首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
During the Mississippian (Tournaisian), numerous crinoid genera of the subclass Camerata evolved exaggerated anal tubes, cylindrical extensions of the tegmen with the anus at the distal end. Additionally, camerates exhibit higher frequency of platyceratid gastropod infestation than any other crinoid clade leading some researchers to speculate that anal tubes evolved in response to platyceratid parasitism. To test the infestation avoidance role of anal tubes, platyceratid distribution was analyzed among 636 tubed and 675 tubeless crinoids from Mississippian strata in North America. Results demonstrate significantly higher infestation frequency in tubeless crinoids. Rather than attach to the anal vent, as is typical for platyceratids, the gastropods that infested tubed crinoids are always found at the tube base and acquired nutrients from their hosts via drilling. It is likely that infesting tubeless crinoids was a more cost effective trophic strategy than drilling tubed crinoids.  相似文献   

3.
THE EARLY RADIATION AND PHYLOGENY OF ECHINODERMS   总被引:3,自引:0,他引:3  
1. Living echinoderms are characterized by an extensive water vascular system developed from the larval left hydrocoel, a complex, multi-plated endoskeleton with stereom structure, and pentamery. Fossil evidence shows that stereom evolved before pentamery, but both were acquired during the Lower Cambrian. 2. Cladistic analysis of Lower Cambrian genera reveals very few characters in common between carpoids and true echinoderms, and that the split between them was the first fundamental evolutionary dichotomy within the Dexiothetica. 3. Helicoplacoids are stem group echinoderms with spiral plating and three ambulacra arranged radially around a lateral mouth. They are the most primitive echinoderms and the first to show a radial arrangement of the water vascular and ambulacral systems. Unlike later echinoderms, their skeleton shows no dorsal/ventral (aboral/oral) differentiation. They were probably sedentary suspension feeders. 4. Camptostroma is the most primitive known pentaradiate echinoderm and, in our view, possibly a common ancestor of all living groups. It had a short conical dorsal (aboral) surface with imbricate plating, a ridged lateral wall and a slightly domed ventral (oral) surface with five curved ambulacra in a 2-1-2 arrangement inherited from the triradiate pattern of the helicoplacoids. Interambulacral areas bore epispires and the CD interambulacrum contained the anus, hydropore and/or gonopore. All parts of the theca had plates in at least two layers. 5. All other echinoderms belong to one of two monophyletic subphyla, the Pelmatozoa and the Eleutherozoa. 6. Stromatocystites is the earliest known eleutherozoan and differs from Camptostroma in having a test with only one layer of plates and having lost the dorsal elongation. In Stromatocystites the dorsal surface is flat and the plating tesselate. Stromatocystites was an unattached, low-level suspension feeder. 7. The lepidocystoids are the earliest known pelmatozoans. They differ from Camptostroma in having an attached dorsal stalk which retained the primitive imbricate plating, and by developing erect feeding structures along the ambulacra. In Kinzercystis, the ambulacra are confined to the thecal surface and erect, biserial brachioles arise alternately on either side. Lepidocystis has a similar arrangement except that, the distal part of each ambulacrum extends beyond the edge of the theca as a free arm. 8. Pelmatozoans diverged more or less immediately into crinoids, with multiple free arms composed of uniserial plates, and cystoids sensu lato, which retained brachioles. Gogia (Lower to Middle Cambrian) is the most primitive known cystoid and differs from Kinzercystis principally in having all plating tesselate, while Echmatocrinus (Middle Cambrian) is the most primitive known crinoid and differs from Lepidocystis in lacking brachioles and in having more than five free arms with uniserial plates. 9. Post Lower Cambrian differentiation of pelmatozoan groups proceeded rapidly, exploiting the primitive suspension-feeding mode of life. Maximum morphological diversity was reached in the Ordovician, but thereafter crinoids progressively displaced cystoid groups and reached their peak diversity during the Carboniferous. The eleutherozoans were slower to diversify, but by the Arenig the earliest ‘sea-stars’ (in reality, advanced members of the eleutherozoan stem group) had reversed their living orientation and had begun to exploit a deposit-feeding mode of life. These in turn led to the ophiuroids, echinoids and holothuroids. 