首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用解剖及石蜡切片显微技术,观察研究了光唇鱼消化道的形态结构特征。消化道由口咽腔、食道、肠构成。口下位、马蹄形,无颌齿,具咽齿,齿式为4/4。舌较小,前端游离,舌粘膜表层为复层鳞状上皮,有较多的杯状细胞和味蕾。食道及肠均由粘膜层、粘膜下层、肌层及外膜构成。食道内皱襞发达,粘膜层有大量杯状细胞。肠道盘曲,由前、中、后肠组成,肠长/体长为1.84±0.24;前肠管腔较大,中、后肠管腔渐变小;前、中肠皱襞及纹状缘比后肠发达;前肠及后肠杯状细胞较少,中肠杯状细胞较多。光唇鱼消化道的形态结构特征与其食性相适应。  相似文献   

2.
The midgut epithelium of Isohypsibius granulifer granulifer (Eutardigrada) is composed of columnar digestive cells. At its anterior end, a group of cells with cytoplasm which differs from the cytoplasm of digestive cells is present. Probably, those cells respond to crescent-like cells (midgut regenerative cells) described for some tardigrade species. Their mitotic divisions have not been observed. We analyzed the ultrastructure of midgut digestive cells in relation to five different stages of oogenesis (previtellogenesis, beginning of the vitellogenesis, vitellogenesis—early choriogenesis, vitellogenesis—middle choriogenesis, late choriogenesis). In the midgut epithelium cells, the gradual accumulation of glycogen granules, lipid droplets and structures of varying electron density occurs. During vitellogenesis and choriogenesis, in the cytoplasm of midgut cells we observed the increasing number of organelles which are responsible for the intensive synthesis of lipids, proteins and saccharides such as cisterns of endoplasmic reticulum and Golgi complexes. At the end of oogenesis, autophagy also intensifies in midgut epithelial cells, which is probably caused by the great amount of reserve material. Midgut epithelium of analyzed species takes part in the yolk precursor synthesis.  相似文献   

3.
Lithobius forficatus (Myriapoda, Chilopoda, Lithobiidae) is a widespread species of centipede that is common across Europe. Its midgut epithelial cells are an important line of defense against toxic substances that originate in food, such as pathogens and metals. Despite this important role, the biology of the midgut epithelium is not well known. Here we describe the ultrastructure of the midgut epithelium, as well as the replacement of degenerated midgut epithelial cells. The midgut epithelium of L. forficatus is composed of digestive, secretory, and regenerative cells. The cytoplasm of digestive cells shows regionalization in organelle distribution, which is consistent with the role of these cells in secretion of enzymes, absorption of nutrients, and accumulation of lipids and glycogen. Secretory cells, which do not reach the luminal surface of the midgut epithelium, possess numerous electron‐dense and electron‐lucent granules and may have an endocrine function. Hemidesmosomes anchor secretory cells to the basal lamina. Regenerative cells play the role of midgut stem cells, as they are able to proliferate and differentiate. Their proliferation occurs in a continuous manner, and their progeny differentiate only into digestive cells. The regeneration of secretory cells was not observed. Mitotic divisions of regenerative cells were confirmed using immunolabeling against BrdU and phosphohistone H3. Hemocytes associate with the midgut epithelium, accumulating between the visceral muscles and beneath the basal lamina of the midgut epithelium. Hemocytes also occur among the digestive cells of the midgut epithelium in animals infected with Rickettsia‐like microorganisms. These hemocytes presumably have an immunoprotective function in the midgut.  相似文献   

