首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human immunodeficiency virus (HIV)-positive individuals can be superinfected with different virus strains. Individuals who control an initial HIV infection are therefore still at risk for subsequent infection with divergent viruses, but the barriers to such superinfection remain unclear. Here we tested long-term nonprogressors' (LTNPs') susceptibility to superinfection using Indian rhesus macaques that express the major histocompatibility complex class I (MHC-I) allele Mamu-B 17, which is associated with control of the pathogenic AIDS virus SIVmac239. The Mamu-B 17-restricted CD8(+) T cell repertoire is focused almost entirely on 5 epitopes. We engineered a series of SIVmac239 variants bearing mutations in 3, 4, or all 5 of these epitopes and used them to serially challenge 2 Mamu-B 17-positive LTNPs. None of the escape variants caused breakthrough replication in LTNPs, although they readily infected Mamu-B 17-negative naive macaques. In vitro competing coculture assays and examination of viral evolution in hosts lacking Mamu-B 17 suggested that the mutant viruses had negligible defects in replicative fitness. Both LTNPs maintained robust immune responses, including simian immunodeficiency virus (SIV)-specific CD8(+) and CD4(+) T cells and neutralizing antibodies. Our results suggest that escape mutations in epitopes bound by "protective" MHC-I molecules may not be sufficient to establish superinfection in LTNPs.  相似文献   

2.
Current assays of CD8+ T-lymphocyte function measure cytokine production rather than the ability of these lymphocytes to suppress viral replication. Here we show that CD8+ T-cell clones recognizing the same epitope vary enormously in the ability to suppress simian immunodeficiency virus SIVmac239 replication in an in vitro suppression assay. However, all Nef(165-173)IW9- and Vif(66-73)HW8-specific clones from elite controllers effectively suppressed SIV replication. Interestingly, in vitro suppression efficacy was not always associated with the ability to produce gamma interferon, tumor necrosis factor alpha, or interleukin-2.  相似文献   

3.
Infection of mice with lymphocytic choriomeningitis virus (LCMV) is frequently used to study the underlying principles of viral infections and immune responses. We fit a mathematical model to recently published data characterizing Ag-specific CD8+ T cell responses during acute (Armstrong) and chronic (clone 13) LCMV infection. This allows us to analyze the differences in the dynamics of CD8+ T cell responses against different types of LCMV infections. For the four CD8+ T cell responses studied, we find that, compared with the responses against acute infection, responses against chronic infection are generally characterized by an earlier peak and a faster contraction phase thereafter. Furthermore, the model allows us to give a new interpretation of the effect of thymectomy on the dynamics of CD8+ T cell responses during chronic LCMV infection: a smaller number of naive precursor cells is sufficient to account for the observed differences in the responses in thymectomized mice. Finally, we compare data characterizing LCMV-specific CD8+ T cell responses from different laboratories. Although the data were derived from the same experimental model, we find quantitative differences that can be solved by introducing a scaling factor. Also, we find kinetic differences that are at least partly due to the infrequent measurements of CD8+ T cells in the different laboratories.  相似文献   

4.
The ability of tenofovir to suppress viremia in simian immunodeficiency virus (SIV)-infected macaques for years despite the presence of virulent viral mutants with reduced in vitro susceptibility is unprecedented in this animal model. In vivo cell depletion experiments demonstrate that tenofovir's ability to suppress viremia during acute and chronic infection is significantly dependent on the presence of CD8+ lymphocytes. Continuous tenofovir treatment was required to maintain low viremia. Although it is unclear whether this immune-mediated suppression of viremia is linked to tenofovir's direct antiviral efficacy or is due to independent immunomodulatory effects, these studies prove the concept that antiviral immune responses can play a crucial role in suppressing viremia during anti-human immunodeficiency virus drug therapy.  相似文献   

