首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Viral fusion proteins of classes I and II differ radically in their initial structures but refold toward similar conformations upon activation. Do fusion pathways mediated by alphavirus E1 and influenza virus hemagglutinin (HA) that exemplify classes II and I differ to reflect the difference in their initial conformations, or concur to reflect the similarity in the final conformations? Here, we dissected the pathway of low pH–triggered E1-mediated cell–cell fusion by reducing the numbers of activated E1 proteins and by blocking different fusion stages with specific inhibitors. The discovered progression from transient hemifusion to small, and then expanding, fusion pores upon an increase in the number of activated fusion proteins parallels that established for HA-mediated fusion. We conclude that proteins as different as E1 and HA drive fusion through strikingly similar membrane intermediates, with the most energy-intensive stages following rather than preceding hemifusion. We propose that fusion reactions catalyzed by all proteins of both classes follow a similar pathway.  相似文献   

3.
4.
Here we identified an evolutionarily highly conserved and ubiquitously expressed protein (C9orf82) that shows structural similarities to the death effector domain of apoptosis-related proteins. RNAi knockdown of C9orf82 induced apoptosis in A-549 and MCF7/casp3-10b lung and breast carcinoma cells, respectively, but not in cells lacking caspase-3, caspase-10 or both. Apoptosis was associated with activated caspases-3, -8, -9 and -10, and inactivation of caspases 10 or 3 was sufficient to block apoptosis in this pathway. Apoptosis upon knockdown of C9orf82 was associated with increased caspase-10 expression and activation, which was required for the generation of an 11 kDa tBid fragment and activation of Caspase-9. These data suggest that C9orf82 functions as an anti-apoptotic protein that modulates a caspase-10 dependent mitochondrial caspase-3/9 feedback amplification loop. We designate this ubiquitously expressed and evolutionarily conserved anti-apoptotic protein Conserved Anti-Apoptotic Protein (CAAP). We also demonstrated that treatment of MCF7/casp3-10b cells with staurosporine and etoposides induced apoptosis and knockdown of CAAP expression. This implies that the CAAP protein could be a target for chemotherapeutic agents.  相似文献   

5.
Translation of hunchback(mat) (hb[mat]) mRNA must be repressed in the posterior of the pre-blastoderm Drosophila embryo to permit formation of abdominal segments. This translational repression requires two copies of the Nanos Response Element (NRE), a 16-nt sequence in the hb[mat] 3'' untranslated region. Translational repression also requires the action of two proteins: Pumilio (PUM), a sequence-specific RNA-binding protein; and Nanos, a protein that determines the location of repression. Binding of PUM to the NRE is thought to target hb(mat) mRNA for repression. Here, we show the RNA-binding domain of PUM to be an evolutionarily conserved, 334-amino acid region at the carboxy-terminus of the approximately 158-kDa PUM protein. This contiguous region of PUM retains the RNA-binding specificity of full-length PUM protein. Proteins with sequences homologous to the PUM RNA-binding domain are found in animals, plants, and fungi. The high degree of sequence conservation of the PUM RNA-binding domain in other far-flung species suggests that the domain is an ancient protein motif, and we show that conservation of sequence reflects conservation of function: that is, the homologous region from a human protein binds RNA with sequence specificity related to but distinct from Drosophila PUM.  相似文献   

6.
We have generated a hamster anti-mouse class I reactive mAb that is capable of activating T cells in the presence of the cofactor PMA, as assayed by both IFN-gamma production and cellular proliferation. This mAb detects an epitope present on the majority of murine class I molecules, with the known exceptions of H-2Kk and H-2Kq, and is therefore not beta 2-microglobulin-specific. It also recognizes multiple human class I molecules. The epitope recognized by this antibody maps to the class I alpha 1 domain. The activation properties of this mAb are not mediated exclusively through the glycosylphosphatidylinositol-linked Qa-2 molecule, as the antibody activates spleen cells from Qa-2 negative strains. Although class I molecules are not usually considered as activation Ag, these data demonstrate their potential for involvement in signal transduction.  相似文献   