4.
The midgut epithelial cells of many invertebrates may possess microorganisms which act as symbionts or pathogens (bacteria, microsporidia, viruses). During our previous studies on Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada, Eutardigrada), which examined alterations of the midgut epithelium during oogenesis, we found that some of the specimens were infected with microsporidia. All stages of pathogens occurred in the cytoplasm of the digestive cells in the midgut epithelium of I. g. granulifer that were infected with microsporidia: meronts, sporonts, sporoblasts, and spores. The cytoplasm of the digestive cells was rich in mitochondria, cisterns of rough endoplasmic reticulum (RER), and Golgi complexes. Autophagy in the digestive cells of the dorsal midgut was much more intensive in comparison with noninfected specimens. Membranes of phagophores surrounded the pathogens forming autophagosomes. These latter structures fused with lysosomes forming autolysosomes and residual bodies appeared. Neither glycogen granules nor droplets of varying electron density, which accumulated in digestive cells during vitellogenesis and choriogenesis, appeared in individuals with microsporidia. While the midgut epithelium in noninfected specimens takes part in vitellogenesis and choriogenesis, in infected specimens, midgut cells are involved in the process of autophagy as a survival strategy.  相似文献   

5.
The ultrastructure of endocrine cells in the midgut of the adult mosquito, Aedes aegypti, resembled that of endocrine cells in the vertebrate gastro-intestinal tract. Midgut endocrine cells, positioned basally in the epithelium as single cells, were cone-shaped and smaller than the columnar digestive cells. The most distinctive characteristic of endocrine cells was numerous round secretory granules along the lateral and basal plasma membranes where contents of the granules were released by exocytosis. Secretory granules in each individual cell were exclusively of one type, either solid or 'haloed', and for all cells observed, the range in granule diameter was 60-120 nm. The cytoplasm varied in density from clear to dark. Lamellar bodies were prominent in the apical and lateral cellular regions and did not exhibit acid phosphatase activity. The basal plasma membrane was smooth adjacent to the basal lamina, whereas in digestive cells the membrane formed a labyrinth. Some endocrine cells reached the midgut lumen and were capped by microvilli; a system of vesicles and tubules extended from beneath the microvilli to the cell body. An estimated 500 endocrine cells were distributed in both the thoracic and abdominal regions of the adult midgut. In one midgut, we classified a sample of endocrine cells according to cytoplasmic density and granule type and size; endocrine cells with certain types of granules had specific distributions within the midgut.  相似文献   

6.
The midgut of the females of Syringophilopsis fringilla (Fritsch) composed of anterior midgut and excretory organ (=posterior midgut) was investigated by means of light and transmission electron microscopy. The anterior midgut includes the ventriculus and two pairs of midgut caeca. These organs are lined by a similar epithelium except for the region adjacent to the coxal glands. Four cell subtypes were distinguished in the epithelium of the anterior midgut. All of them evidently represent physiological states of a single cell type. The digestive cells are most abundant. These cells are rich in rough endoplasmic reticulum and participate both in secretion and intracellular digestion. They form macropinocytotic vesicles in the apical region and a lot of secondary lysosomes in the central cytoplasm. After accumulating various residual bodies and spherites, the digestive cells transform into the excretory cells. The latter can be either extruded into the gut lumen or bud off their apical region and enter a new digestive cycle. The secretory cells were not found in all specimens examined. They are characterized by the presence of dense membrane-bounded granules, 2–4 μm in diameter, as well as by an extensive rough endoplasmic reticulum and Golgi bodies. The ventricular wall adjacent to the coxal glands demonstrates features of transporting epithelia. The cells are characterized by irregularly branched apical processes and a high concentration of mitochondria. The main function of the excretory organ (posterior midgut) is the elimination of nitrogenous waste. Formation of guanine-containing granules in the cytoplasm of the epithelial cells was shown to be associated with Golgi activity. The excretory granules are released into the gut lumen by means of eccrine or apocrine secretion. Evacuation of the fecal masses occurs periodically. Mitotic figures have been observed occasionally in the epithelial cells of the anterior midgut.  相似文献   

