首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To initiate homologous recombination, sequence similarity between two DNA molecules must be searched for and homology recognized. How the search for and recognition of homology occurs remains unproven. We have examined the influences of DNA topology and the polarity of RecA–single-stranded (ss)DNA filaments on the formation of synaptic complexes promoted by RecA. Using two complementary methods and various ssDNA and duplex DNA molecules as substrates, we demonstrate that topological constraints on a small circular RecA–ssDNA filament prevent it from interwinding with its duplex DNA target at the homologous region. We were unable to detect homologous pairing between a circular RecA–ssDNA filament and its relaxed or supercoiled circular duplex DNA targets. However, the formation of synaptic complexes between an invading linear RecA–ssDNA filament and covalently closed circular duplex DNAs is promoted by supercoiling of the duplex DNA. The results imply that a triplex structure formed by non-Watson–Crick hydrogen bonding is unlikely to be an intermediate in homology searching promoted by RecA. Rather, a model in which RecA-mediated homology searching requires unwinding of the duplex DNA coupled with local strand exchange is the likely mechanism. Furthermore, we show that polarity of the invading RecA–ssDNA does not affect its ability to pair and interwind with its circular target duplex DNA.  相似文献   

2.
RecA protein from E. coli binds more strongly to single stranded DNA than to duplex molecules. Using duplex DNA that contains single stranded gaps, we have studied the protection by RecA protein at various concentrations, of restriction sites as a function of their distance from the single stranded region. We show that the binding of RecA protein, initiated in the single stranded region, extends progressively along the adjoining duplex in the 5' to 3' direction with respect to the single stranded region. The strand exchange reaction is known to proceed in the same direction.  相似文献   

3.
Bacterial RecA protein is a prototype of ATP-dependent homologous recombinases found ubiquitously from bacteriophages up to human beings. When RecA filament is forming on single-stranded DNA in the presence of ATP, it initiates the strand exchange reaction with homologous double-stranded DNA. Among three phases of the reaction (the search for homology, the three-stranded structure annealing in conjunction with the switch of pairing, and the strand displacement) the first one is the most enigmatic and least studied. As commonly recognized, this phase is directed by a special (stretched) filament structure and does not required any additional consumption of energy in ATP hydrolysis. The novel approaches in the study of strand exchange reaction, using short oligonucleotides as DNA substrates and sensitive methods for a real-time monitoring of the reaction suggest that all three phases of the reaction depend on the ATP hydrolysis.  相似文献   

4.
Bacterial RecA is a prototype of ATP-dependent homologous recombinases, found ubiquitously from bacteriophages to humans. The RecA filament formed on single-stranded DNA in the presence of ATP initiates a strand exchange reaction with homologous double-stranded DNA. Of the three stages of this reaction (search for homology, annealing of a triple-stranded structure accompanied by a switch of pairing, and displacement of the third strand), the first stage is the most enigmatic and least studied. As is generally accepted, this stage is directed by a special (extended) RecA filament structure and does not require any additional energy from ATP hydrolysis. The new approaches to the study of the strand exchange reaction with short oligonucleotides as DNA substrates and sensitive methods for a real-time monitoring of this reaction suggest that all three stages depend on ATP hydrolysis.  相似文献   

5.
The unresolved mechanism by which a single strand of DNA recognizes homology in duplex DNA is central to understanding genetic recombination and repair of double-strand breaks. Using stopped-flow fluorescence we monitored strand exchange catalyzed by E. coli RecA protein, measuring simultaneously the rate of exchange of A:T base pairs and the rates of formation and dissociation of the three-stranded intermediates called synaptic complexes. The rate of exchange of A:T base pairs was indistinguishable from the rate of formation of synaptic complexes, whereas the rate of displacement of a single strand from complexes was five to ten times slower. This physical evidence shows that a subset of bases exchanges at a rate that is fast enough to account for recognition of homology. Together, several studies suggest that a mechanism governed by the dynamic structure of DNA and catalyzed by diverse enzymes underlies both recognition of homology and initiation of strand exchange.  相似文献   

