首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Life-history strategies describe that ‘slow’- in contrast to ‘fast’-living species allocate resources cautiously towards reproduction to enhance survival. Recent evidence suggests that variation in strategies exists not only among species but also among populations of the same species. Here, we examined the effect of experimentally induced stress on resource allocation of breeding seabirds in two populations with contrasting life-history strategies: slow-living Pacific and fast-living Atlantic black-legged kittiwakes. We tested the hypothesis that reproductive responses in kittiwakes under stress reflect their life-history strategies. We predicted that in response to stress, Pacific kittiwakes reduce investment in reproduction compared with Atlantic kittiwakes. We exposed chick-rearing kittiwakes to a short-term (3-day) period of increased exogenous corticosterone (CORT), a hormone that is released during food shortages. We examined changes in baseline CORT levels, parental care and effects on offspring. We found that kittiwakes from the two populations invested differently in offspring when facing stress. In response to elevated CORT, Pacific kittiwakes reduced nest attendance and deserted offspring more readily than Atlantic kittiwakes. We observed lower chick growth, a higher stress response in offspring and lower reproductive success in response to CORT implantation in Pacific kittiwakes, whereas the opposite occurred in the Atlantic. Our findings support the hypothesis that life-history strategies predict short-term responses of individuals to stress within a species. We conclude that behaviour and physiology under stress are consistent with trade-off priorities as predicted by life-history theory. We encourage future studies to consider the pivotal role of life-history strategies when interpreting inter-population differences of animal responses to stressful environmental events.  相似文献   

2.
In cooperatively breeding species, reproductive decisions and breeding roles may be influenced by environmental (food resources) or social factors (reproductive suppression of subordinates by dominants). Studies of glucocorticoid stress hormones in cooperatively breeding species suggest that breeding roles and hormone levels are related to the relative costs of dominance and subordination, which are driven primarily by social interactions. Few studies, however, have considered how environmental factors affect glucocorticoid levels and breeding roles in cooperative breeders, even though environmental stressors modulate seasonal glucocorticoid release and often influence breeding roles. I examined baseline and stress-induced levels of the glucocorticoid corticosterone (CORT) across 4 years in the plural breeding superb starling, Lamprotornis superbus, to determine whether (i) environmental factors (namely rainfall) directly influence breeding roles or (ii) environmental factors influence social interactions, which in turn drive breeding roles. Chronic baseline and maximal stress-induced CORT changed significantly across years as a function of pre-breeding rainfall, but dominant and subordinate individuals responded differently. Pre-breeding rainfall was also correlated directly with breeding roles. The results are most consistent with the hypothesis that environmental conditions influenced the relative costs of dominance and subordination, which in turn affected the degree and intensity of social interactions and ultimately reproductive decisions and breeding roles.  相似文献   

3.
The effects of environmental perturbations or stressors on individual states can be carried over to subsequent life stages and ultimately affect survival and reproduction. The concentration of corticosterone (CORT) in feathers is an integrated measure of hypothalamic–pituitary–adrenal activity during the molting period, providing information on the total baseline and stress-induced CORT secreted during the period of feather growth. Common eiders and greater snow geese replace all flight feathers once a year during the pre-basic molt, which occurs following breeding. Thus, CORT contained in feathers of pre-breeding individuals sampled in spring reflects the total CORT secreted during the previous molting event, which may provide insight into the magnitude or extent of stress experienced during this time period. We used data from multiple recaptures to disentangle the contribution of individual quality vs. external factors (i.e., breeding investment or environmental conditions) on feather CORT in arctic-nesting waterfowl. Our results revealed no repeatability of feather CORT within individuals of either species. In common eiders, feather CORT was not affected by prior reproductive investment, nor by pre-breeding (spring) body condition prior to the molting period. Individual feather CORT greatly varied according to the year, and August-September temperatures explained most of the annual variation in feather CORT. Understanding mechanisms that affect energetic costs and stress responses during molting will require further studies either using long-term data or experiments. Although our study period encompassed only five years, it nonetheless provides evidence that CORT measured in feathers likely reflects responses to environmental conditions experienced by birds during molt, and could be used as a metric to study carry-over effects.  相似文献   

