首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Disruption of the gene encoding RAD51, the protein that catalyzes strand exchange during homologous recombination, leads to the accumulation of chromosome breaks and lethality in vertebrate cells. As RAD51 is implicated in BRCA1- and BRCA2-mediated tumor suppression as well as cellular viability, we have begun a functional analysis of a defined RAD51 mutation in mammalian cells. By using a dominant negative approach, we generated a mouse embryonic stem cell line that expresses an ATP hydrolysis-defective RAD51 protein, hRAD51-K133R, at comparable levels to the endogenous wild-type RAD51 protein, whose expression is retained in these cells. We found that these cells have increased sensitivity to the DNA-damaging agents mitomycin C and ionizing radiation and also exhibit a decreased rate of spontaneous sister-chromatid exchange. By using a reporter for the repair of a single chromosomal double-strand break, we also found that expression of the hRAD51-K133R protein specifically inhibits homology-directed double-strand break repair. Furthermore, expression of a BRC repeat from BRCA2, a peptide inhibitor of an early step necessary for strand exchange, exacerbates the inhibition of homology-directed repair in the hRAD51-K133R expressing cell line. Thus, ATP hydrolysis by RAD51 has a key role in various types of DNA repair in mammalian cells.  相似文献   

2.
The prototypical bacterial RecA protein promotes recombination/repair by catalyzing strand exchange between homologous DNAs. While the mechanism of strand exchange remains enigmatic, ATP-induced cooperativity between RecA protomers is critical for its function. A human RecA homolog, human RAD51 protein (hRAD51), facilitates eukaryotic recombination/repair, although its ability to hydrolyze ATP and/or promote strand exchange appears distinct from the bacterial RecA. We have quantitatively examined the hRAD51 ATPase. The catalytic efficiency (k(cat)/K(m)) of the hRAD51 ATPase was approximately 50-fold lower than the RecA ATPase. Altering the ratio of DNA/hRAD51 and including salts that stimulate DNA strand exchange (ammonium sulfate and spermidine) were found to affect the catalytic efficiency of hRAD51. The average site size of hRAD51 was determined to be approximately 3 nt (bp) for both single-stranded and double-stranded DNA. Importantly, hRAD51 lacks the magnitude of ATP-induced cooperativity that is a hallmark of RecA. Together, these results suggest that hRAD51 may be unable to coordinate ATP hydrolysis between neighboring protomers.  相似文献   

3.
HIV-1 integrase (IN) is the key enzyme catalyzing the proviral DNA integration step. Although the enzyme catalyzes the integration step accurately in vitro, whether IN is sufficient for in vivo integration and how it interacts with the cellular machinery remains unclear. We set up a yeast cellular integration system where integrase was expressed as the sole HIV-1 protein and targeted the chromosomes. In this simple eukaryotic model, integrase is necessary and sufficient for the insertion of a DNA containing viral LTRs into the genome, thereby allowing the study of the isolated integration step independently of other viral mechanisms. Furthermore, the yeast system was used to identify cellular mechanisms involved in the integration step and allowed us to show the role of homologous recombination systems. We demonstrated physical interactions between HIV-1 IN and RAD51 protein and showed that HIV-1 integrase activity could be inhibited both in the cell and in vitro by RAD51 protein. Our data allowed the identification of RAD51 as a novel in vitro IN cofactor able to down regulate the activity of this retroviral enzyme, thereby acting as a potential cellular restriction factor to HIV infection.  相似文献   