7.
8.
Despite the resilience of Mediterranean ecosystems to fire, the ecological restoration of burned plant communities can be hindered by ungulate herbivores, particularly in areas with high population densities. This study compares the postfire development of a shrub community with and without deer, after a wildfire occurred in 2003 in a protected area in Central Portugal. We monitored 12 fenced and 12 unfenced plots 2, 3, 4, and 8 years after fire. Within each plot, we established a linear transect and measured the monospecific canopy projections (plant patches). Five plant community indicators (patch number, average patch length, average patch height, patch cover, and patch phytovolume per square meter) were obtained. The diameter and height of individuals of the most abundant shrub species (Cistus salvifolius, Erica scoparia, Myrtus communis, Pistacia lentiscus, Rubus ulmifolius, and Ulex jussiaei) were also measured. These measurements were used as response variables in generalized linear mixed models in order to assess the effects of time‐after‐fire and fencing, on the development of the plant community. Patch height and phytovolume had a significantly higher growth in fenced plots. At the species level, C. salvifolius, M. communis, R. ulmifolius, and U. jussiaei showed a higher growth across time both in height and in diameter, in the absence of herbivory. This work shows that deer exclusion needs to be considered when aiming at the postfire restoration of Mediterranean shrub communities.  相似文献   

9.
10.
In contrast to animal and fungal cells, green plant cells contain one or multiple chloroplasts, the organelle(s) in which photosynthetic reactions take place. Chloroplasts are believed to have originated from an endosymbiotic event and contain DNA that codes for some of their proteins. Most chloroplast proteins are encoded by the nuclear genome and imported with the help of sorting signals that are intrinsic parts of the polypeptides. Here, we show that a chloroplast-located protein in higher plants takes an alternative route through the secretory pathway, and becomes N-glycosylated before entering the chloroplast.  相似文献   

11.
Streptomyces scabies is one of a group of organisms that causes the economically important disease potato scab. Analysis of the S. scabies genome sequence indicates that it is likely to secrete many proteins via the twin arginine protein transport (Tat) pathway, including several proteins whose coding sequences may have been acquired through horizontal gene transfer and share a common ancestor with proteins in other plant pathogens. Inactivation of the S. scabies Tat pathway resulted in pleiotropic phenotypes including slower growth rate and increased permeability of the cell envelope. Comparison of the extracellular proteome of the wild type and ΔtatC strains identified 73 predicted secretory proteins that were present in reduced amounts in the tatC mutant strain, and 47 Tat substrates were verified using a Tat reporter assay. The ΔtatC strain was almost completely avirulent on Arabidopsis seedlings and was delayed in attaching to the root tip relative to the wild‐type strain. Genes encoding 14 candidate Tat substrates were individually inactivated, and seven of these mutants were reduced in virulence compared with the wild‐type strain. We conclude that the Tat pathway secretes multiple proteins that are required for full virulence.  相似文献   

12.
13.
In its tRNA acceptor end binding domain, the glutamyl-tRNA synthetase (GluRS) of Escherichia coli contains one atom of zinc that holds the extremities of a segment (Cys98-x-Cys100-x24-Cys125-x-His127) homologous to the Escherichia coli glutaminyl-tRNA synthetase (GlnRS) loop where a leucine residue stabilizes the peeled-back conformation of tRNAGln acceptor end. We report here that the GluRS zinc-binding region belongs to the novel SWIM domain family characterized by the signature C-x-C-xn-C-x-H (n = 6-25), and predicted to interact with DNA or proteins. In the presence of tRNAGlu, the GluRS C100Y variant has a lower affinity for l-glutamate than the wild-type enzyme, with Km and Kd values increased 12- and 20-fold, respectively. On the other hand, in the absence of tRNAGlu, glutamate binds with the same affinity to the C100Y variant and to wild-type GluRS. In the context of the close structural and mechanistic similarities between GluRS and GlnRS, these results indicate that the GluRS SWIM domain modulates glutamate binding to the active site via its interaction with the tRNAGlu acceptor arm. Phylogenetic analyses indicate that ancestral GluRSs had a strong zinc-binding site in their SWIM domain. Considering that all GluRSs require a cognate tRNA to activate glutamate, and that some of them have different or no putative zinc-binding residues in the corresponding positions, the properties of the C100Y variant suggest that the GluRS SWIM domains evolved to position correctly the tRNA acceptor end in the active site, thereby contributing to the formation of the glutamate binding site.  相似文献   