5.
Induction of HIV-1-specific CD8(+) T cells during acute infection is associated with a decline in viremia. The role CD8(+) effectors play in subsequently establishing viral set point remains unclear. To address this, we focused on two acutely infected patients with the same initial Tat-specific CD8(+) response, analyzing their CD8(+) T cell responses longitudinally in conjunction with viral load and sequence evolution. In one patient initiating treatment during acute infection, the frequencies of Tat-specific CD8(+) T cells gradually diminished but persisted, and the Tat epitope sequence was unaltered. By contrast, in the second patient who declined treatment, the Tat-specific CD8(+) T cells disappeared below detection, in conjunction with Gag-specific CD4(+) T cell loss, as plasma viremia reached a set point. This coincided with the emergence of an escape variant within the Tat epitope and an additional Vpr epitope. New CD8(+) T cell responses emerged but with no further associated decline in viremia. These findings indicate that, in the absence of treatment, the initial CD8(+) T cell responses have the greatest impact on reducing viremia, and that later, continuously evolving responses are less efficient in further reducing viral load. The results also suggest that T cell help may contribute to the antiviral efficiency of the acute CD8(+) T cell response.  相似文献   

6.
CD8+ T cells play a major role in the containment of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. CD8+ T cell-driven variations in conserved regions under functional constraints result in diminished viral replicative capacity. While compensatory mutations outside an epitope can restore replicative capacity, the kinetics with which they arise remains unknown. Additionally, certain patterns of linked mutations associated with CD8+ T cell epitope escape in these highly conserved regions may lead to variable levels of viral fitness. Here, we used pyrosequencing to investigate the kinetics and patterns of mutations surrounding the Mamu-A1*00101-bound Gag(181-189)CM9 CD8+ T cell epitope. We obtained more than 400 reads for each sequencing time point, allowing us to confidently detect the emergence of viral variants bearing escape mutations with frequencies as low as 1% of the circulating virus. With this level of detail, we demonstrate that compensatory mutations generally arise concomitantly with Gag(181-189)CM9 escape mutations. We observed distinct patterns of linked flanking mutations, most of which were found downstream of Gag(181-189)CM9. Our data indicate that, whereas Gag(181-189)CM9 escape is much more complex that previously appreciated, it occurs in a coordinated fashion, with very specific patterns of flanking mutations required for immune evasion. This is the first detailed report of the ontogeny of compensatory mutations that allow CD8+ T cell epitope escape in infected individuals.  相似文献   

7.
Immunological and virological events that occur during the earliest stages of HIV-1 infection are now considered to have a major impact on subsequent disease progression. We observed changes in the frequencies of CD8(bright) T cells expressing different chemokine receptors in the peripheral blood and lymph nodes of rhesus macaques during the acute phase of the pathogenic SIVmac251 infection; the frequency of CD8(bright) T cells expressing CXCR4 decreased, while the frequency of those expressing CCR5 increased. These reciprocal changes in chemokine receptor expression were associated with changes in the proportion of cycling (Ki67(+)) CD8(bright) T cells, and with the pattern of CD8(bright) T cell differentiation as defined by expression of CCR7 and CD45RA. In contrast, during the primary phase of the attenuated SIVmac251Deltanef infection, no major change was observed. Whereas during the acute phase of the infection with pathogenic SIV (2 wk postinfection) no correlate of disease protection was identified, once the viral load set points were established (2 mo postinfection), we found that the levels of cycling and of CCR5- and CXCR4-positive CD8(bright) T cells were correlated with the extent of viral replication and therefore with SIV-infection outcome. Our data reveal that, during primary SIV infection, despite intense CD8 T cell activation and an increase in CCR5 expression, which are considered as essential for optimal effector function of CD8(+) T cells, these changes are associated with a poor prognosis for disease progression to AIDS.  相似文献   

8.
Virus-specific CD8(+) T lymphocytes select for escape mutations in human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). To assess the effects of these mutations on viral fitness, we introduced escape mutations into 30 epitopes (bound by five major histocompatibility complex class I [MHC-I] molecules) in three different viruses. Two of these MHC-I alleles are associated with elite control. Two of the three viruses demonstrated reduced fitness in vivo, and 27% of the introduced mutations reverted. These findings suggest that T cell epitope diversity may not be such a daunting problem for the development of an HIV vaccine.  相似文献   