6.
Ganesh N  Muniyappa K 《Biochemistry》2003,42(23):7216-7225
The RecA-like proteins constitute a group of DNA strand transfer proteins ubiquitous in eubacteria, eukarya, and archaea. However, the functional relationship among RecA proteins is poorly understood. For instance, Mycobacterium tuberculosis RecA is synthesized as a large precursor, which undergoes an unusual protein-splicing reaction to generate an active form. Whereas the precursor was inactive, the active form promoted DNA strand transfer less efficiently compared to EcRecA. Furthermore, gene disruption studies have indicated that the frequencies of allele exchange are relatively lower in Mycobacterium tuberculosis compared to Mycobacterium smegmatis. The mechanistic basis and the factors that contribute to differences in allele exchange remain to be understood. Here, we show that the extent of DNA strand transfer promoted by the M. smegmatis RecA in vitro differs significantly from that of M. tuberculosis RecA. Importantly, M. smegmatis RecA by itself was unable to promote strand transfer, but cognate or noncognate SSBs rendered it efficient even when added prior to RecA. In the presence of SSB, MsRecA or MtRecA catalyzed strand transfer between ssDNA and varying lengths of linear duplex DNA with distinctly different pH profiles. The factors that were able to suppress the formation of DNA networks greatly stimulated strand transfer reactions promoted by MsRecA or MtRecA. Although the rate and pH profiles of dATP hydrolysis catalyzed by MtRecA and MsRecA were similar, only MsRecA was able to couple dATP hydrolysis to DNA strand transfer. Together, these results provide insights into the functional diversity in DNA strand transfer promoted by RecA proteins of pathogenic and nonpathogenic species of mycobacteria.  相似文献   

7.
General mechanism for RecA protein binding to duplex DNA   总被引:6,自引:0,他引:6  
RecA protein binding to duplex DNA occurs by a multi-step process. The tau analysis, originally developed to examine the binding of RNA polymerase to promoter DNA, is adapted here to study two kinetically distinguishable reaction segments of RecA-double stranded (ds) DNA complex formation in greater detail. One, which is probably a rapid preequilibrium in which RecA protein binds weakly to native dsDNA, is found to have the following properties: (1) a sensitivity to pH, involving a net release of approximately one proton; (2) a sensitivity to salts; (3) little or no dependence on temperature; (4) little or no dependence on DNA length. The second reaction segment, the rate-limiting nucleation of nucleoprotein filament formation accompanied by partial DNA unwinding, is found to have the following properties: (1) a sensitivity to pH, involving a net uptake of approximately three protons; (2) a sensitivity to salts; (3) a relatively large dependence on temperature, with an Arrhenius activation energy of 39 kcal mol(-1); (4) a sensitivity to DNA topology; (5) a dependence on DNA length. These results contribute to a general mechanism for RecA protein binding to duplex DNA, which can provide a rationale for the apparent preferential binding to altered DNA structures such as pyrimidine dimers and Z-DNA.  相似文献   

8.
9.
S A Chow  S K Chiu  B C Wong 《Biochimie》1991,73(2-3):157-161
RecA protein promotes homologous pairing and symmetrical strand exchange between partially single-stranded duplex DNA and fully duplex molecules. We constructed circular gapped DNA with a defined gap length and studied the pairing reaction between the gapped substrate and fully duplex DNA. RecA protein polymerizes onto the single-stranded and duplex regions of the gapped DNA to form a nucleoprotein filament. The formation of such filaments requires a stoichiometric amount of RecA protein. Both the rate and yield of joint molecule formation were reduced when the pairing reaction was carried out in the presence of a sub-saturating amount of RecA protein. The amount of RecA protein required for optimal pairing corresponds to the binding site size of RecA protein at saturation on duplex DNA. The result suggests that in the 4-stranded system the single-stranded as well as the duplex regions are involved in pairing. By using fully duplex DNA that shares different lengths and regions of homology with the gapped molecule, we directly showed that the duplex region of the gapped DNA increased both the rate and yield of joint molecule formation. The present study indicates that even though strand exchange in the 4-stranded system must require the presence of a single-stranded region, the pairing that occurs in duplex regions between DNA molecules is functionally significant and contributes to the overall activity of the gapped DNA.  相似文献   

