首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evolutionary innovation in eukaryotes and especially animals is at least partially driven by genome rearrangements and the resulting emergence of proteins with new domain combinations, and thus potentially novel functionality. Given the random nature of such rearrangements, one could expect that proteins with particularly useful multidomain combinations may have been rediscovered multiple times by parallel evolution. However, existing reports suggest a minimal role of this phenomenon in the overall evolution of eukaryotic proteomes. We assembled a collection of 172 complete eukaryotic genomes that is not only the largest, but also the most phylogenetically complete set of genomes analyzed so far. By employing a maximum parsimony approach to compare repertoires of Pfam domains and their combinations, we show that independent evolution of domain combinations is significantly more prevalent than previously thought. Our results indicate that about 25% of all currently observed domain combinations have evolved multiple times. Interestingly, this percentage is even higher for sets of domain combinations in individual species, with, for instance, 70% of the domain combinations found in the human genome having evolved independently at least once in other species. We also show that previous, much lower estimates of this rate are most likely due to the small number and biased phylogenetic distribution of the genomes analyzed. The process of independent emergence of identical domain combination is widespread, not limited to domains with specific functional categories. Besides data from large-scale analyses, we also present individual examples of independent domain combination evolution. The surprisingly large contribution of parallel evolution to the development of the domain combination repertoire in extant genomes has profound consequences for our understanding of the evolution of pathways and cellular processes in eukaryotes and for comparative functional genomics.  相似文献   

2.
Comparative analyses of eukaryotic genomes are providing insights into the mode and tempo of domain family evolution. Gene duplication, the source of family expansion, far exceeds the rate of emergence of domains from non-coding sequence, and the rate of recruitment of domains into novel architectures. Domain families that appear to be restricted to certain lineages are likely to be the result of gene duplication, coupled with rapid sequence diversification. If such families are evidence of past adaptation, then their functions must relate to the underlying mechanism of selection: competition among organisms.  相似文献   

3.
Although the possibility of gene evolution by domain rearrangements has long been appreciated, current methods for reconstructing and systematically analyzing gene family evolution are limited to events such as duplication, loss, and sometimes, horizontal transfer. However, within the Drosophila clade, we find domain rearrangements occur in 35.9% of gene families, and thus, any comprehensive study of gene evolution in these species will need to account for such events. Here, we present a new computational model and algorithm for reconstructing gene evolution at the domain level. We develop a method for detecting homologous domains between genes and present a phylogenetic algorithm for reconstructing maximum parsimony evolutionary histories that include domain generation, duplication, loss, merge (fusion), and split (fission) events. Using this method, we find that genes involved in fusion and fission are enriched in signaling and development, suggesting that domain rearrangements and reuse may be crucial in these processes. We also find that fusion is more abundant than fission, and that fusion and fission events occur predominantly alongside duplication, with 92.5% and 34.3% of fusion and fission events retaining ancestral architectures in the duplicated copies. We provide a catalog of ~9,000 genes that undergo domain rearrangement across nine sequenced species, along with possible mechanisms for their formation. These results dramatically expand on evolution at the subgene level and offer several insights into how new genes and functions arise between species.  相似文献   

4.
The actin-binding domains of many proteins consist of a canonical type 1/type 2 arrangement of the structurally conserved calponin homology domain. Using the actin-binding domain of alpha-actinin-1 as a scaffold we have generated synthetic actin-binding domains by altering position and composition of the calponin homology domains. We show that the presence of two calponin homology domains alone and in the context of an actin-binding domain is not sufficient for actin-binding, and that both single and homotypic type 2 calponin homology domain tandems fail to bind to actin in vitro and in transfected cells. In contrast, single and tandem type 1 calponin homology domain arrays bind actin directly but result in defective turnover rates on actin filaments, and in aberrant actin bundling when introduced into the full-length alpha-actinin molecule. An actin-binding domain harboring the calponin homology domains in an inverted position, however, functions both in isolation and in the context of the dimeric alpha-actinin molecule. Our data demonstrate that the dynamics and specificity of actin-binding via actin-binding domains requires both the filament binding properties of the type 1, and regulation by type 2 calponin homology domains, and appear independent of their position.  相似文献   