4.
Adult female Bennett's wallabies (N = 6) were maintained in artificial winter solstitial daylengths commencing 3 weeks before the winter solstice for 16 or 42 weeks. Such treatment effectively prevented the normal establishment of seasonal reproductive quiescence with animals continuing to exhibit reproductive cycles beyond the time of the normal termination of the breeding season. Animals maintained in natural photoperiods or simulated natural changes in daylength after the winter solstice all entered reproductive quiescence by early February. In the Bennett's wallaby, therefore, the breeding season does not terminate as a result of refractoriness to short daylengths. Our results indicate that the relatively small increases in photoperiod shortly after the winter solstice provide the environmental signal responsible for initiating the onset of seasonal reproductive quiescence which normally occurs 5-8 weeks after the solstice. These results contrast with the effect of fixed artificial summer solstitial daylengths on the onset of the breeding season in which breeding begins spontaneously at the normal time of year as a result of long-day photorefractoriness.  相似文献   

5.
褪黑素通过调控下丘脑-垂体-性腺内分泌轴使季节性繁殖动物在适宜的季节进行繁殖活动.大熊猫(Ailuropoda melanoleuca)在春季集中繁殖.为探究雄性大熊猫褪黑素和睾酮的季节性变化规律,本研究选取成都大熊猫繁育研究基地3只成年雄性大熊猫作为实验对象,在自然光照下对这3只大熊猫进行每周1次为期1年(2018年...  相似文献   

6.
Sexually selected traits confer greater reproductive benefits to individuals with more elaborate forms of the signal. However, whether these signals convey reliable information about the physiology underlying trait development remains unknown in many species. The steroid hormone corticosterone (CORT) mediates important physiological and behavioral processes during the vertebrate stress response, and CORT secretion itself can be modulated by melanocortins. Thus, sexually selected melanin-based plumage coloration could function as an honest signal of an individual's ability to respond to stressors. This hypothesis was tested in North American barn swallows, Hirundo rustica erythrogaster, where males with darker ventral plumage color exhibit higher phaeomelanin content and are more successful at reproduction. Because reproductive behavior occurs months after plumage signals are developed, we also addressed the potential temporal disconnect of physiological state during trait development and trait advertisement by analyzing three different measurements of CORT levels in adult males during the breeding season (trait advertisement) and in nestling males while they were growing their feathers (trait development). Variation in adult plumage color did not predict baseline or stress-induced CORT, or stress responsiveness. Likewise, there was no relationship between nestling plumage color and any of the CORT measurements, but heavier nestlings had significantly lower baseline CORT. Our finding that a predominantly phaeomelanin-based trait is unrelated to circulating CORT suggests that phaeomelanin and eumelanin signals may convey different physiological information, and highlights the need for further study on the biochemical links between the hypothalamic–pituitary–adrenal (HPA) axis and the production of different melanin-based pigments.  相似文献   

7.
Feather corticosterone (CORT) levels are increasingly employed as biomarkers of environmental stress. However, it is unclear if feather CORT levels reflect stress and/or workload in the wild. We investigated whether feather CORT represents a biomarker of environmental stress and reproductive effort in tree swallows (Tachycineta bicolor). Specifically, we examined whether individual state and investment during reproduction could predict feather CORT levels in subsequently moulted feathers and whether those levels could predict future survival and reproductive success. Through a manipulation of flight cost during breeding, we also investigated whether an increase in stress level would be reflected in subsequently grown feathers, and whether those levels could predict future success. We found that CORT levels of feathers grown during moult did not (1) reflect past breeding experience (n = 29), (2) predict reproductive output (n = 18), or (3) respond to a manipulation of flight effort during reproduction (10 experimental, 14 control females). While higher feather CORT levels predicted higher return rate (a proxy for survival), they did so only in the manipulated group (n = 36), and this relationship was opposite to expected. Overall, our results add to the mixed literature reporting that feather CORT levels can be positively, negatively, or not related to proxies of within-season and longer-term fitness (i.e., carryover effects). In addition, our results indicate that CORT levels or disturbances experienced during one time (e.g., breeding) may not carry over to subsequent stages (e.g., moult). We, therefore, petition for directed research investigating whether feather CORT represents exposure to chronic stress in feathers grown during moult.  相似文献   