4.
Bloom syndrome (BS) is an autosomal recessive disorder characterized by a high incidence of cancer and genomic instability. BLM, the protein defective in BS, is a RecQ-like helicase, presumed to function in DNA replication, recombination, or repair. BLM localizes to promyelocytic leukemia protein (PML) nuclear bodies and is expressed during late S and G2. We show, in normal human cells, that the recombination/repair proteins hRAD51 and replication protein (RP)-A assembled with BLM into a fraction of PML bodies during late S/G2. Biochemical experiments suggested that BLM resides in a nuclear matrix-bound complex in which association with hRAD51 may be direct. DNA-damaging agents that cause double strand breaks and a G2 delay induced BLM by a p53- and ataxia-telangiectasia mutated independent mechanism. This induction depended on the G2 delay, because it failed to occur when G2 was prevented or bypassed. It coincided with the appearance of foci containing BLM, PML, hRAD51 and RP-A, which resembled ionizing radiation-induced foci. After radiation, foci containing BLM and PML formed at sites of single-stranded DNA and presumptive repair in normal cells, but not in cells with defective PML. Our findings suggest that BLM is part of a dynamic nuclear matrix-based complex that requires PML and functions during G2 in undamaged cells and recombinational repair after DNA damage.  相似文献   

5.
The RAD51 paralogues act in the homologous recombination (HR) pathway of DNA repair. Human RAD51C (hRAD51C) participates in branch migration and Holliday junction resolution and thus is important for processing HR intermediates late in the DNA repair process. Evidence for early involvement of RAD51 during DNA repair also exists, but its function in this context is not understood. In this study, we demonstrate that RAD51C accumulates at DNA damage sites concomitantly with the RAD51 recombinase and is retained after RAD51 disassembly, which is consistent with both an early and a late function for RAD51C. RAD51C recruitment depends on ataxia telangiectasia mutated, NBS1, and replication protein A, indicating it functions after DNA end resection but before RAD51 assembly. Furthermore, we find that RAD51C is required for activation of the checkpoint kinase CHK2 and cell cycle arrest in response to DNA damage. This suggests that hRAD51C contributes to the protection of genome integrity by transducing DNA damage signals in addition to engaging the HR machinery.  相似文献   

6.
We have previously shown that human immunodeficiency virus-1 (HIV-1) integrase is an unstable protein and a substrate for the N-end rule degradation pathway. This degradation pathway shares its ubiquitin-conjugating enzyme, Rad6, with the post-replication/translesion DNA repair pathway. Because DNA repair is thought to play an essential role in HIV-1 integration, we investigated whether other molecules of this DNA repair pathway could interact with integrase. We observed that co-expression of human Rad18 induced the accumulation of an otherwise unstable form of HIV-1 integrase. This accumulation occurred even though hRAD18 possesses a RING finger domain, a structure that is generally associated with E3 ubiquitin ligase function and protein degradation. Evidence for an interaction between integrase and hRad18 was obtained through reciprocal co-immunoprecipitation. Moreover we found that a 162-residue region of hRad18 (amino acids 65-226) was sufficient for both integrase stabilization and interaction. Finally, we observed that HIV-1 integrase co-localized with hRad18 in nuclear structures in a subpopulation of co-transfected cells. Taken together, these findings identify hRad18 as a novel interacting partner of HIV-1 integrase and suggest a role for post-replication/translesion DNA repair in the retroviral integration process.  相似文献   

7.
hXRCC2 enhances ADP/ATP processing and strand exchange by hRAD51   总被引:4,自引:0,他引:4  
The assembly of bacterial RecA, and its human homolog hRAD51, into an operational ADP/ATP-regulated DNA-protein (nucleoprotein) filament is essential for homologous recombination repair (HRR). Yet hRAD51 lacks the coordinated ADP/ATP processing exhibited by RecA and is less efficient in HRR reactions in vitro. In this study, we demonstrate that hXRCC2, one of five other poorly understood non-redundant human mitotic RecA homologs (hRAD51B, hRAD51C, hRAD51D, hXRCC2, and hXRCC3), stimulates hRAD51 ATP processing. hXRCC2 also increases hRAD51-mediated DNA unwinding and strand exchange activities that are integral for HRR. Although there does not seem to be a long-lived interaction between hXRCC2 and hRAD51, we detail a strong adenosine nucleotide-regulated interaction between the hXRCC2-hRAD51D heterodimer and hRAD51. These observations begin to elucidate the separate and specialized functions of the human mitotic RecA homologs that enable an efficient nucleoprotein filament required for HRR.  相似文献   