5.
6.
7.
8.
Molecular evolution of the synapsin gene family   总被引:4,自引:0,他引:4  
Synapsins, a family of synaptic vesicle proteins, play a crucial role in the regulation of neurotransmission and synaptogenesis. They have been identified in a variety of invertebrate and vertebrate species, including human, rat (Rattus norvegicus), cow (Bos taurus), longfin squid (Loligo pealei), and fruit fly (Drosophila melanogaster). Here, synapsins were cloned from three additional species: frog (Xenopus laevis), lamprey (Lampetra fluviatilis), and nematode (Caenorhabditis elegans). Synapsin protein sequences from all these species were then used to explore the molecular phylogeny of these important neuronal phosphoproteins. The ancestral condition of a single synapsin gene probably gave rise to the vertebrate synapsin gene family comprised of at least three synapsin genes (I, II, and III) in higher vertebrates. Synapsins possess multiple domains, which have evolved at different rates throughout evolution. In invertebrate synapsins, the most conserved domains are C and E. During the evolution of vertebrates, at least two gene duplication events are hypothesized to have given rise to the synapsin gene family. This was accompanied by the emergence of an additional conserved domain, termed A. J. Exp. Zool. ( Mol. Dev. Evol. ) 285:360-377, 1999.  相似文献   

9.
10.
The nucleotide sequence of the gene encoding the cellulose-binding protein A (CBPA) of Eubacterium cellulosolvens 5 was determined. The gene consists of an open reading frame of 3453 nucleotides and encodes a protein of 1151 amino acids with a molecular mass of 126408 Da. The deduced amino acid sequence of CBPA contained one domain highly similar to a catalytic domain of glycosyl hydrolases belonging to family 9, two linker-like domains and four domains of unknown function. Among the four domains of unknown function, the domains 1 and 2 region had significant homology in amino acid sequence with the cellulose-binding domains in the family 9 glycosyl hydrolases. The cloned gene was inserted into an expression vector, pBAD-TOPO, and expressed in Escherichia coli as a fused protein. The fused protein was detected by immunoblotting using antiserum against CBPA.  相似文献   

11.
纪剑辉  周颖君  吴贺贺  杨立明 《遗传》2015,37(12):1228-1241
Trihelix转录因子家族在植物生长发育以及响应逆境胁迫等方面发挥着重要作用,但目前基于水稻全基因组水平鉴定和分析该基因家族的研究尚未见相关报道。本文利用生物信息学方法在水稻基因组数据库中鉴定到Trihelix家族成员31个,序列聚类和功能结构域分析发现该家族均含有高度保守的、特征性的Trihelix结构域;根据亲缘关系远近和结构域特点,将其分为5个亚家族(Ⅰ~Ⅴ)。通过与拟南芥、二穗短炳草和高粱中Trihelix家族的聚类分析发现,这4个物种中Trihelix家族的分类相一致,但每个物种均含有不同亚家族的成员,表明该基因家族的分化早于物种的分化。基于MEME程序分析水稻Trihelix转录因子家族的保守基序与聚类分析结果具有较高的一致性。染色体区段复制分析表明,部分Trihelix家族成员在水稻以及水稻与其他物种之间存在种内和种间的染色体区段复制;生物芯片数据分析发现,Trihelix基因家族在水稻不同组织中、以及对6种不同植物激素的响应呈现多样化的表达谱。采用RiceFREND在线数据库分析发现,水稻Trihelix转录因子家族的20个成员与其他蛋白存在互作关系。本研究结果初步明确了水稻Trihelix转录因子家族的进化特点、染色体分布、染色体区段复制关系、组织表达、激素应答,以及该家族蛋白与其他蛋白质的互作情况,为进一步揭示Trihelix转录因子家族的分子进化规律和生物学功能奠定了基础。  相似文献   

12.
Sphingosine kinase (SPHK) is a key enzyme catalyzing the formation of sphingosine 1 phosphate (SPP), a lipid messenger that is implicated in the regulation of a wide variety of important cellular events through intracellular as well as extracellular mechanisms. However, the molecular mechanism of the intracellular actions of SPP remains unclear. Here we have cloned a novel sphingosine kinase-1 (SPHK1)-binding protein, RPK118, by yeast two-hybrid screening. RPK118 contains several functional domains whose sequences are homologous to other known proteins including the phox homology domain and pseudokinase 1 and 2 domains and is shown to be a member of an evolutionarily highly conserved gene family. The pseudokinase 2 domain of RPK118 is responsible for SPHK1 binding as judged by yeast two-hybrid screening and immunoprecipitation studies. RPK118 is also shown to co-localize with SPHK1 on early endosomes in COS7 cells expressing both recombinant proteins. Furthermore, RPK118 specifically binds to phosphatidylinositol 3-phosphate. These results strongly suggest that RPK118 is a novel SPHK1-binding protein that may be involved in transmitting SPP-mediated signaling into the cell.  相似文献   