14.
Domains are the structural, functional, and evolutionary components of proteins. Most folding studies to date have concentrated on the folding of single domains, but more than 70% of human proteins contain more than one domain, and interdomain interactions can affect both the stability and the folding kinetics. Whether the folding pathway is altered by interdomain interactions is not yet known. Here we investigated the effect of a folded neighbouring domain on the folding pathway of spectrin R16 (the 16th α-helical repeat from chicken brain α-spectrin) by using the two-domain construct R1516. The R16 folds faster and unfolds more slowly in the presence of its folded neighbour R15 (the 15th α-helical repeat from chicken brain α-spectrin). An extensive Φ-value analysis of the R16 domain in R1516 was completed to compare the transition state of the R16 domain alone with that of the R16 domain in a multidomain construct. The results indicate that the folding pathways are the same. This result validates the current approach of breaking up larger proteins into domains for the study of protein folding pathways.  相似文献   

15.
16.
17.
18.
We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias.  相似文献   

19.
The capactins, a class of proteins that cap the ends of actin filaments   总被引:5,自引:0,他引:5  
A number of proteins that bind specifically to the barbed ends of actin filaments in a cytochalasin-like manner have been purified to various degrees from a variety of muscle and non-muscle cells and tissues. Preliminary evidence also indicates that proteins that interact with the pointed ends of filaments are present in skeletal muscle. Because of their ability to cap one or the other end of an actin filament, we have designated this class of proteins as the 'capactins'. On the basis of their effect on actin filament assembly and interaction in vitro, we propose that the capactins play important roles in cellular regulation of actin-based cytoskeletal and contractile functions. Our finding that the disappearance of actin filament bundles in virally transformed fibroblasts can be correlated with an increase in capactin activity in the extracts of these cells is consistent with this hypothesis.  相似文献   

20.
Hwang HH  Gelvin SB 《The Plant cell》2004,16(11):3148-3167
Agrobacterium tumefaciens uses a type IV secretion system (T4SS) to transfer T-DNA and virulence proteins to plants. The T4SS is composed of two major structural components: the T-pilus and a membrane-associated complex that is responsible for translocating substrates across both bacterial membranes. VirB2 protein is the major component of the T-pilus. We used the C-terminal-processed portion of VirB2 protein as a bait to screen an Arabidopsis thaliana cDNA library for proteins that interact with VirB2 in yeast. We identified three related plant proteins, VirB2-interacting protein (BTI) 1 (BTI1), BTI2, and BTI3 with unknown functions, and a membrane-associated GTPase, AtRAB8. The three BTI proteins also interacted with VirB2 in vitro. Preincubation of Agrobacterium with GST-BTI1 protein decreased the transformation efficiency of Arabidopsis suspension cells by Agrobacterium. Transgenic BTI and AtRAB8 antisense and RNA interference Arabidopsis plants are less susceptible to transformation by Agrobacterium than are wild-type plants. The level of BTI1 protein is transiently increased immediately after Agrobacterium infection. In addition, overexpression of BTI1 protein in transgenic Arabidopsis results in plants that are hypersusceptible to Agrobacterium-mediated transformation. Confocal microscopic data indicate that GFP-BTI proteins preferentially localize to the periphery of root cells in transgenic Arabidopsis plants, suggesting that BTI proteins may contact the Agrobacterium T-pilus. We propose that the three BTI proteins and AtRAB8 are involved in the initial interaction of Agrobacterium with plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号