8.
Socially acquired information improves the accuracy and efficiency of environmental assessments and can increase fitness. Public information may be especially useful during unpredictable food conditions, or for species that depend on resources made less predictable by human disturbance. However, the physiological mechanisms by which direct foraging assessments and public information are integrated to affect behaviour remain largely unknown. We tested for potential effects of public information on the behavioural and hormonal response to food reduction by manipulating the social environment of captive red crossbills (Loxia curvirostra). Red crossbills are irruptive migrants that are considered sensitive to changes in food availability and use public information in decision making. Here, we show that public information can attenuate or intensify the release of glucocorticoids (i.e. stress hormones) during food shortage in red crossbills. The observed modulation of corticosterone may therefore be a physiological mechanism linking public information, direct environmental assessments and behavioural change. This mechanism would not only allow for public information to affect individual behaviour, but might also facilitate group decision making by bringing group members into more similar physiological states. The results further suggest that stressors affecting entire populations may be magnified in individual physiology through social interactions.  相似文献   

9.
Summary A study was conducted to test the hypothesis that different portions of the annual photoperiodic cycle play different roles in timing the breeding season of the ewe, Ovis aries, an animal in which an endogenous rhythm generates the seasonal reproductive transitions. Adult female sheep were pinealectomized to disrupt transduction of photoperiodic cues at 4 times of the year (summer and winter solstices, vernal and autumnal equinoxes), and the effects on seasonal reproductive neuroendocrine activity were evaluated. Time of pinealectomy greatly influenced the subsequent seasonal reproductive cycle such that the following inferences are possible. Lengthening days between the winter and summer solstices synchronize reproductive onset to the appropriate time of year. The relatively long days around the summer solstice act to suppress reproductive activity and forestall the start of the breeding season until late summer/early autumn. The shortening days between the summer solstice and autumnal equinox maintain a normal intensity and duration of reproductive neuroendocrine induction during the impending breeding season. However, the shortening days between the autumnal equinox and winter solstice (i.e., after breeding season onset) do not appear to play a critical role in maintaining the breeding season of that year, but may provide important cues for timing the breeding season of the following year.Abbreviations LH luteinizing hormone Presented in preliminary form at the 21st Annual Meeting of the Society for the Study of Reproduction, 1988, Biol Reprod 38 (Suppl. 1): 184 (Abstract 408). This work was performed in partial fulfillment of the requirements for the degree of Ph.D. at The University of Michigan (to N.L.W.), and was funded by NIH-HD-18337 and NIH-HD-18258, T-32-HD-07048, the Institut National de la Recherche Agronomique (France) and the Office of the Vice President for Research of The University of Michigan.  相似文献   

10.
There is increasing evidence that exposure to stress during development can have sustained effects on animal phenotype and performance across life-history stages. For example, developmental stress has been shown to decrease the quality of sexually selected traits (e.g. bird song), and therefore is thought to decrease reproductive success. However, animals exposed to developmental stress may compensate for poor quality sexually selected traits by pursuing alternative reproductive tactics. Here, we examine the effects of developmental stress on adult male reproductive investment and success in the zebra finch (Taeniopygia guttata). We tested the hypothesis that males exposed to developmental stress sire fewer offspring through extra-pair copulations (EPCs), but invest more in parental care. To test this hypothesis, we fed nestlings corticosterone (CORT; the dominant avian stress hormone) during the nestling period and measured their adult reproductive success using common garden breeding experiments. We found that nestlings reared by CORT-fed fathers received more parental care compared with nestlings reared by control fathers. Consequently, males fed CORT during development reared nestlings in better condition compared with control males. Contrary to the prediction that developmental stress decreases male reproductive success, we found that CORT-fed males also sired more offspring and were less likely to rear non-genetic offspring compared with control males, and thus had greater overall reproductive success. These data are the first to demonstrate that developmental stress can have a positive effect on fitness via changes in reproductive success and provide support for an adaptive role of developmental stress in shaping animal phenotype.  相似文献   