7.
The midgut of unfed larvae and adult mites of Platytrombidium fasciatum (C.L. Koch, 1836) and Camerotrombidium pexatum (C.L. Koch, 1937) (Acariformes: Microtrombidiidae) was investigated by electron microscopy. The sac-like midgut occupies the entire body volume, ends blindly and is not divided into functionally differentiated diverticula or caeca. The midgut walls are composed of one type of digestive cell that greatly varies in shape and size. In larvae, the lumen of the midgut is poorly recognizable and its epithelium is loosely organized, although yolk granules are already utilized. In adults, the midgut forms compartments as a result of deep folds of the midgut walls, and the lumen is well distinguished. The epithelium is composed of flat, prismatic or club-like cells, which may contain nutritional vacuoles and residual bodies in various proportions that depend on digestive stages. In both larvae and adult mites, parts of cells may detach from the epithelium and float within the lumen. The cells contain a system of tubules and vesicles of a trans-Golgi network, whereas the apical surface forms microvilli as well as pinocytotic pits and vesicles. Lysosome-like bodies, lipid inclusions and some amount of glycogen particles are also present in the digestive cells. Spherites (concretions) are not found to be a constant component of the digestive cells and in adult mites occur for the most parts in the midgut lumen.  相似文献   

8.
The ultrastructure of the digestive tract of tornaria larva of enteropneusts was investigated. It showed that the digestive tract consists of three parts: esophagus, stomach, and intestine. The esophagus epithelium consists of two types of multiciliated epithelial cells and solitary muscle cells. Axonal tracts and neurons were found in the ventral wall of the esophagus. The cardiac sphincter contains an anterior band of strongly ciliated cells and a posterior band of cells with long vacuolized processes which partition the sphincter lumen. The stomach consists of three cell types: (1) cells with electron-opaque cytoplasm, bearing a fringed border on their apical sides; (2, 3) sparse cells with electron-light cytoplasm and different patterns of apical microvilli. Cells of the pyloric sphincter bear numerous cilia and almost no microvilli. The intestine consists of three parts. The anterior part is formed of multiciliated cells which bear the fringed border. The middle part consists of flattened cells bearing rare cilia and vast numbers of mace-like microvilli. The posterior part of the intestine is formed of cells bearing numerous cilia and few microvilli. Muscle cells were not found in either stomach or intestine epithelium. One noticed that the structure of the digestive tract of enteropneust tornaria larva differs from that of echinoid pluteus larva.  相似文献   

9.
The ultrastructure of the midgut epithelium and digestion in the female tickArgas (Persicargas) arboreus are described before and after feeding, up to oviposition. The epithelium consists of secretory cells, digestive cells (DI and DII), and regenerative cells which may differentiate into any of the other cell types. In unfed ticks, the midgut wall consists mainly of type DII digestive cells retained from a previous feeding, and a few regenerative cells. Within 3 days after the tick feeding, haemolysis of the host blood components occurs in the midgut lumen. Secretory cells, the first differentiation of the regenerative cells, are presumed to produce a haemolysin and an anticoagulant which are released by merocrine and holocrine secretions. The DII cells seen in unfed ticks, and secretory cells which have completed their secretory cycle, start to have a specialized surface for endocytosis characteristic of type DI digestive cells. From 5 to 7 days after feeding up to the female oviposition, type DI cells which have completed their endocytosis are transformed into type DII digestive cells specialized for intracellular digestion and the storage of reserve nutrients required by the tick for long starvation. The various phases of the digestive cycle are considered according to ultrastructural changes of the midgut epithelium.  相似文献   

10.
The structure and functioning of the gut of Pomacea canaliculata (D'Orb.) has been investigated using living and preserved material. Anatomical studies were also carried out on preserved specimens of Pila globosa, Turbinicola saxea and Lanistes ovum bangweolicus .
The gut of pilids is specialised for a macrophagous diet, usually of aquatic angiosperms. The mid-oesophagus is a crop for storage, and the stomach has a large triturating gizzard developed from the gastric shield area. This is the site of extra-cellular digestion; there is no intra-cellular digestion in any part of the gut. The ducts of the digestive gland open into a special region of the stomach, the vestibule, which is histologically similar to them. The style sac begins the compacting of the faeces, which is completed in tho intestine. There is no evidence that absorption ocrurs in the epithelium of tho stomach or intestine; soluble products of digestion are carried into the digestive gland, which is the main site of absorption. Its activity is supplemented by amoebocytes entering the lumen of the style sac and intestine. Two types of cell occur in the gland, one type producing digestive enzymes and absorbing soluble products of digestion, the other type being excretory in function. There is no sign of phagocytosis in either. The excretory activity of the kidney is further supplemented by an anal gland.  相似文献   