13.
Crystal structure of the PH-BEACH domains of human LRBA/BGL   总被引:1,自引:0,他引:1  
Gebauer D  Li J  Jogl G  Shen Y  Myszka DG  Tong L 《Biochemistry》2004,43(47):14873-14880
The beige and Chediak-Higashi syndrome (BEACH) domain defines a large family of eukaryotic proteins that have diverse cellular functions in vesicle trafficking, membrane dynamics, and receptor signaling. The domain is the only module that is highly conserved among all of these proteins, but the exact functions of this domain and the molecular basis for its actions are currently unknown. Our previous studies showed that the BEACH domain is preceded by a novel, weakly conserved pleckstrin homology (PH) domain. We report here the crystal structure at 2.4 A resolution of the PH-BEACH domain of human LRBA/BGL. The PH domain has the same backbone fold as canonical PH domains, despite sharing no sequence homology with them. However, our binding assays demonstrate that the PH domain in the BEACH proteins cannot bind phospholipids. The BEACH domain contains a core of several partially extended peptide segments that is flanked by helices on both sides. The structure suggests intimate association between the PH and the BEACH domains, and surface plasmon resonance studies confirm that the two domains of the protein FAN have high affinity for each other, with a K(d) of 120 nM.  相似文献   

14.
Two xylanase-encoding genes, named xyn11A and xyn10B, were isolated from a genomic library of Cellulomonas pachnodae by expression in Escherichia coli. The deduced polypeptide, Xyn11A, consists of 335 amino acids with a calculated molecular mass of 34,383 Da. Different domains could be identified in the Xyn11A protein on the basis of homology searches. Xyn11A contains a catalytic domain belonging to family 11 glycosyl hydrolases and a C-terminal xylan binding domain, which are separated from the catalytic domain by a typical linker sequence. Binding studies with native Xyn11A and a truncated derivative of Xyn11A, lacking the putative binding domain, confirmed the function of the two domains. The second xylanase, designated Xyn10B, consists of 1,183 amino acids with a calculated molecular mass of 124,136 Da. Xyn10B also appears to be a modular protein, but typical linker sequences that separate the different domains were not identified. It comprises a N-terminal signal peptide followed by a stretch of amino acids that shows homology to thermostabilizing domains. Downstream of the latter domain, a catalytic domain specific for family 10 glycosyl hydrolases was identified. A truncated derivative of Xyn10B bound tightly to Avicel, which was in accordance with the identified cellulose binding domain at the C terminus of Xyn10B on the basis of homology. C. pachnodae, a (hemi)cellulolytic bacterium that was isolated from the hindgut of herbivorous Pachnoda marginata larvae, secretes at least two xylanases in the culture fluid. Although both Xyn11A and Xyn10B had the highest homology to xylanases from Cellulomonas fimi, distinct differences in the molecular organizations of the xylanases from the two Cellulomonas species were identified.  相似文献   

15.
The "conventional" kinesins comprise a conserved family of molecular motors for organelle transport that have been identified in various animal species. Organelle motors from other phyla have not yet been analyzed at the molecular level. Here we report the identification, biochemical and immunological characterization, and molecular cloning of a cytoplasmic motor in a "lower" eukaryote, the Ascomycete fungus Neurospora crassa. This motor, termed Nkin (for Neurospora kinesin), exhibits several unique structural and functional features, including a high rate of microtubule transport, a lack of copurifying light chains, a second P-loop motif, and an overall sequence organization reminiscent of a kinesin-like protein. However, a greater than average sequence homology in the motor domain and the presence of a highly conserved region in the C-terminus identify Nkin as a distant relative of the family of conventional kinesins. A molecular phylogenetic analysis suggests Nkin to have diverged early in the evolution of this family of motors. The discovery of Nkin may help identify domains important for specific biological functions in conventional kinesins.  相似文献   

16.
Viruses can occasionally emerge by infecting new host species. However, the early phases of emergence can hinge upon ecological sustainability of the virus population, which is a product of both within-host population growth and between-host transmission. Insufficient growth or transmission can force virus extinction before the latter phases of emergence, where genetic adaptations that improve host use may occur. We examined the early phase of emergence by studying the population dynamics of RNA phages in replicated laboratory environments containing native and novel host bacteria. To predict the breadth of transmission rates allowing viral persistence on each species, we developed a simple model based on in vitro data for phage growth rate over a range of initial population densities on both hosts. Validation of these predictions using serial passage experiments revealed a range of transmission rates for which the native host was a source and the novel host was a sink. In this critical range of transmission rates, periodic exposure to the native host was sufficient for the maintenance of the viral population on the novel host. We argue that this effect should facilitate adaptation by the virus to utilize the novel host--often crucial in subsequent phases of emergence.  相似文献   