8.
Adenosine nucleotides affect the ability of RecA small middle dotsingle-stranded DNA (ssDNA) nucleoprotein filaments to cooperatively assume and maintain an extended structure that facilitates DNA pairing during recombination. Here we have determined that ADP and ATP/ATPgammaS affect the DNA binding and aggregation properties of the human RecA homolog human RAD51 protein (hRAD51). These studies have revealed significant differences between hRAD51 and RecA. In the presence of ATPgammaS, RecA forms a stable complex with ssDNA, while the hRAD51 ssDNA complex is destabilized. Conversely, in the presence of ADP and ATP, the RecA ssDNA complex is unstable, while the hRAD51 ssDNA complex is stabilized. We identified two hRAD51 small middle dotssDNA binding forms by gel shift analysis, which were distinct from a well defined RecA small middle dotssDNA binding form. The available evidence suggests that a low molecular weight hRAD51 small middle dotssDNA binding form (hRAD51 small middle dotssDNA(low)) correlates with active ADP and ATP processing. A high molecular weight hRAD51 small middle dotssDNA aggregate (hRAD51 small middle dotssDNA(high)) appears to correlate with a form that fails to process ADP and ATP. Our data are consistent with the notion that hRAD51 is unable to appropriately coordinate ssDNA binding with adenosine nucleotide processing. These observations suggest that other factors may assist hRAD51 in order to mirror RecA recombinational function.  相似文献   

9.
Homologous recombination (HR) is a primary DNA double-strand breaks (DSBs) repair mechanism. The recombinases Rad51 and Dmc1 are highly conserved in the RecA family; Rad51 is mainly responsible for DNA repair in somatic cells during mitosis while Dmc1 only works during meiosis in germ cells. This spatiotemporal difference is probably due to their distinctive mismatch tolerance during HR: Rad51 does not permit HR in the presence of mismatches, whereas Dmc1 can tolerate certain mismatches. Here, the cryo-EM structures of Rad51–DNA and Dmc1–DNA complexes revealed that the major conformational differences between these two proteins are located in their Loop2 regions, which contain invading single-stranded DNA (ssDNA) binding residues and double-stranded DNA (dsDNA) complementary strand binding residues, stabilizing ssDNA and dsDNA in presynaptic and postsynaptic complexes, respectively. By combining molecular dynamic simulation and single-molecule FRET assays, we identified that V273 and D274 in the Loop2 region of human RAD51 (hRAD51), corresponding to P274 and G275 of human DMC1 (hDMC1), are the key residues regulating mismatch tolerance during strand exchange in HR. This HR accuracy control mechanism provides mechanistic insights into the specific roles of Rad51 and Dmc1 in DNA double-strand break repair and may shed light on the regulatory mechanism of genetic recombination in mitosis and meiosis.  相似文献   

10.
RecA mediated homologous recombination requires cooperative ATP binding and hydrolysis to assume and maintain an active, extended DNA-protein (nucleoprotein) filament. Human RAD51 protein (hRAD51) lacks the magnitude of ATP-induced cooperativity and catalytic efficiency displayed by RecA. Here, we examined hRAD51 binding and ATPase inhibition pattern by ADP and ATP/adenosine 5'-O-(thiotriphosphate) (ATPgammaS). hRAD51 fully saturates with ATP/ATPgammaS regardless of DNA cofactor (K(D) approximately 5 microm; 1 ATP/1 hRAD51). The binding of ADP to hRAD51 appeared bimodal. The first mode was identical to ATP/ATPgammaS binding (K(app1) approximately 3 microm; 1 ADP/1 hRAD51), while a second mode occurred at elevated ADP concentrations (K(app2) > or = 125 microm; >1 ADP/1 hRAD51). We could detect ADP --> ATP exchange in the high affinity ADP binding mode (K(app1)) but not the low affinity binding mode (K(app2)). At low ATP concentrations (<0.3 mm), ADP and ATPgammaS competitively inhibit the hRAD51 ATPase (K(m)((app)) > K(m)). However, at high ATP (>0.3 mm), the hRAD51 ATPase was stimulated by concentrations of ATPgammaS that were 20-fold above the K(D). Ammonium sulfate plus spermidine decreased the affinity of hRAD51 for ADP substantially ( approximately 10-fold) and ATP modestly ( approximately 3-fold). Our results suggest that ATP binding is not rate-limiting but that the inability to sustain an active nucleoprotein filament probably restricts the hRAD51 ATPase.  相似文献   