11.
Cyclic changes of the midgut epithelium were observed in females of 5 ticks species of the genus Ixodes during 7-10 days of feeding. The midgut epithelium of unfed females is represented by the digestive cells of nymphal phase and stem cells. The digestive cells of nymphal phase are functional during 1.5-2 days after attachment of the tick, and then, after the tearing away they go into the gut lumen. The secretory cells substitute the digestive cells of nymphal phase and finish their growth during the 4-4.5 days. Secretion of digestive enzymes is performed by the holocrine type with tearing away a whole cell. Intracellular digestion takes place in the digestive cells of four consequent generations. The secretory and digestive cells form a peritrophic matrix on their surface. The presence of peritrophic matrix gives an evidence the maturity and functional activity of the secretory and digestive cells. We suggest, that the peritrophic matrix takes part in intracellular digestion, namely in the process of micropinocytosis. The phagocytosis was not found in the ticks investigated. Digestion in the midgut lumen is performed by enzymes of the ruptured secretory and digestive cells, that is proved by the haemolysis of erythrocytes in the zone of their contact with these cells. The digestive cells of each generation functioned almost synchronously, with largest difference in starting about 12 hours.  相似文献   

12.
Eubranchipus grubii (Crustacea, Branchiopoda, Anostraca) is an omnivorous filter feeder whose life span lasts no more than 12 weeks. Adult males and females of E. grubii were used for ultrastructural studies of the midgut epithelium and an analysis of autophagy. The midgut epithelium is formed by columnar digestive cells and no regenerative cells were observed. A distinct regionalization in the distribution of organelles appears – basal, perinuclear and apical regions were distinguished. No differences in the ultrastructure of digestive cells were observed between males and females. Autophagic disintegration of organelles occurs throughout the midgut epithelium. Degenerated organelles accumulate in the neighborhood of Golgi complexes, and these complexes presumably take part in phagophore and autophagosome formation. In some cases, the phagophore also surrounds small autophagosomes, which had appeared earlier. Fusion of autophagosomes and lysosomes was not observed, but lysosomes are enclosed during autophagosome formation. Autophagosomes and autolysosomes are discharged into the midgut lumen due to apocrine secretion. Autophagy plays a role in cell survival by protecting the cell from cell death.  相似文献   

13.
Enzyme activities associated with the labial glands, midgut and rectum of adult Acromyrmex subterraneus were investigated in order to understand their role in digestion of plant and fungal material. High chitinolytic activity was detected in the labial glands, indicating a possible role in the degradation of fungus ingested by the ants. Chitinolytic activity seen in other compartments of the alimentary canal probably originated in the labial glands. The highest activity detected in the midgut was for alpha-glucosidase, which was considered to be of insect origin due to its association with midgut epithelium and it is probably involved in glucose assimilation from nutrient sources such as maltose and sucrose present in plant material. A large range of enzyme activities were detected in the rectal lumen contents, and as in the midgut the highest values were for alpha-glucosidase activity. The absence of activity associated with the epithelium, in the particulate fraction, indicates that the rectal epithelium does not have a secretory function. The detection of enzymes in the rectal lumen contents, which were not detected in the midgut lumen contents, indicates that the rectum acts as a reservoir, accumulating enzymes. The major digestive enzymes were partially characterized using hydrophobic interaction chromatography, gel filtration and SDS-PAGE. The pH of the adult intestinal tract and flow rate of dye through the tract was investigated. A gradual acidification of the intestinal tract was noted commencing with the crop (pH 6-8.2) and terminating with the rectum (pH 3-5). The flow of dye through the different compartments of the tract showed a rapid fill time for all the gut compartments and a short residence time in the crop. In all other compartments, the dye remained detectable for 10 days or longer.  相似文献   