9.
We fit a mathematical model to data characterizing the primary cellular immune response to lymphocytic choriomeningitis virus. The data enumerate the specific CD8(+) T cell response to six MHC class I-restricted epitopes and the specific CD4(+) T cell responses to two MHC class II-restricted epitopes. The peak of the response occurs around day 8 for CD8(+) T cells and around day 9 for CD4(+) T cells. By fitting a model to the data, we characterize the kinetic differences between CD4(+) and CD8(+) T cell responses and among the immunodominant and subdominant responses to the various epitopes. CD8(+) T cell responses have faster kinetics in almost every aspect of the response. For CD8(+) and CD4(+) T cells, the doubling time during the initial expansion phase is 8 and 11 h, respectively. The half-life during the contraction phase following the peak of the response is 41 h and 3 days, respectively. CD4(+) responses are even slower because their contraction phase appears to be biphasic, approaching a 35-day half-life 8 days after the peak of the response. The half-life during the memory phase is 500 days for the CD4(+) T cell responses and appears to be lifelong for the six CD8(+) T cell responses. Comparing the responses between the various epitopes, we find that immunodominant responses have an earlier and/or larger recruitment of precursors cells before the expansion phase and/or have a faster proliferation rate during the expansion phase.  相似文献   

10.
Adaptive CD4+ and CD8+ T-cell responses have been associated with control of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) replication. Here, we have designed a study with Indian rhesus macaques to more directly assess the role of CD8 SIV-specific responses in control of viral replication. Macaques were immunized with a DNA prime-modified vaccinia virus Ankara (MVA)-SIV boost regimen under normal conditions or under conditions of antibody-induced CD4+ T-cell deficiency. Depletion of CD4+ cells was performed in the immunized macaques at the peak of SIV-specific CD4+ T-cell responses following the DNA prime dose. A group of naïve macaques was also treated with the anti-CD4 depleting antibody as a control, and an additional group of macaques immunized under normal conditions was depleted of CD8+ T cells prior to challenge exposure to SIVmac251. Analysis of the quality and quantity of vaccine-induced CD8+ T cells demonstrated that SIV-specific CD8+ T cells generated under conditions of CD4+ T-cell deficiency expressed low levels of Bcl-2 and interleukin-2 (IL-2), and plasma virus levels increased over time. Depletion of CD8+ T cells prior to challenge exposure abrogated vaccine-induced protection as previously shown. These data support the notion that adaptive CD4+ T cells are critical for the generation of effective CD8+ T-cell responses to SIV that, in turn, contribute to protection from AIDS. Importantly, they also suggest that long-term protection from disease will be afforded only by T-cell vaccines for HIV that provide a balanced induction of CD4+ and CD8+ T-cell responses and protect against early depletion of CD4+ T cells postinfection.  相似文献   

11.
It has long been appreciated that CD4+ T lymphocytes are dysfunctional in human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV)-infected individuals, and it has recently been shown that HIV/SIV infections are associated with a dramatic early destruction of memory CD4+ T lymphocytes. However, the relative contributions of CD4+ T-lymphocyte dysfunction and loss to immune dysregulation during primary HIV/SIV infection have not been fully elucidated. In the current study, we evaluated CD4+ T lymphocytes and their functional repertoire during primary SIVmac251 infection in rhesus monkeys. We show that the extent of loss of memory CD4+ T lymphocytes and staphylococcal enterotoxin B-stimulated cytokine production by total CD4+ T lymphocytes during primary SIVmac251 infection is tightly linked in a cohort of six rhesus monkeys to set point plasma viral RNA levels, with greater loss and dysfunction being associated with higher steady-state viral replication. Moreover, in exploring the mechanism underlying this phenomenon, we demonstrate that the loss of functional CD4+ T lymphocytes during primary SIVmac251 infection is associated with both a selective depletion of memory CD4+ T cells and a loss of the functional capacity of the memory CD4+ T lymphocytes that escape viral destruction.  相似文献   