11.
Orientation of physiology and behavior in time is a major adaptation common to many organisms and represents a significant challenge. In the face of predictable seasonal changes in climatic factors, and as a result of natural selection, many mammals now restrict their reproductive efforts to the fraction of the year when conditions of temperature, food, and water are most favorable for successful weaning of offspring. Changes in day length figure prominently in the synchronization of mammalian seasonal reproductive cycles. In summer breeders (e.g., several hamster, vole, and mouse species), decreasing summer day lengths induce reproductive involution. During this interval, neuroendocrine mechanisms analogous to a simple reference memory permit discrimination of stimulatory from inhibitory photoperiods. The non-reproductive phenotype is sustained for several months thereafter by the inhibitory short days of late summer, autumn, and early winter. Mid-winter reactivation of the reproductive system is triggered after 20-25 weeks of exposure to decreasing or short days by an interval timer that renders the reproductive neuroendocrine system refractory to short days. Recent work that has explored formal and physiological properties of this photorefractoriness interval timer has identified sex differences, neural substrates, and changes in hypothalamic gene expression that may participate in the measurement of seasonal time.  相似文献   

12.
This article is part of a Special Issue “SBN 2014”.In most vertebrate species, glucocorticoid levels and stress sensitivity vary in relation to season and life-history stage. In birds, baseline corticosterone (CORT) and stress sensitivity are typically highest while breeding and decrease substantially during moult. Because elevated CORT adversely affects protein synthesis, moult-related CORT suppression is thought to be necessary for forming high-quality feathers. Surprisingly, some passerine species lack moult-related CORT suppression, but these are distinguished by having slow rates of moult and being opportunistic breeders. We examined baseline and stress-induced CORT levels in an opportunistically breeding Australian passerine, the white-plumed honeyeater (Lichenostomus penicillatus). Although this species has a slower moult rate than high-latitude breeders, it differs little from north-temperate passerines. Neither baseline nor stress-induced CORT levels varied with season (winter, spring or summer), sex or moult status in adult birds. While breeding tended to be highest in early spring through late summer, laparotomies revealed only limited reduction in testicular size in males the year round. In all but one sampling period, at least some females displayed follicular hierarchy. Breeding usually coincides with outbreaks of phytophagous insects, which can happen at any time of the year. This results in moult/breeding overlap when infestations occur in late spring or summer. The ability of this species to moult and breed at the same time while having breeding-levels of CORT demonstrates that CORT suppression is not a prerequisite for synthesis of high-quality feathers. An experimental design incorporating moulting and non-moulting phenotypes is suggested to test the functional significance of CORT suppression in other species.  相似文献   

13.
Change in day length is an important cue for reproductive activation in seasonally breeding animals to ensure that the timing of greatest maternal investment (e.g. lactation in mammals) coincides with favourable environmental conditions (e.g. peak productivity). However, artificial light at night has the potential to interfere with the perception of such natural cues. Following a 5-year study on two populations of wild marsupial mammals exposed to different night-time levels of anthropogenic light, we show that light pollution in urban environments masks seasonal changes in ambient light cues, suppressing melatonin levels and delaying births in the tammar wallaby. These results highlight a previously unappreciated relationship linking artificial light at night with induced changes in mammalian reproductive physiology, and the potential for larger-scale impacts at the population level.  相似文献   