11.
tert-Butoxy-(4-phenyl-quinolin-3-yl)-acetic acids (tBPQA) are a new class of HIV-1 integrase (IN) inhibitors that are structurally distinct from IN strand transfer inhibitors but analogous to LEDGINs. LEDGINs are a class of potent antiviral compounds that interacts with the lens epithelium-derived growth factor (LEDGF) binding pocket on IN and were identified through competition binding against LEDGF. LEDGF tethers IN to the host chromatin and enables targeted integration of viral DNA. The prevailing understanding of the antiviral mechanism of LEDGINs is that they inhibit LEDGF binding to IN, which prevents targeted integration of HIV-1. We showed that in addition to the properties already known for LEDGINs, the binding of tBPQAs to the IN dimer interface inhibits IN enzymatic activity in a LEDGF-independent manner. Using the analysis of two long terminal repeat junctions in HIV-infected cells, we showed that the inhibition by tBPQAs occurs at or prior to the viral DNA 3'-processing step. Biochemical studies revealed that this inhibition operates by compound-induced conformational changes in the IN dimer that prevent proper assembly of IN onto viral DNA. For the first time, tBPQAs were demonstrated to be allosteric inhibitors of HIV-1 IN displaying a dual mode of action: inhibition of IN-viral DNA assembly and inhibition of IN-LEDGF interaction.  相似文献   

12.
13.
We have reconstituted concerted human immunodeficiency virus type 1 (HIV-1) integration in vitro with specially designed mini-donor HIV-1 DNA, a supercoiled plasmid acceptor, purified bacterium-derived HIV-1 integrase (IN), and host HMG protein family members. This system is comparable to one previously described for avian sarcoma virus (ASV) (A. Aiyar et al., J. Virol. 70:3571-3580, 1996) that was stimulated by the presence of HMG-1. Sequence analyses of individual HIV-1 integrants showed loss of 2 bp from the ends of the donor DNA and almost exclusive 5-bp duplications of the acceptor DNA at the site of integration. All of the integrants sequenced were inserted into different sites in the acceptor. These are the features associated with integration of viral DNA in vivo. We have used the ASV and HIV-1 reconstituted systems to compare the mechanism of concerted DNA integration and examine the role of different HMG proteins in the reaction. Of the three HMG proteins examined, HMG-1, HMG-2, and HMG-I(Y), the products formed in the presence of HMG-I(Y) for both systems most closely match those observed in vivo. Further analysis of HMG-I(Y) mutants demonstrates that the stimulation of integration requires an HMG-I(Y) domain involved in DNA binding. While complexes containing HMG-I(Y), ASV IN, and donor DNA can be detected in gel shift experiments, coprecipitation experiments failed to demonstrate stable interactions between HMG-I(Y) and ASV IN or between HMG-I(Y) and HIV-1 IN.  相似文献   