10.
RecA protein catalyzes homologous pairing of partially single-stranded duplex DNA and fully duplex DNA to form stable joint molecules. We constructed circular duplex DNA with various defined gap lengths and studied the pairing reaction between the gapped substrate with fully double-stranded DNA. The reaction required a stoichiometric amount of RecA protein, and the optimal reaction was achieved at a ratio of 1 RecA monomer per 4 base pairs. The length of the gap, ranging from 141 to 1158 nucleotides, had little effect on the efficiency of homologous pairing. By using a circular gapped duplex DNA prepared from the chimeric phage M13Gori1, we were able to show the formation of nonintertwined or paranemic joints in duplex regions between the gapped and fully duplex molecules. The formation of such paranemic joints occurred efficiently and included nearly all of the DNA in the reaction mixture. The reaction required negative superhelicity, and pairing was greatly reduced with linear or nicked circular DNA. We conclude that one functional role of the single-stranded gap is for facilitating the binding of RecA protein to the duplex region of the gapped DNA. Once the nucleoprotein filament is formed, homologous pairing between the gapped and fully duplex DNA can take place anywhere along the length of the nucleoprotein complex.  相似文献   

11.
A method is described for the accurate determination of the superhelical density (omega) of highly underwound circular DNA molecules. Using this method, duplex DNA bound by RecA protein in the presence of ATP at pH 7.5 is found to be underwound by 39.6% (omega = -0.396), corresponding to a helical periodicity of 17.4 base-pairs per turn. The underwinding is increased to 41% (17.9 base-pairs per turn) in the presence of low levels of ATP gamma S, in good agreement with the 18.6 base-pairs per turn reported previously. In spite of the extensive underwinding, the distribution of DNA topoisomers produced by RecA protein binding is small. This indicates a high degree of structural uniformity among RecA-double-stranded DNA complexes in the presence of ATP.  相似文献   

12.
The search for homologous sequences promoted by RecA protein in vitro involves a presynaptic filament and naked duplex DNA, the multiple contacts of which produce nucleoprotein networks or coaggregates. The single-stranded DNA within the presynaptic filaments, however, is extended to an axial spacing 1.5 times that of B-form DNA. To investigate this paradoxical difference between the spacing of bases in the RecA presynaptic filament versus the target duplex DNA, we explored the effect of heterologous contacts on the conformation of DNA, and vice versa. In the presence of wheat germ topoisomerase I, RecA presynaptic filaments induced a rapid, limited reduction in the linking number of heterologous circular duplex DNA. This limited unwinding of heterologous duplex DNA, termed heterologous unwinding, was detected within 30 seconds and reached a steady state within a few minutes. Presynaptic filaments that were formed in the presence of ATP gamma S and separated from free RecA protein by gel filtration also generated a ladder of topoisomers upon incubation with relaxed duplex DNA and topoisomerase. The inhibition of heterologous contacts by 60 mM-NaCl or 5 mM-ADP resulted in a corresponding decrease in heterologous unwinding. In reciprocal fashion, the stability or number of heterologous contacts with presynaptic filaments was inversely related to the linking number of circular duplex DNA. These observations show that heterologous contacts with the presynaptic filament cause a limited unwinding of the duplex DNA, and conversely that the ability of the DNA to unwind stabilizes transient heterologous contacts.  相似文献   

13.
E C Conley  S C West 《Cell》1989,56(6):987-995
The RecA protein from E. coli gains access to duplex DNA, by nucleation from a short single-stranded gap, to form a spiral nucleoprotein filament that is capable of interaction with homologous duplex DNA. The observations described here demonstrate that any part of the nucleoprotein filament, whether it contains single- or double-stranded DNA, is capable of pairing with homologous duplex DNA. Homologous contacts between regions of duplex DNA lead to an increase in the initial rate and final extent of joint molecule formation. The experiments indicate that pairing is facilitated by the formation of nascent synaptic intermediates between duplex DNA sequences. Using chimeric form I DNA, which is incapable of forming an inter-wound or plectonemic joint with the gapped DNA due to the presence of flanking heterologous sequences, we show that these duplex-duplex pairing reactions involve extensive underwinding of the double helix.  相似文献   

14.
RNA-DNA hybridization promoted by E. coli RecA protein.   总被引:1,自引:0,他引:1       下载免费PDF全文
RecA protein of E. coli plays a central regulatory role that is induced by damage to DNA and results in the inactivation of LexA repressor. In vitro, RecA protein binds preferentially to single-stranded DNA to form a nucleoprotein filament that can recognize homology in naked duplex DNA and promote extensive strand exchange. Although RecA protein shows little tendency at neutral pH to bind to RNA, we found that it nonetheless catalyzed at 37 degrees C the hybridization of complementary RNA and single-stranded DNA sequences. Hybrids made by RecA protein at 37 degrees C appeared indistinguishable from ones prepared by thermal annealing. RNA-DNA hybridization by RecA protein at neutral pH required, as does RecA-promoted homologous pairing, optimal conditions for the formation of RecA nucleoprotein filaments. The cosedimentation of RNA with those filaments further paralleled observations made on the formation of networks of nucleoprotein filaments with double-stranded DNA, an instrumental intermediate in homologous pairing in vitro. These similarities with the pairing reaction support the view that RecA protein acts specifically in the hybridization reaction.  相似文献   