14.
Summary The gut of a crinoid echinoderm is described for the first time by transmission electron microscopy. The gut comprises a short esophagus, a relatively long intestine and a short rectum. From the luminal side to the coelomic side, the layers of the gut wall are an inner epithelium, an epineural plexus (much reduced or absent in the intestine and rectum), haemal fluid, smooth muscles mixed with a hyponeural plexus, and a visceral peritoneum. The inner epithelium of the esophagus consists of numerous flagellated enterocytes and some mucous cells containing abundant mucous granules. The luminal surface of the esophagus, but not that of the other gut regions, is covered by a conspicuous cuticle. The inner epithelium of the intestine consists of some exocrine cells, presumably exporting digestive enzymes to the gut lumen, and numerous vesicular enterocytes that are flagellated and contain a few apical mucous granules. The inner epithelium of the rectum is made up entirely of vesicular enterocytes most of which lack a flagellum. The uptake of macromolecules from the gut lumen was demonstrated by feeding the feather stars food mixed with ferritin. By 4 h after feeding, ferritin was identified in presumed secondary lysosomes within the enterocytes of the esophagus and within the vesicular enterocytes of the intestine and rectum. The functional implications of the new fine structural results are discussed.  相似文献   

15.
The epithelium of anterior midgut of adult Cenocorixa bifida was examined with light and electron microscopy. The folded epithelium is composed of tall columnar cells extending to the lumen, differentiating dark and light cells with interdigitating apices and regenerative basal cells in the nidi surrounded by villiform ridges that penetrate deeply into the epithelium. The columnar cells display microvilli at their luminal surface. Microvilli lined intercellular spaces and basal plasma membrane infoldings are associated with mitochondria. These ultrastructural features suggest their role in absorption of electrolytes and nutrients from the midgut lumen. The columnar cells contain large oval nuclei with prominent nucleoli. Their cytoplasm is rich in rough endoplasmic reticulum, Golgi complexes and electron-dense secretory granules indicating that they are also engaged in synthesis of digestive enzymes. The presence of secretory granules in close proximity of the apical plasma membrane suggests the release of secretion is by exocytosis. The presence of degenerating cells containing secretory granules at the luminal surface and the occurance of empty vesicles and cell fragments in the lumen are consistent with the holocrine secretion of digestive enzymes. Apical extrusions of columnar cells filled with fine granular material are most likely formed in response to the lack of food in the midgut. The presence of laminated concretions in the cytoplasm is indicative of storageexcretion of surplus minerals. The peritrophic membrane is absent from the midgut of C. bifida.  相似文献   

16.
本文比较了不同发育阶段黑水虻Hermetia illucens消化道的形态学差异,掌握了幼虫消化系统的组织学特征。利用体视镜观察黑水虻5龄幼虫、预蛹及成虫的消化道形态,利用光学显微镜和扫描电镜观察幼虫消化道各段(前肠、中肠、后肠)的显微及超微结构。结果表明:黑水虻幼虫及预蛹的消化道均由前肠(食道和前胃)、中肠及后肠组成,从幼虫到成虫,消化道的长度不断缩短。与幼虫和预蛹相比,成虫消化道形态变化明显,前胃消失,出现了嗉囊及胃盲囊,中肠进一步缩短,后肠分化为回肠、结肠和直肠。组织学观察结果显示,幼虫的唾液腺开口于口腔,由膨大的管状腺体和腺管组成。食道由特化为角质刺突的内膜层及发达的肌层组成,其末端延伸至前胃。前胃膨大为球状,包括三层组织结构。根据上皮细胞形态的差异,中肠可分为四个区段。后肠薄,肠腔内褶丰富,肠壁可见数量较多的杆状细菌。马氏管开口于中、后肠交界处,包括4支盲管,管内壁密布微绒毛。黑水虻消化道形态随发育阶段的变化,反映了各阶段摄食及消化生理的差异。幼虫消化道各段具有各自典型的组织学特征,其前、中、后肠可能分别承担了食物接纳与初步消化、消化与吸收以及重吸收功能。本研究结果为进一步了...  相似文献   