14.
Shim KS  Schmutte C  Yoder K  Fishel R 《DNA Repair》2006,5(6):718-730
Previous work by Sung and colleagues identified unusual salt requirements for hRAD51 strand exchange compared to RecA [S. Sigurdsson, K. Trujillo, B. Song, S. Stratton, P. Sung, Basis for avid homologous DNA strand exchange by human Rad51 and RPA, J. Biol. Chem. 276 (2001) 8798-8806]. Later studies showed that this salt [(NH4)2SO4] appeared to enhance the ability of hRAD51 to distinguish ssDNA from dsDNA [Y. Liu, A.Z. Stasiak, J.Y. Masson, M.J. McIlwraith, A. Stasiak, S.C. West, Conformational changes modulate the activity of human RAD51 protein, J. Mol. Biol. 337 (2004) 817-827]. The mechanism of this salt effect remains enigmatic. Here, we detail the properties of several neutral salts on hRAD51 activities. We found that the cation identity correlated with the stimulatory effect of these neutral salts on hRAD51 ATPase and strand exchange activities. The salt effect appears to be related to the size of the cation, which may be largely mimicked with the cesium ion. These results are consistent with the hypothesis that stimulating cations induce an important conformation and/or transition state in hRAD51. In the presence of an optimal ammonium-based salt (NaNH4HPO4), hRAD51 mediated strand exchange was successfully performed using a simplified protocol. We confirmed and extend the observation that efficient strand exchange correlated with preferential binding of ssDNA over dsDNA. In addition we observed an induced stability of the hRAD51-DNA complex in the presence of ATP that becomes unstable following ATP hydrolysis (the ADP form or nucleotide free form). These salt-induced characteristics of hRAD51 increasingly resemble RecA-mediated recombinase activities, which should help in dissecting the mechanism of these proteins in homologous recombination.  相似文献   

15.
Complementation of integrase function in HIV-1 virions.   总被引:6,自引:0,他引:6       下载免费PDF全文
Proviral integration is essential for HIV-1 replication and represents an important potential target for antiviral drug design. Although much is known about the integration process from studies of purified integrase (IN) protein and synthetic target DNA, provirus formation in virally infected cells remains incompletely understood since reconstituted in vitro assays do not fully reproduce in vivo integration events. We have developed a novel experimental system in which IN-mutant HIV-1 molecular clones are complemented in trans by Vpr-IN fusion proteins, thereby enabling the study of IN function in replicating viruses. Using this approach we found that (i) Vpr-linked IN is efficiently packaged into virions independent of the Gag-Pol polyprotein, (ii) fusion proteins containing a natural RT/IN processing site are cleaved by the viral protease and (iii) only the cleaved IN protein complements IN-defective HIV-1 efficiently. Vpr-mediated packaging restored IN function to a wide variety of IN-deficient HIV-1 strains including zinc finger, catalytic core and C-terminal domain mutants as well as viruses from which IN was completely deleted. Furthermore, trans complemented IN protein mediated a bona fide integration reaction, as demonstrated by the precise processing of proviral ends (5'-TG...CA-3') and the generation of an HIV-1-specific (5 bp) duplication of adjoining host sequences. Intragenic complementation between IN mutants defective in different protein domains was also observed, thereby providing the first evidence for IN multimerization in vivo.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) integrase (IN) is an essential enzyme in the HIV-1 lifecycle which aids the integration of viral DNA into the host chromosome. Recently synthesized 12-mer peptide EBR28, which can strongly bind to IN, is one of the most potential small peptide leading compounds inhibiting IN binding with viral DNA. However, the binding mode between EBR28 peptide with HIV-1 IN and the inhibition mechanism remain uncertain. In this paper, the binding modes of EBR28 with HIV-1 IN monomer core domain (IN(1)) and dimmer core domain (IN(2)) were investigated by using molecular docking and molecular dynamics (MD) simulation methods. The results indicated that EBR28 bound to the interfaces of the IN(1) and IN(2) systems mainly through the hydrophobic interactions with the beta3, alpha1 and alpha5 regions of the proteins. The binding free energies for IN(1) with a series of EBR28 mutated peptides were calculated with the MM/GBSA model, and the correlation between the calculated and experimental binding free energies is very good (r=0.88). Thus, the validity of the binding mode of IN(1) with EBR28 was confirmed. Based on the binding modes, the inhibition mechanism of EBR28 was explored by analyzing the essential dynamics (ED), energy decomposition and the mobility of EBR28 in the two docked complexes. The proposed inhibition mechanism is represented that EBR28 binds to the interface of IN(1) to form the IN(1)_EBR28 complex and preventes the formation of IN dimmer, finally leads to the partial loss of binding potency for IN with viral DNA. All of the above simulation results agree well with experimental data, which provide us with some helpful information for designing anti-HIV small peptide drugs.  相似文献   