17.
A novel two-pore domain K+ channel,TRESK, is localized in the spinal cord   总被引:5,自引:0,他引:5  
To find a novel human ion channel gene we have executed an extensive search by using a human genome draft sequencing data base. Here we report a novel two-pore domain K+ channel, TRESK (TWIK-related spinal cord K+ channel). TRESK is coded by 385 amino acids and shows low homology (19%) with previously characterized two-pore domain K+ channels. However, the most similar channel is TREK-2 (two-pore domain K+ channel), and TRESK also has two pore-forming domains and four transmembrane domains that are evolutionarily conserved in the two-pore domain K+ channel family. Moreover, we confirmed that TRESK is expressed in the spinal cord. Electrophysiological analysis demonstrated that TRESK induced outward rectification and functioned as a background K+ channel. Pharmacological analysis showed TRESK to be inhibited by previously reported K+ channel inhibitors Ba2+, propafenone, glyburide, lidocaine, quinine, quinidine, and triethanolamine. Functional analysis demonstrated TRESK to be inhibited by unsaturated free fatty acids such as arachidonic acid and docosahexaenoic acid. TRESK is also sensitive to extreme changes in extracellular and intracellular pH. These results indicate that TRESK is a novel two-pore domain K+ channel that may set the resting membrane potential of cells in the spinal cord.  相似文献   

18.
Two xylanase-encoding genes, named xyn11A and xyn10B, were isolated from a genomic library of Cellulomonas pachnodae by expression in Escherichia coli. The deduced polypeptide, Xyn11A, consists of 335 amino acids with a calculated molecular mass of 34,383 Da. Different domains could be identified in the Xyn11A protein on the basis of homology searches. Xyn11A contains a catalytic domain belonging to family 11 glycosyl hydrolases and a C-terminal xylan binding domain, which are separated from the catalytic domain by a typical linker sequence. Binding studies with native Xyn11A and a truncated derivative of Xyn11A, lacking the putative binding domain, confirmed the function of the two domains. The second xylanase, designated Xyn10B, consists of 1,183 amino acids with a calculated molecular mass of 124,136 Da. Xyn10B also appears to be a modular protein, but typical linker sequences that separate the different domains were not identified. It comprises a N-terminal signal peptide followed by a stretch of amino acids that shows homology to thermostabilizing domains. Downstream of the latter domain, a catalytic domain specific for family 10 glycosyl hydrolases was identified. A truncated derivative of Xyn10B bound tightly to Avicel, which was in accordance with the identified cellulose binding domain at the C terminus of Xyn10B on the basis of homology. C. pachnodae, a (hemi)cellulolytic bacterium that was isolated from the hindgut of herbivorous Pachnoda marginata larvae, secretes at least two xylanases in the culture fluid. Although both Xyn11A and Xyn10B had the highest homology to xylanases from Cellulomonas fimi, distinct differences in the molecular organizations of the xylanases from the two Cellulomonas species were identified.  相似文献   

19.
20.
蓝藻抗病毒蛋白-N(Cyanovirin-N,CV-N)具有广谱抗病毒活性,其同源物构成CVNH(Cyanovirin-N homology)蛋白家族,并且家族成员的抗人类免疫缺陷病毒结构域在进化上非常保守。文章通过重建基因树对CVNH结构域的"零散分布"特点作了更为细致的了解,发现在黑曲霉、费氏曲菌、产黄青霉、粗糙脉孢霉、蓝杆藻和水蕨等物种中存在多份该结构域拷贝。在此基础上,分别采用机理式模型(Mechanistic model)和MEC模型(Mechanistic-empirical combination model)对CVNH结构域序列位点进行适应性进化分析,结果显示:1)两类模型均未检测到统计上显著的正选择位点;2)净化选择对CVNH起主导作用;3)MEC模型更适合所研究的数据。进一步使用"支-特异"模型和"支-位点"模型对蓝杆菌菌株7822和7424的祖先分支进行检测,发现该分支经历过适应性进化,并且鉴定出6个正选择位点(34L、63L、13H、76C、78K和80I)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号