17.
为了揭示凹耳蛙(Odorrana tormota)消化道的基本特征,运用石蜡切片法和龙桂开银浸法对凹耳蛙消化道组织学结构及嗜银细胞的形态与分布密度进行了观察。结果显示:①凹耳蛙的胃壁具明显的纵行皱襞和胃小凹,胃腺发达,小肠可分为十二指肠和回肠,杯状细胞分散在十二指肠上皮细胞之间,十二指肠中未见十二指肠腺分布。②凹耳蛙嗜银细胞见于消化道全长,呈毛笔头样、锥体形、梭形、椭圆形和长条形等;幽门腺上皮和十二指肠绒毛上皮中的嗜银细胞具指向腺泡腔或肠腔的突起,提示其可能具有腔分泌的功能。嗜银细胞的分布密度胃幽门部最高,十二指肠和胃体其次,食道最低。据此认为胃既是凹耳蛙的主要消化器官,也是消化道中主要的内分泌器官;十二指肠是凹耳蛙消化道中的主要吸收部位,同时也具有内分泌功能;消化道嗜银细胞具有内分泌的功能,还可能具有腔分泌的功能。  相似文献   

18.
Reconstructions from serial sections reveal that the digestive system consists of a pharynx esophagus, crop, midgut, and rectum. Two main stems from the branched enteral diverticula are connected to the lateral regions of the crop by right rind left arms. Glandular tissue surrounds the enteral diverticula proximally. A strong sphincter separates the crop and midgut, whereas the midgut and rectum are separated by a weak sphincter. Cuboidal epithelium lines the pharynx, esophagus, crop, and rectum, whereas cuboidal and club-shaped epithelia line the midgut. The cuboidal cells possess elongated nuclei and numerous vacuoles, suggesting that absorption takes place in the midgut.  相似文献   

19.
The anatomy and the histology of the digestive tract of young and adult sea-bream is described from studies using light and scanning electron microscopy. The dentition in the juvenile (25–30 mm long) comprises all canine-like teeth, to which plate teeth and transition elements are added in the adult.
The oesophagus shows a multi-layered mucosa in the upper part, and single-layered regions in the lower part. The multi-layered regions are formed by epithelial cells, mucus-secreting cells and by cells rich with eosinophilic granules.
The Y-shaped stomach, clearly distinguishable, has a single-layered columnar epithelium under which, in the cardiac and fundic portion, gastric glands, comprised of all similar cells, are present. The pyloric region is characterized by four caeca, to the base of which the ductus pancreaticus and the ductus hepaticus discharge.
The pancreas is composed of small masses spread along the upper intestine; in the adult, pancreatic infiltrations can be seen in the liver.
The intestine is short (relative length 0.5–0.6). The intestine epithelium consists of columnar cells intercalated with mucus-secreting cells. A funnel-like valve marks the passage to the intestine terminal region, characterized by a mucosa of cells with an abundance of vacuoles full of eosinophilic granules.  相似文献   

20.
中华绒螯蟹消化道组织学及扫描电镜研究   总被引:7,自引:1,他引:6  
对中华绒螯蟹成蟹消化道各段进行了光镜组织学结构的观察;应用扫描电镜技术,观察了中华绒螯蟹消化道各段黏膜上皮表面超微结构特征。结果表明:除中肠及后盲囊外,整个消化道黏膜上皮表面均有较厚的分泌物层和较发达的纤毛层。纤毛形态结构各异;以食道和后肠分布最密,胃和肠球次之。消化道各段黏膜上皮细胞表面均形成大小不一、形态各异的多级皱褶和嵴。仅中肠表面具典型微绒毛结构。各消化道段黏膜上皮表面均未见杯状细胞,上皮下基膜发达,黏膜下层明显,消化腺分布其间。整个消化道壁的肌层均为横纹肌,且排列疏松,外膜多为浆膜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号