14.
The ability to cope with environmental change is fundamental to a species' evolution. Organisms can respond to seasonal environmental variation through phenotypic plasticity. The substantial plasticity in body mass of temperate species has often been considered a simple consequence of change in environmental quality, but could also have evolved as an adaptation to seasonality. We investigated the genetic basis of, and selection acting on, seasonal plasticity in body mass for wild bighorn sheep ewes (Ovis canadensis) at Ram Mountain, Alberta, under two contrasting environmental conditions. Heritability of plasticity, estimated as mass-specific summer and winter mass changes, was low but significant. The additive genetic variance component of relative summer mass change was greater under good environmental conditions (characterized by a population increase and high juvenile survival) than under poor conditions (population decrease and low juvenile survival). Additive genetic variance of relative winter mass change appeared independent of environmental conditions. We found evidence of selection on summer (relative) and winter (relative and absolute) mass change. For a given mass, more plastic individuals (with greater seasonal mass changes) achieve greater fitness through reproduction in the following year. However, genetic correlations between mass parameters were positive. Our study supports the hypothesis that seasonal plasticity in body mass in vertebrates is an adaptation that evolved under natural selection to cope with environmental variation but genetic correlations with other traits might limit its evolutionary potential.  相似文献   

15.
Seasonal changes in an animal's morphology, physiology, and behavior are considered to be an adaptive strategy for survival and reproductive success. In the present study, we examined body weight and several behavioral, physiological, hormonal, and biochemical markers in seasonally acclimatized Brandt's voles (Microtus brandti) to test our hypothesis that Brandt's voles can decrease energy intake associated with decrease in body weight, body fat content, serum leptin level, and increasing thermogenesis in winter conditions. We found that the body weight of Brandt's voles was lowest in winter (December to February) and highest in spring and early summer (May to June). This seasonal variation in body weight was associated with changes in other markers examined. For example, the winter decrease in body weight was accompanied by increased energy intake and enhanced nonshivering thermogenesis (NST) as well as by decreased body fat mass and reduced levels of circulating leptin. Further, circulating levels of leptin were positively correlated with body weight and body fat mass, and negatively correlated with energy intake and uncoupling protein 1 contents. Together, these data do not support our hypothesis and suggest that leptin may be involved in this process and serve as a starvation signal in Brandt's voles.  相似文献   

16.
Vertebrates respond to unpredictable noxious environmental stimuli by increasing secretion of glucocorticoids (CORT). Although this hormonal stress response is adaptive, high levels of CORT may induce significant costs if stressful situations are frequent. Thus, alternative coping mechanisms that help buffer individuals against environmental stressors may be selected for when the costs of CORT levels are elevated. By allowing individuals to identify, anticipate and cope with the stressful circumstances, cognition may enable stress-specific behavioural coping. Although there is evidence that behavioural responses allow animals to cope with stressful situations, it is unclear whether or not cognition reduces investment in the neuroendocrine stress response. Here, we report that in birds, species with larger brains relative to their body size show lower baseline and peak CORT levels than species with smaller brains. This relationship is consistent across life-history stages, and cannot be accounted for by differences in life history and geographical latitude. Because a large brain is a major feature of birds that base their lifetime in learning new things, our results support the hypothesis that enhanced cognition represents a general alternative to the neuroendocrine stress response.  相似文献   

17.
Seasonal changes in pulsatile luteinizing hormone (LH) secretion in ovariectomized ewes were examined over the course of 2 yr in relation to annual changes in environmental photoperiod, shifts in response to estradiol negative feedback control of LH secretion, and timing of the breeding season. Under natural environmental conditions, the frequency of LH pulses in individual ovariectomized ewes changed gradually and in close association with the annual cycle of day length. As days became shorter in late summer and autumn, LH pulse frequency increased; conversely, as day length increased in late winter and spring, frequency declined. Under artificial conditions in which ovariectomized ewes were exposed to different photoperiods, a similar inverse relationship was observed between day length and LH pulse frequency. The seasonal changes in frequency of LH pulses in ovariectomized ewes, although symmetric with the annual photoperiodic cycle, were not temporally coupled to the dramatic shifts in response to estradiol feedback inhibition of LH secretion at the transitions between breeding season and anestrus. The feedback shifts occurred abruptly and at times when LH pulse frequency in ovariectomized ewes was at, or near, the annual maximum or minimum. The tight coupling between LH pulse frequency and photoperiod leads to the conclusion that there is a photoperiodic drive to the LH pulse-generating system of the ewe. The temporal dissociation between changes in this photoperiodic drive and the seasonal shifts in response to estradiol negative feedback support the hypothesis that the neuroendocrine basis for these two phenomena is not one and the same.  相似文献   

