used to study further the functional role of His176. The mutant His176Ala enzyme exhibited zero activity against BAEE. Together with previous data, these results confirm that a catalytic dyad of His176 and Cys231 is responsible for cysteine peptidase activity in the C11 peptidase family. A molecular model of the catalytic domain of clostripain was constructed using a manually extended fold recognition-derived alignment with caspases. A rigorous iterative modelling scheme resulted in an objectively sound model which points to Asp229 as responsible for defining the strong substrate specificity for Arg at the P1 position. Two possible binding sites for the calcium required for auto-activation could be located. Database searches show that clostripain homologues are not confined to bacterial lineages and reveal an intriguing variety of domain architectures.  相似文献   

13.
The terms "proteolytic enzyme" and "peptidase" have been treated as synonymous, and all proteolytic enzymes have been considered to be hydrolases (EC 3.4). However, the recent discovery of proteins that cleave themselves at asparagine residues indicates that not all peptide bond cleavage occurs by hydrolysis. These self-cleaving proteins include the Tsh protein precursor of Escherichia coli, in which the large C-terminal propeptide acts as an autotransporter; certain viral coat proteins; and proteins containing inteins. Proteolysis is the action of an amidine lyase (EC 4.3.2). These proteolytic enzymes are also the first in which the nucleophile is an asparagine, defining the seventh proteolytic catalytic type and the first to be discovered since 2004. We have assembled ten families based on sequence similarity in which cleavage is thought to be catalyzed by an asparagine.  相似文献   

14.
The enzymes that hydrolyse peptide bonds, called peptidases or proteases, are very important to mankind and are also very numerous. The many scientists working on these enzymes are rapidly acquiring new data, and they need good methods to store it and retrieve it. The storage and retrieval require effective systems of classification and nomenclature, and it is the design and implementation of these that we mean by 'managing' peptidases. Ten years ago Rawlings and Barrett proposed the first comprehensive system for the classification of peptidases, which included a set of simple names for the families. In the present article we describe how the system has developed since then. The peptidase classification has now been adopted for use by many other databases, and provides the structure around which the MEROPS protease database (http://merops.sanger.ac.uk) is built.  相似文献   

15.
BackgroundProline specific peptidases (PSPs) are a unique group of enzymes that specifically cleave bonds formed by a proline residue. The study of PSPs is important due to their role in the maturation and degradation of peptide hormones and neuropeptides. In addition, changes in the activity of PSPs can result in pathological conditions, including various types of cancer.Scope of reviewPSPs annotated from the Homo sapiens genome were compared and classified by their physicochemical and biochemical features and roles in vital processes. In addition to catalytic activity, we discuss non-enzymatic functions that may regulate cellular activity.Major conclusionsPSPs apparently have multiple functions in animals. Two functions rely on the catalytic activity of the enzyme: one involved in a regulatory pathway associated with the ability of many PSPs to hydrolyze peptide hormones and neuropeptides, and the other involved in the trophic pathway associated with the proteolysis of total cellular protein or Pro-containing dietary proteins in the digestive tract. PSPs also participate in signal transduction without proteolytic activity by forming protein-protein interactions that trigger or facilitate the performance of certain functions.General significancePSPs are underestimated as a unique component of the normal human peptidase degradome, providing the body with free proline. A comparative analysis of PSPs can guide research to develop inhibitors that counteract the abnormalities associated with changes in PSP activity, and identify natural substrates of PSPs that will enable better understanding of the mechanisms of the action of PSPs in biological processes and disease.  相似文献   

16.
We have investigated the role of zinc peptidases in metabolism of the amyloid precursor protein (APP) and the effects of hypoxia. Two peptidase families have been studied: the neprilysin (NEP) family which includes, in the brain: NEP, endothelin converting enzyme (ECE) and secreted endopeptidase (SEP). Reactive oxygen species can regulate enzyme activity via modulation of the zinc ion at the active site. Both NEP and ECE can prevent accumulation of amyloid beta peptide by hydrolyzing the peptide. As acute and chronic hypoxia can modulate APP processing, we have investigated the effects of hypoxia in cell culture on the expression and activity of NEP, ECE and SEP. In parallel, we have monitored the expression of another zinc peptidase, alpha-secretase, that mediates the nonamyloidogenic processing of APP. Overall, zinc peptidases appear neuroprotective and modulation of these activities in pathological states could lead to neurodegeneration.
Acknowledgements:  This work was supported by the UK MRC, The Royal Society, INTAS, The Biochemical Society.  相似文献   

