首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here the cloning and characterization of a soybean receptor-like kinase (RLK) gene, designated GmSARK (Glycine max senescence-associated receptor-like kinase), which is involved in regulating leaf senescence. The conceptual protein product of GmSARK contains typical domains of LRR receptor-like kinases: a cytoplasmic domain with all the 11 kinase subdomains, a transmembrane domain and an extracelullar domain containing 9 Leucine-Rich Repeat (LRR) units that may act as a receptor. The expression of GmSARK in soybean leaves was up-regulated in all the three tested senescence systems: senescing cotyledons, dark-induced primary leaf senescence and the natural leaf senescence process after florescence. Furthermore, the RNA interference (RNAi)-mediated knocking-down of GmSARK dramatically retarded soybean leaf senescence. A more complex thylakoid membrane system, higher foliar level of chlorophyll content and a very remarkable delay of senescence-induced disintegration of chloroplast structure were observed in GmSARK-RNAi transgenic leaves. A homolog of maize lethal leaf-spot 1 gene, which has been suggested to encode a key enzyme catalyzing chlorophyll breakdown, was isolated and nominated Gmlls1. The expression level of Gmgtr1 gene, which encodes a key enzyme of chlorophyll synthesis, was also analyzed. It was found that Gmlls1 was up-regulated and Gmgtr1 was down-regulated during senescence in wild-type soybean leaves. However, both of the up-regulation of Gmlls1 and down-regulation of Gmgtr1 were retarded during senescence of GmSARK-RNAi transgenic leaves. In addition, over-expression of the GmSARK gene greatly accelerated the senescence progression of CaMV 35S:GmSARK transgenic plants. Taken together, these results strongly suggested the involvement of this LRR-RLK in regulation of soybean leaf senescence, maybe via regulating chloroplast development and chlorophyll accumulation. Multiple functions of GmSARK besides its regulation of leaf senescence were also discussed. Electronic Supplementary Material Supplementary material is available for this article at Rui Gan, Peng-Li Li and Yuan-Yuan Ma contributed equally to this work.  相似文献   

2.
3.
A leucine-rich repeat receptor-like kinase (LRR-RLK) encoded by one of the genes highly expressed in a specific stage of soybean seed development, referred to as GmLRK1, was identified and characterized. Examination of its kinase domain indicated that GmLRK1 may be a catalytically inactive atypical receptor kinase. An autophosphorylation assay confirmed that GmLRK1 is incapable of autophosphorylation in vitro. However, the phosphorylation of GmRLK1 could be induced after incubation with plant protein extracts, suggesting that some plant proteins may interact with GmLRK1 and phosphorylate the protein in vivo. Analyses of the expression profiles of GmLRK1 and its Arabidopsis ortholog At2g36570 revealed that they may be involved in regulation of more fundamental metabolic and/or developmental pathways, rather than a specialized developmental program such as seed development. Our results further indicate that the GmLRK1 and At2g36570 may play a role in the regulation of certain cellular processes that lead to cell elongation and expansion. S. Kim and S.-J. Kim have contributed equally to this work.  相似文献   

4.
Leucine-rich repeat (LRR) receptor-like kinase (RLK) proteins play key roles in a variety of biological pathways. In a previous study, we analyzed the members of the rice LRR-RLK gene family using in silico analysis. A total of 23 LRR-RLK genes were selected based on the expression patterns of a genome-wide dataset of microarrays. The Oryza sativa gamma-ray induced LRR-RLK1 (OsGIRL1) gene was highly induced by gamma irradiation. Therefore, we studied its expression pattern in response to various different abiotic and phytohormone treatments. OsGIRL1 was induced on exposure to abiotic stresses such as salt, osmotic, and heat, salicylic acid (SA), and abscisic acid (ABA), but exhibited downregulation in response to jasmonic acid (JA) treatment. The OsGIRL1 protein was clearly localized at the plasma membrane. The truncated proteins harboring juxtamembrane and kinase domains (or only harboring a kinase domain) exhibited strong autophosphorylation. The biological function of OsGIRL1 was investigated via heterologous overexpression of this gene in Arabidopsis plants subjected to gamma-ray irradiation, salt stress, osmotic stress, and heat stress. A hypersensitive response was observed in response to salt stress and heat stress, whereas a hyposensitive response was observed in response to gamma-ray treatment and osmotic stress. These results provide critical insights into the molecular functions of the rice LRR-RLK genes as receptors of external signals.  相似文献   

5.
《Current biology : CB》2023,33(3):498-506.e6
  1. Download : Download high-res image (175KB)
  2. Download : Download full-size image
  相似文献   

6.
7.

Background

Leucine-rich-repeat receptor-like kinases (LRR-RLKs) represent the largest subfamily of putative RLKs in plants. Although several members in this subfamily have been identified, the studies about the relationships between LRR-RLKs and root development are still few. We previously identified a novel LRR-RLK in rice roots, and named it OsRPK1.