17.
An essential mechanism for repairing DNA double‐strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single‐stranded DNA, promoting DNA‐strand exchange. Here, we study the interaction of hRAD51 with single‐stranded DNA using a single‐molecule approach. We show that ATP‐bound hRAD51 filaments can exist in two different states with different contour lengths and with a free‐energy difference of ~4 kBT per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly‐competent ADP‐bound configuration. In agreement with the single‐molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51‐ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51‐ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange.  相似文献   

18.
In vitro activities of purified visna virus integrase.   总被引:7,自引:5,他引:2       下载免费PDF全文
Although integration generally is considered a critical step in the retrovirus life cycle, it has been reported that visna virus, which causes degenerative neurologic disease in sheep, can productively infect sheep choroid plexus cells without detectable integration. To ascertain whether the integrase (IN) of visna virus is an inherently defective enzyme and to create tools for further study of integration of the phylogenetically related human immunodeficiency virus type 1 (HIV-1), we purified visna virus IN by using a bacterial expression system and applied various in vitro oligonucleotide-based assays to studying this protein. We found that visna virus IN demonstrates the full repertoire of in vitro functions characteristic of retroviral integrases. In particular, visna virus IN exhibits site-specific endonuclease activity following the invariant CA found two nucleotides from the 3' ends of viral DNA (processing activity), joins processed oligonucleotides to various sites on other oligonucleotides (strand transfer or integration activity), and reverses the integration reaction by resolving a complex that mimics one end of viral DNA integrated into host DNA (disintegration activity). In addition, although it has been reported that purified HIV-1 IN cannot specifically nick visna virus DNA ends, purified visna virus IN does specifically process and integrate HIV-1 DNA ends.  相似文献   

19.
We have reconstituted concerted human immunodeficiency virus type 1 (HIV-1) integration with specially designed mini-donor DNA, a supercoiled plasmid acceptor, purified bacterial-derived HIV-1 integrase (IN), and host HMG-I(Y) protein (Hindmarsh, P., Ridky, T., Reeves, R., Andrake, M., Skalka, A. M., and Leis, J. (1999) J. Virol. 73, 2994-3003). Integration in this system is dependent upon the mini donor DNA having IN recognition sequences at both ends and the reaction products have all of the features associated with integration of viral DNA in vivo. Using this system, we explored the relationship between the HIV-1 U3 and U5 IN recognition sequences by analyzing substrates that contain either two U3 or two U5 terminal sequences. Both substrates caused severe defects to integration but with different effects on the mechanism indicating that the U3 and the U5 sequences are both required for concerted DNA integration. We have also used the reconstituted system to compare the mechanism of integration catalyzed by HIV-1 to that of avian sarcoma virus by analyzing the effect of defined mutations introduced into U3 or U5 ends of the respective wild type DNA substrates. Despite sequence differences between avian sarcoma virus and HIV-1 IN and their recognition sequences, the consequences of analogous base pair substitutions at the same relative positions of the respective IN recognition sequences were very similar. This highlights the common mechanism of integration shared by these two different viruses.  相似文献   

20.
We have carried out a molecular dynamics (MD) simulation of full-length HIV-1 integrase (IN) dimer complexed with viral DNA with the aim of gaining information about the enzyme motion and investigating the movement of the catalytic flexible loop (residues 140-149) thought to be essential in the catalytic mechanism of IN. During the simulation, we observed quite a different behavior of this region in the presence or absence of the viral DNA. In particular, the MD results underline the crucial role of the residue Tyr143 in the mechanism of integration of viral DNA into the host chromosome. The present findings confirm the experimental data (e.g., site-directed mutagenesis experiments) showing that the loop is involved in the integration reactions and its mobility is correlated with the catalytic activity of HIV-1 integrase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号