12.
Progressive disease caused by pathogenic SIV/HIV infections is marked by systemic hyperimmune activation, immune dysregulation, and profound depletion of CD4(+) T cells in lymphoid and gastrointestinal mucosal tissues. IL-17 is important for protective immunity against extracellular bacterial infections at mucosa and for maintenance of mucosal barrier. Although IL-17-secreting CD4 (Th17) and CD8 (Tc17) T cells have been reported, very little is known about the latter subset for any infectious disease. In this study, we characterized the anatomical distribution, phenotype, and functional quality of Tc17 and Th17 cells in healthy (SIV-) and SIV+ rhesus macaques. In healthy macaques, Tc17 and Th17 cells were present in all lymphoid and gastrointestinal tissues studied with predominance in small intestine. About 50% of these cells coexpressed TNF-α and IL-2. Notably, ~50% of Tc17 cells also expressed the co-inhibitory molecule CTLA-4, and only a minority (<20%) expressed granzyme B suggesting that these cells possess more of a regulatory than cytotoxic phenotype. After SIV infection, unlike Th17 cells, Tc17 cells were not depleted during the acute phase of infection. However, the frequency of Tc17 cells in SIV-infected macaques with AIDS was lower compared with that in healthy macaques demonstrating the loss of these cells during end-stage disease. Antiretroviral therapy partially restored the frequency of Tc17 and Th17 cells in the colorectal mucosa. Depletion of Tc17 cells was not observed in colorectal mucosa of chronically infected SIV+ sooty mangabeys. In conclusion, our results suggest a role for Tc17 cells in regulating disease progression during pathogenic SIV infection.  相似文献   

13.
Antiviral CD8(+) T cells are thought to play a significant role in limiting the viremia of human and simian immunodeficiency virus (HIV and SIV, respectively) infections. However, it has not been possible to measure the in vivo effectiveness of cytotoxic T cells (CTLs), and hence their contribution to the death rate of CD4(+) T cells is unknown. Here, we estimated the ability of a prototypic antigen-specific CTL response against a well-characterized epitope to recognize and kill infected target cells by monitoring the immunodominant Mamu-A*01-restricted Tat SL8 epitope for escape from Tat-specific CTLs in SIVmac239-infected macaques. Fitting a mathematical model that incorporates the temporal kinetics of specific CTLs to the frequency of Tat SL8 escape mutants during acute SIV infection allowed us to estimate the in vivo killing rate constant per Tat SL8-specific CTL. Using this unique data set, we show that at least during acute SIV infection, certain antiviral CD8(+) T cells can have a significant impact on shortening the longevity of infected CD4(+) T cells and hence on suppressing virus replication. Unfortunately, due to viral escape from immune pressure and a dependency of the effectiveness of antiviral CD8(+) T-cell responses on the availability of sufficient CD4(+) T cells, the impressive early potency of the CTL response may wane in the transition to the chronic stage of the infection.  相似文献   

14.
Cytotoxic T-lymphocyte (CTL) responses peak coincident with the decline in acute HIV viremia. Despite two reports of CTL-resistant HIV variants emerging during acute infection, the contribution of acute CTL escape to HIV pathogenesis remains unclear. Difficulties inherent in studying acute HIV infection can be overcome by modeling virus-host interactions in SIV-infected rhesus macaques. We sequenced 21 complete simian immunodeficiency virus (SIV)mac239 genomes at four weeks post-infection to determine the extent of acute CTL escape. Here we show that viruses from 19 of 21 macaques escaped from CTLs during acute infection and that these escape-selecting CTLs were responsive to lower concentrations of peptide than other SIV-specific CTLs. Interestingly, CTLs that require low peptide concentrations for stimulation (high 'functional avidity') are particularly effective at controlling other viral infections. Our results suggest that acute viral escape from CTLs is a hallmark of SIV infection and that CTLs with high functional avidity can rapidly select for escape variants.  相似文献   