Methods

In this study, we first detected OsRPK1 kinase activity in vitro, and assessed its expression profile. We then investigated its biological function using transgenic rice plants over- and under-expressing OsRPK1.

Results

The OsRPK1 gene, which encodes a Ca2 +-independent Ser/Thr kinase, was predominantly expressed in root tips, leaf blades, and undifferentiated suspension cells, and was markedly induced by treatment with auxin or ABA. Knockdown of OsRPK1 promoted the growth of transgenic rice plants, and increased plant height and tiller numbers. In contrast, over-expressing plants showed undeveloped adventitious roots, lateral roots, and a reduced root apical meristem. OsRPK1 over-expression also inhibited the expression of most auxin efflux carrier OsPIN genes, which was accompanied by changes in PAT and endogenous free IAA distribution in the leaves and roots.

Conclusions

The data indicated that OsRPK1, a novel leucine-rich-repeat receptor-like kinase, affects the root system architecture by negatively regulating polar auxin transport in rice.

General significance

This study demonstrated a common regulatory pathway of root system development in higher plants, which might be initiated by external stimuli via upstream receptor-like kinases and downstream carriers for polar auxin transport.  相似文献   

8.
9.
10.
11.
12.
BRI1-like receptor kinase (BRL1) was identified as an extragenic suppressor of a weak bri1 allele, bri1-5, in an activation-tagging genetic screen for novel brassinosteroid (BR) signal transduction regulators. BRL1 encodes a leucine-rich repeat receptor-like protein kinase (LRR-RLK). Sequence alignment revealed that BRL1 is closely related to BRI1, which is involved in BR perception. Overexpression of a BRL1 cDNA, driven by a constitutive CaMV 35S promoter, recapitulates the bri1-5 suppression phenotypes, and partially complements the phenotypes of a null bri1 allele, bri1-4. Analysis of a BR-specific feedback response gene, CPD, indicates that BRL1 functions in BR signaling. BRL1 expression pattern overlaps with, but is distinct from, that of BRI1. In addition, both the expression level and in vitro kinase autophosphorylation activity of BRL1 are significantly lower than those of BRI1. bri1-5 brl1-1 double mutant plants have enhanced developmental defects relative to bri1-5 mutant plants, revealing that BRL1 plays a partially redundant role with BRI1 in controlling Arabidopsis growth and development. These findings enhance our understanding of functional redundancy and add an additional layer of complexity to RLK-mediated BR signaling transduction in Arabidopsis.  相似文献   

13.
The mRNA expression of the Solanum chacoense Ovule Receptor Kinase 17 (ScORK17), a receptor kinase of the LRR-VI subfamily, is highly specific to the female reproductive tissues. No LRR-VI subfamily members in any plant species have yet been attributed a function. A phylogenetic tree inferred using the kinase domain of LRR-VI subfamily members separated the family into two clades: one containing an average of 8.2 LRR per protein and a second clade containing an average of 2.7. In situ hybridization analyses showed that the ScORK17 signal was mainly detected in the single ovule integument and in the endothelium. Transient expression analysis also revealed that ScORK17 was N-glycosylated in planta. Overexpression of ScORK17 in S. chacoense did not produce plants with an altered phenotype. However, when heterologous transformation was performed with a full-length ScORK17 clone in A. thaliana, the resulting transgenic plants showed reduced seed set, mainly due to aberrant embryo sac development, thus supporting a developmental role for ScORK17 in ovule and seed development.  相似文献   

14.
Seed germination and innate immunity both have significant effects on plant life spans because they control the plant's entry into the ecosystem and provide defenses against various external stresses, respectively. Much ecological evidence has shown that seeds with high vigor are generally more tolerant of various environmental stimuli in the field than those with low vigor. However, there is little genetic evidence linking germination and immunity in plants. Here, we show that the rice lectin receptor‐like kinase OslecRK contributes to both seed germination and plant innate immunity. We demonstrate that knocking down the OslecRK gene depresses the expression of α–amylase genes, reducing seed viability and thereby decreasing the rate of seed germination. Moreover, it also inhibits the expression of defense genes, and so reduces the resistance of rice plants to fungal and bacterial pathogens as well as herbivorous insects. Yeast two‐hybrid and co‐immunoprecipitation experiments revealed that OslecRK interacts with an actin‐depolymerizing factor (ADF) in vivo via its kinase domain. Moreover, the rice adf mutant exhibited a reduced seed germination rate due to the suppression of α–amylase gene expression. This mutant also exhibited depressed immune responses and reduced resistance to biotic stresses. Our results thus provide direct genetic evidence for a common physiological pathway connecting germination and immunity in plants. They also partially explain the common observation that high‐vigor seeds often perform well in the field. The dual effects of OslecRK may be indicative of progressive adaptive evolution in rice.  相似文献   