18.
A number of long day breeding rodents depend on seasonal changes in photoperiodic length to synchronize their breeding seasons with the appropriate time of the year. These relationships are particularly conspicuous in the Syrian hamster where day length is vitally important in determining periods of sexual activity and inactivity. The organ in the body whose activity is most closely attuned to the photoperiodic environment is the pineal gland. During periods of darkness the biochemical and secretory activity of the pineal is enhanced with the resultant production of antigonadotrophic principles which are strongly suppressive to reproductive physiology. In this manner, decreasing day lengths of the fall are involved with suppressing sexual capability in male and female hamsters. Throughout the winter months darkness (because of the shorter day lengths and the fact that hamsters remain underground in lightless burrows) holds the gonads in an atrophic condition and thereby prevents hamsters from breeding. As spring approaches the neuroendocrine reproductive axis becomes refractory to the inhibitory effects of darkness and the pineal gland and, as a consequence, the gonads recrudesce allowing the animals to successfully reproduce. The long days of the spring and summer serve to interrupt the refractory period so that when winter approaches shortening day lengths will again, by way of the pineal gland, induce gonadalinvolution. In this scheme both light and darkness are critically important in synchronizing the phases of the annual reproductive cycle of the hamster with the appropriate season of the year. Melatonin may be the pineal hormone which mediates the effects of darkness on reproductive physiology.Presented at the Eighth International Congress of Biometeorology, 9–14 September 1979, Shefayim, Israel.  相似文献   

19.
Over the short-term and at physiological doses, acute increases in corticosterone (CORT) titres can enhance immune function. There are predictable seasonal patterns in both circulating CORT and immune function across many animal species, but whether CORT receptor density in immune tissues varies seasonally is currently unknown. Using radioligand binding assays, we examined changes in concentrations of glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) in spleen and skin in wild-caught house sparrows in Massachusetts during six different life-history stages: moult, early winter, late winter, pre-egg-laying, breeding and late breeding. Splenic GR and MR binding were highest during the pre-laying period. This may help animals respond to immune threats through increased lymphocyte proliferation and/or an increase in delayed-type hypersensitivity reactions, both of which CORT can stimulate and in which spleen is involved. A decrease in splenic GR and MR during the late breeding period coincides with low baseline and stress-induced CORT, suggesting immune function in spleen may be relatively CORT-independent during this period. We saw no seasonal patterns in GR or MR in skin, suggesting skin''s response to CORT is modulated primarily via changes in circulating CORT titres and/or via local production of CORT in response to wounding and other noxious stimuli.  相似文献   

20.
In a previous experiment we have documented that organisms adopt a risk-sensitive reproductive allocation when summer reproductive investment competes with survival in the coming winter ( Bårdsen et al. 2008 ). This tradeoff is present through autumn female body mass, which acts as an insurance against unpredictable winter environmental conditions. We tested this hypothesis experimentally on female reindeer experiencing stable and benign winter feeding conditions. Additional supplementary feeding and removal of newborns represented two sets of experimental manipulations. Females in the supplementary feeding group increased more in winter body mass relative to control females. This manipulation, however, did not have any effect on summer body mass development for neither females nor offspring, but we found a positive effect of feeding on offspring birth mass for smaller females. In contrast, offspring removal did have a positive effect on summer body mass development as females in this group were larger in the autumn relative to control females. In essence, we documented two immediate effects as: (1) supplementary feeding did have a positive effect on spring body mass for smaller females; and (2) offspring removal did increase the female summer somatic growth as this had a positive effect on female autumn body mass. Additionally, we tested for lagged effects, but we could not document any biologically significant effects of neither manipulation in the coming spring. The fact that we only found rather weak effects of both manipulations was as expected for risk sensitive individuals experiencing benign environmental conditions over many years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号