15.
HIV infection is characterized by a gradual deterioration of immune function, mainly in the CD4 compartment. To better understand the dynamics of HIV-specific T cells, we analyzed the kinetics and polyfunctional profiles of Gag-specific CD4(+) and CD8(+) T cell responses in 12 subtype C-infected individuals with different disease-progression profiles, ranging from acute to chronic HIV infection. The frequencies of Gag-responsive CD4(+) and CD8(+) T cells showed distinct temporal kinetics. The peak frequency of Gag-responsive IFN-γ(+)CD4(+) T cells was observed at a median of 28 d (interquartile range: 21-81 d) post-Fiebig I/II staging, whereas Gag-specific IFN-γ(+)CD8(+) T cell responses peaked at a median of 253 d (interquartile range: 136-401 d) and showed a significant biphasic expansion. The proportion of TNF-α-expressing cells within the IFN-γ(+)CD4(+) T cell population increased (p = 0.001) over time, whereas TNF-α-expressing cells within IFN-γ(+)CD8(+) T cells declined (p = 0.005). Both Gag-responsive CD4(+) and CD8(+) T cells showed decreased Ki67 expression within the first 120 d post-Fiebig I/II staging. Prior to the disappearance of Gag-responsive Ki67(+)CD4(+) T cells, these cells positively correlated (p = 0.00038) with viremia, indicating that early Gag-responsive CD4 events are shaped by viral burden. No such associations were observed in the Gag-specific CD8(+) T cell compartment. Overall, these observations indicated that circulating Gag-responsive CD4(+) and CD8(+) T cell frequencies and functions are not synchronous, and properties change rapidly at different tempos during early HIV infection.  相似文献   

16.
Macaques infected with the SIV strain SIVmac251 develop a disease closely resembling human AIDS characterized by high viremia, progressive loss of CD4(+) T cells, occurrence of opportunistic infection, cachexia, and lymphomas. We report in this study that vaccination with the genetically attenuated poxvirus vector expressing the structural Ags of SIVmac (NYVAC-SIV-gag, pol, env) in combination with priming with DNA-SIV-gag, env resulted in significant suppression of viremia within 2 mo after mucosal exposure to the highly pathogenic SIVmac251 in the majority of vaccinated macaques. The control of viremia in these macaques was long lasting and inversely correlated to the level of both pre- and postchallenge Gag-specific lymphoproliferative responses, as well as to the level of total SIV-specific CD4(+) T lymphocyte responses at the peak of acute viremia as detected by intracellular cytokine-staining assay. Viremia containment also correlated with the frequency of the immunodominant Gag(181-189)CM9 epitope-specific CD8(+) T cells present before the challenge or expanded during acute infection. These data indicate, for the first time, the importance of vaccine-induced CD4(+) Th cell responses as an immune correlate of viremia containment. The results presented in this work also further demonstrate the potential of a DNA-prime/attenuated poxvirus-boost vaccine regimen in an animal model that well mirrors human AIDS.  相似文献   

17.
HIV/SIV infections induce chronic immune activation with remodeling of lymphoid architecture and hypergammaglobulinemia, although the mechanisms leading to such symptoms remain to be fully elucidated. Moreover, lymph nodes have been highlighted as a predilection site for SIV escape in vivo. Following 20 rhesus macaques infected with SIVmac239 as they progress from pre-infection to acute and chronic infection, we document for the first time, to our knowledge, the local dynamics of T follicular helper (T(FH)) cells and B cells in situ. Progression of SIV infection was accompanied by increased numbers of well-delineated follicles containing germinal centers (GCs) and T(FH) cells with a progressive increase in the density of programmed death-1 (PD-1) expression in lymph nodes. The rise in PD-1(+) T(FH) cells was followed by a substantial accumulation of Ki67(+) B cells within GCs. However, unlike in blood, major increases in the frequency of CD27(+) memory B cells were observed in lymph nodes, indicating increased turnover of these cells, correlated with increases in total and SIV specific Ab levels. Of importance, compared with T cell zones, GCs seemed to exclude CD8(+) T cells while harboring increasing numbers of CD4(+) T cells, many of which are positive for SIVgag, providing an environment particularly beneficial for virus replication and reservoirs. Our data highlight for the first time, to our knowledge, important spatial interactions of GC cell subsets during SIV infection, the capacity of lymphoid tissues to maintain stable relative levels of circulating B cell subsets, and a potential mechanism for viral reservoirs within GCs during SIV infection.  相似文献   