15.
Broad-Spectrum Resistance 1 (BSR1) encodes a rice receptor-like cytoplasmic kinase, and enhances disease resistance when overexpressed. Rice plants overexpressing BSR1 are highly resistant to diverse pathogens, including rice blast fungus. However, the mechanism responsible for this resistance has not been fully characterized. To analyze the BSR1 function, BSR1-knockout (BSR1-KO) plants were generated using a clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system. Experiments using suspension-cultured cells revealed that defense responses including H2O2 production (i.e. oxidative burst) and expression of defense-related genes induced by autoclaved conidia of the rice blast fungus significantly decreased in BSR1-KO cells. Furthermore, a treatment with chitin oligomers which function as microbe-associated molecular patterns (MAMPs) of the rice blast fungus resulted in considerably suppressed defense responses in BSR1-KO cells. These results suggest that BSR1 is important for the rice innate immunity triggered by the perception of chitin.  相似文献   

16.
17.
18.
A rice gene, OsBISERK1, encoding a protein belonging to SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) type of leucine-rich repeat receptor-like kinases (LRR-RLKs) was identified. The OsBISERK1 encodes a 624 aa protein with high level of identity to known plant SERKs. OsBISERK1 contains a hydrophobic signal peptide, a leucine zipper, and five leucine-rich repeat motifs in the extracellular domain; the cytoplasmic region carries a proline-rich region and a single transmembrane domain, as well as a conserved intracellular serine/threonine protein kinase domain. OsBISERK1 has a low level of basal expression in leaf tissue. However, expression of OsBISERK1 was induced by treatment with benzothiadiazole (BTH), which is capable of inducing disease resistance in rice, and also up-regulated after inoculation with Magnaporthe grisea in BTH-treated rice seedlings and during incompatible interaction between a blast-resistant rice genotype and M. grisea. The results suggest that OsBISERK1 may be involved in disease resistance responses in rice.  相似文献   

19.
Hybrids lose heterotic yield advantage when multiplied sexually via meiosis. A potential alternative breeding system for hybrids is apospory, where female gametes develop without meiosis. Common among grasses, apospory begins in the nucellus, where aposporous initials (AIs) appear near the sexual megaspore mother cell (MeMC). The cellular origin of AIs is obscure, but one possibility, suggested by the mac1 and msp1 mutants of maize and rice, is that AIs are apomeiotic derivatives of the additional MeMCs that appear when genetic control over sporocyte numbers is relaxed. MULTIPLE SPOROCYTES1 (MSP1) encodes a leucine-rich-repeat receptor kinase, which is orthologous to EXS/EMS1 in Arabidopsis. Like mac1 and msp1, exs/ems1 mutants produce extra sporocytes in the anther instead of a tapetum, causing male sterility. This phenotype is copied in mutants of TAPETUM DETERMINANT1 (TPD1), which encodes a small protein hypothesized to be an extracellular ligand of EXS/EMS1. Here we show that rice contains two TPD1-like genes, OsTDL1A and OsTDL1B. Both are co-expressed with MSP1 in anthers during meiosis, but only OsTDL1A and MSP1 are co-expressed in the ovule. OsTDL1A binds to the leucine-rich-repeat domain of MSP1 in yeast two-hybrid assays and bimolecular fluorescence complementation in onion cells; OsTDL1B lacks this capacity. When driven by the maize Ubiquitin1 promoter, RNA interference against OsTDL1A phenocopies msp1 in the ovule but not in the anther. Thus, RNAi produces multiple MeMCs without causing male sterility. We conclude that OsTDL1A binds MSP1 in order to limit sporocyte numbers. OsTDL1A-RNAi lines may be suitable starting points for achieving synthetic apospory in rice.  相似文献   

20.
The palea and lemma are unique organs in grass plants that form a protective barrier around the floral organs and developing kernel. The interlocking of the palea and lemma is critical for maintaining fertility and seed yield in rice; however, the molecules that control the interlocking structure remain largely unknown. Here, we showed that when OsCR4 mRNA expression was knocked down in rice by RNA interference, the palea and lemma separated at later spikelet stages and gradually turned brown after heading, resulting in the severe interruption of pistil pollination and damage to the development of embryo and endosperm, with defects in aleurone. The irregular architecture of the palea and lemma was caused by tumour-like cell growth in the outer epidermis and wart-like cell masses in the inner epidermis. These abnormal cells showed discontinuous cuticles and uneven cell walls, leading to organ self-fusion that distorted the interlocking structures. Additionally, the faster leakage of chlorophyll, reduced silica content and elevated accumulation of anthocyanin in the palea and lemma indicated a lesion in the protective barrier, which also impaired seed quality. OsCR4 is an active receptor-like kinase associated with the membrane fraction. An analysis of promoter::GUS reporter plants showed that OsCR4 is specifically expressed in the epidermal cells of paleas and lemmas. Together, these results suggest that OsCR4 plays an essential role in maintaining the interlocking of the palea and lemma by promoting epidermal cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号