15.
16.
The role of different DNA damages in the stimulation of homologous recombination was studied by using an in vivo plasmid recombination assay. Dimethyl sulphate (DMS) treatment of plasmid DNA induced a 20-50-fold increase in the frequency of recombinational events. DMS treatment also stimulated RecA protein binding to double-stranded DNA. In contrast, plasmid DNA containing uracil, which, like DMS, is also subject to repair, was less effective in stimulation of recombination. The ability of purified RecA protein to bind DMS-treated or uracil-containing DNA was tested by measuring its ATPase activity. The result indicates that DMS treatment, but not uracil incorporation, stimulates RecA protein binding to DNA. We conclude, that the main reason (or the first step) for stimulation of recombination by mutagens is activation of RecA binding to damaged DNA.  相似文献   

17.
To relate the roles of Escherichia coli SSB in recombination in vivo and in vitro, we have studied the mutant proteins SSB-1 and SSB-113, the variant SSBc produced by chymotryptic cleavage, the partially homologous variant F SSB (encoded by the E. coli sex factor), and the protein encoded by gene 32 of bacteriophage T4. All of these, with the exception of SSB-1, augmented both the initial rate of homologous pairing and strand exchange promoted by RecA protein. From these and related observations, we conclude that SSB stimulates the initial formation of joint molecules by nonspecifically promoting the binding of RecA protein to single-stranded DNA; that SSB plays no role in synapsis of the RecA nucleoprotein filament with duplex DNA; that stimulation of strand exchange by SSB is similarly nonspecific; and that all members of the class of proteins represented by SSB, F SSB, and gene 32 protein may play equivalent roles in making single-stranded DNA more accessible to RecA protein.  相似文献   

18.
19.
Supercoiled pGEMEX DNA with length of 3993 nucleotides was immobilized on four substrates (freshly cleaved mica, standard amino mica, modified amino mica with increased and decreased surface charge density compared with standard amino mica) and it was visualized by atomic force microscopy (AFM) in air. Plectonomically supercoiled DNA molecules as well as single molecules with extremely high level of compaction (i.e. molecules with significantly higher superhelix density values on comparison with previously experimentally measured and theoretically investigated ones) were visualized on modified amino mica which was characterized by increased surface charge density. Distance between base pairs along duplex axis was determined by measurements of contour length of single oversupercoiled DNA molecules. Determined rise per base pair was varied from 1.94 to 2.19 A. These compressed supercoiled DNA molecules like a spring with decreased rise/base pair on comparison with well-known DNA forms were called new DNA form--S-DNA. A model of S-DNA was built. Formation of the S-DNA molecules was suggested to be an intermediate stage on the compaction of the single supercoiled DNA molecules up to the spheroids and minitoroids. Oversupercoiling and further compression of the supercoiled DNA molecules was shown to cause by high surface charge density of amino mica on which DNA molecules were immobilized.  相似文献   

20.
Paeschke K  Capra JA  Zakian VA 《Cell》2011,145(5):678-691
G-quadruplex (G4) DNA structures are extremely stable four-stranded secondary structures held together by noncanonical G-G base pairs. Genome-wide chromatin immunoprecipitation was used to determine the in?vivo binding sites of the multifunctional Saccharomyces cerevisiae Pif1 DNA helicase, a potent unwinder of G4 structures in?vitro. G4 motifs were a significant subset of the high-confidence Pif1-binding sites. Replication slowed in the vicinity of these motifs, and they were prone to breakage in Pif1-deficient cells, whereas non-G4 Pif1-binding sites did not show this behavior. Introducing many copies of G4 motifs caused slow growth in replication-stressed Pif1-deficient cells, which was relieved by spontaneous mutations that eliminated their ability to form G4 structures, bind Pif1, slow DNA replication, and stimulate DNA breakage. These data suggest that G4 structures form in?vivo and that they are resolved by Pif1 to prevent replication fork stalling and DNA breakage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号