18.
Ebola virus (EBOV) causes highly lethal hemorrhagic fever that leads to death in up to 90% of infected humans. Like many other infections, EBOV induces massive lymphocyte apoptosis, which is thought to prevent the development of a functional adaptive immune response. In a lethal mouse model of EBOV infection, we show that there is an increase in expression of the activation/maturation marker CD44 in CD4(+) and CD8(+) T cells late in infection, preceding a dramatic rebound of lymphocyte numbers in the blood. Furthermore, we observed both lymphoblasts and apoptotic lymphocytes in spleen late in infection, suggesting that there is lymphocyte activation despite substantial bystander apoptosis. To test whether these activated lymphocytes were functional, we performed adoptive transfer studies. Whole splenocytes from moribund day 7 EBOV-infected animals protected naive animals from EBOV, but not Marburgvirus, challenge. In addition, we observed EBOV-specific CD8(+) T cell IFN-gamma responses in moribund day 7 EBOV-infected mice, and adoptive transfer of CD8(+) T cells alone from day 7 mice could confer protection to EBOV-challenged naive mice. Furthermore, CD8(+) cells from day 7, but not day 0, mice proliferated after transfer to infected recipients. Therefore, despite significant lymphocyte apoptosis, a functional and specific, albeit insufficient, adaptive immune response is made in lethal EBOV infection and is protective upon transfer to naive infected recipients. These findings should cause a change in the current view of the 'impaired' immune response to EBOV challenge and may help spark new therapeutic strategies to control lethal filovirus disease.  相似文献   

19.
In this study, we examined the effect of in vivo treatment of acutely SIV-infected Mamu-A*01+ rhesus macaques with IL-15. IL-15 treatment during acute infection increased viral set point by 3 logs and accelerated the development of simian AIDS in two of six animals with one developing early minimal lesion SIV meningoencephalitis. Although IL-15 induced a 2- to 3-fold increase in SIV-specific CD8+ T cell and NK cell numbers at peak viremia and reduced lymph node (LN) SIV-infected cells, this had no impact on peak viremia and did not lower viral set point. At viral set point, however, activated SIV-specific CD8+ T cells and NK cells were reduced in the blood of IL-15-treated animals and LN SIV-infected cells were increased. Week 30 LN from IL-15-treated animals had significantly increased Gag-specific CD8+ T cell numbers, whereas total cell, lymphocyte, and CD4+ T cell numbers were reduced. IL-15 treatment significantly reduced anti-SIV Ab concentrations at week 3 and viral set point. IL-15 increased Ki-67+CD4+ T cells at week 1 of treatment and reduced blood CCR5+ and CD45RA-CD62L- CD4+ T cells. The frequency of day 7 Ki-67+CD4+ T cells strongly correlated with viral set point. These findings suggest that CD4+ T cell activation during acute infection determines subsequent viral set point and IL-15 treatment by increasing such activation elevates viral set point. Finally, IL-15-treated acutely SIV-infected primates may serve as a useful model to investigate the poorly understood mechanisms that control viral set point and disease progression in HIV infection.  相似文献   

20.
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) evade containment by CD8(+) T lymphocytes through focused epitope mutations. However, because of limitations in the numbers of viral sequences that can be sampled, traditional sequencing technologies have not provided a true representation of the plasticity of these viruses or the intensity of CD8(+) T lymphocyte-mediated selection pressure. Moreover, the strategy by which CD8(+) T lymphocytes contain evolving viral quasispecies has not been characterized fully. In the present study we have employed ultradeep 454 pyrosequencing of virus and simultaneous staining of CD8(+) T lymphocytes with multiple tetramers in the SIV/rhesus monkey model to explore the coevolution of virus and the cellular immune response during primary infection. We demonstrated that cytotoxic T lymphocyte (CTL)-mediated selection pressure on the infecting virus was manifested by epitope mutations as early as 21 days following infection. We also showed that CD8(+) T lymphocytes cross-recognized wild-type and mutant epitopes and that these cross-reactive cell populations were present at a time when mutant forms of virus were present at frequencies of as low as 1 in 22,000 sequenced clones. Surprisingly, these cross-reactive cells became enriched in the epitope-specific CD8(+) T lymphocyte population as viruses with mutant epitope sequences largely replaced those with epitope sequences of the transmitted virus. These studies demonstrate that mutant epitope-specific CD8(+) T lymphocytes that are present at a time when viral mutant epitope sequences are detected at extremely low frequencies fail to contain the later accumulation and fixation of the mutant epitope sequences in the viral quasispecies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号