17.
Cathepsin G is a major secreted serine peptidase of neutrophils and mast cells. Studies in Ctsg-null mice suggest that cathepsin G supports antimicrobial defenses but can injure host tissues. The human enzyme has an unusual "Janus-faced" ability to cleave peptides at basic (tryptic) as well as aromatic (chymotryptic) sites. Tryptic activity has been attributed to acidic Glu(226) in the primary specificity pocket and underlies proposed important functions, such as activation of prourokinase. However, most mammals, including mice, substitute Ala(226) for Glu(226), suggesting that human tryptic activity may be anomalous. To test this hypothesis, human cathepsin G was compared with mouse wild-type and humanized active site mutants, revealing that mouse primary specificity is markedly narrower than that of human cathepsin G, with much greater Tyr activity and selectivity and near absence of tryptic activity. It also differs from human in resisting tryptic peptidase inhibitors (e.g., aprotinin), while favoring angiotensin destruction at Tyr(4) over activation at Phe(8). Ala(226)Glu mutants of mouse cathepsin G acquire tryptic activity and human ability to activate prourokinase. Phylogenetic analysis reveals that the Ala(226)Glu missense mutation appearing in primates 31-43 million years ago represented an apparently unprecedented way to create tryptic activity in a serine peptidase. We propose that tryptic activity is not an attribute of ancestral mammalian cathepsin G, which was primarily chymotryptic, and that primate-selective broadening of specificity opposed the general trend of increased specialization by immune peptidases and allowed acquisition of new functions.  相似文献   

18.
Schistosoma mansoni is one of the three main causative agents of human schistosomiasis, a major health problem with a vast socio-economic impact. Recent advances in the proteomic analysis of schistosomes have revealed that peptidases are the main virulence factors involved in the pathogenesis of this disease. In this context, evolutionary studies can be applied to identify peptidase families that have been expanded in genomes over time in response to different selection pressures. Using a phylogenomic approach, we searched for expanded endopeptidase families in the S. mansoni predicted proteome with the aim of contributing to the knowledge of such enzymes as potential therapeutic targets. We found three endopeptidase families that comprise leishmanolysins (metallopeptidase M8 family), cercarial elastases (serine peptidase S1 family) and cathepsin D proteins (aspartic peptidase A1 family). Our results suggest that the Schistosoma members of these families originated from successive gene duplication events in the parasite lineage after its diversification from other metazoans. Overall, critical residues are conserved among the duplicated genes/proteins. Furthermore, each protein family displays a distinct evolutionary history. Altogether, this work provides an evolutionary view of three S. mansoni peptidase families, which allows for a deeper understanding of the genomic complexity and lineage-specific adaptations potentially related to the parasitic lifestyle.  相似文献   

19.
Digestion in Tenebrio molitor larvae occurs in the midgut, where there is a sharp pH gradient from 5.6 in the anterior midgut (AM) to 7.9 in the posterior midgut (PM). Accordingly, digestive enzymes are compartmentalized to the AM or PM. Enzymes in the AM are soluble and have acidic or neutral pH optima, while PM enzymes have alkaline pH optima. The main peptidases in the AM are cysteine endopeptidases presented by two to six subfractions of anionic proteins. The major activity belongs to cathepsin L, which has been purified and characterized. Serine post‐proline cleaving peptidase with pH optimum 5.3 was also found in the AM. Typical serine digestive endopeptidases, trypsin‐like and chymotrypsin‐like, are compartmentalized to the PM. Trypsin‐like activity is due to one cationic and three anionic proteinases. Chymotrypsin‐like activity consists of one cationic and four anionic proteinases, four with an extended binding site. The major cationic trypsin and chymotrypsin have been purified and thoroughly characterized. The predicted amino acid sequences are available for purified cathepsin L, trypsin and chymotrypsin. Additional sequences for putative digestive cathepsins L, trypsins and chymotrypsins are available, implying multigene families for these enzymes. Exopeptidases are found in the PM and are presented by a single membrane aminopeptidase N‐like peptidase and carboxypeptidase A, although multiple cDNAs for carboxypeptidase A were found in the AM, but not in the PM. The possibility of the use of two endopeptidases from the AM – cathepsin L and post‐proline cleaving peptidase – in the treatment of celiac disease is discussed.  相似文献   

20.
Pleurotus eryngii serine aminopeptidase that has peptide bond formation activity, redesignated as eryngase, was cloned and expressed. Eryngase has a family S9 peptidase unit in the C-terminal region having a catalytic triad of Ser, Asp, and His. In the phylogenetic relations among the subfamilies of family S9 peptidase (S9A, prolyl oligopeptidase; S9B, dipeptidyl peptidase; S9C, acylaminoacyl peptidase; S9D, glutamyl endopeptidase), eryngase existed alone in the neighbor of S9C subfamily. Mutation of the active site Ser524 of the eryngase with Ala eliminated its catalytic activity. In contrast, S524C mutant maintained low catalytic activity. Investigation of aminolysis activity using l-Phe-NH2 as a substrate showed that S524C mutant exhibited no hydrolysis reaction but synthesized a small amount of l-Phe-l-Phe-NH2 by the catalysis of aminolysis. In contrast, wild-type eryngase hydrolyzed the product of aminolysis l-Phe-l-Phe-NH2. Results show that the S524C mutant preferentially catalyzed aminolysis when on an l-Phe-NH2 substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号