10. The basic echinoderm ambulacrum was already present in the helicoplacoids. It had biserial, alternate flooring plates and complexly plated sheets of cover plates on either side. The radial water vessel lay in the floor of the ambulacrum, external to the body cavity, and gave rise ventrally to short, lateral branches (fore-runners of tube feet) that were used to open the cover plate sheets, and dorsally was connected to internal compensation sacs which acted as fluid reservoirs (and were preadapted for a role in gaseous exchange). Plating on the cover plate sheets was organized and reflected the positions of the lateral branches from the radial water vessel. In Camptostroma, the cover plate sheets had biserially aligned rows of cover plates associated with the lateral branches. 11. Brachioles arose by extension of the lateral branches of the radial water vessel and associated serially aligned cover plates found in Camptostroma. They bear a single alternate series of cover plates. In Lepidocystis the ambulacra extended beyond the edge of the oral surface as true arms. Brachial plates of arms are homologues of primary ambulacral flooring plates, and arms bear multiple series of cover plates. Uniserial ambulacral plating is a derived condition and evolved independently in crinoids, paracrinoids and isorophid edrioasteroids. Pinnules in crinoids arose independently in inadunates and camerates by a progressively more unequal branching of the arms. Thus all parts of the subvective system in crinoids are internally homologous, whereas in cystoids, brachioles and arms (or ambulacra) are not homologous structures. 12. The position of the hydropore is the best reference point in orientating echinoderms. Carpenter's system of identifying ambulacra by letters, arranged clock-wise in oral view with the A ambulacrum opposite the hydropore, is consistent in all echinoderm classes. In all Lower Cambrian pentaradiate echinoderms the anus, gonopore and hydropore lie in the CD interambulacrum and this is accepted as the primitive arrangement. In helicoplacoids we tentatively suggest that the A ambulacrum spiralled down from the mouth while the two ambulacra that spiralled up represent the B + C and D + E ambulacra combined. 13. The pelmatozoan stem arose from a polyplated stalk, via a meric stem to a true column with holomeric (single piece) columnals. This happened independently in the crinoids and the cystoids. 14. Our analysis of echinoderm phylogeny leads us to recommend the following changes to the higher level classification of echinoderms: The phylum Echinodermata includes only those groups with radial symmetry superimposed upon a fundamental larval asymmetry. It has a stem group that contains the triradiate helicoplacoids and a crown group to which all other (pentaradiate) echinoderms belong. The crown group contains two monophyletic subphyla, the Pelmatozoa and the Eleutherozoa, and the Pelmatozoa contains two superclasses, the Crinoidea which are extant and the Cystoidea, which are extinct.  相似文献   

4.
The holdfast (attachment structure) is the most understudied aspect of the palaeoecology of the endoskeleton of fossil crinoids. A new collection of well-preserved holdfasts from a recently reopened quarry at Hunninge, Gotland, in Homerian (upper Wenlock) strata includes several morphologies. The most common are terminal dendritic radicular holdfasts (TDRHs) that may be derived from the cladid Ennallocrinus d'Orbigny. These have a consistent morphology of five, equally spaced, long radices that spread across the sea floor. These crinoids were gregarious, and TDRHs in a group commonly show the same radice orientations. The radices have a large axial canal compared with those of modern crinoids; each included, at least, nervous tissues. Taken together, these features suggest that, apart from attachment, these distinctive TDRHs may have served a sensory function. Other holdfasts in this assemblage also show monospecific aggregations, perhaps suggesting biochemical attraction such as that shown by certain other sessile invertebrates such as barnacles.  相似文献   

5.
The well-known association of platyceratid gastropods with crinoids has traditionally been considered an example of coprophagous commensalism. The Occurrence of several crinoid 'stands' ( Platycrinites sp.) from closely spaced bedding surfaces in the upper Mississippian Wymps Gap Limestone member of the Mauch Chunk Formation of southwestern Pennsylvania encourages reinterpretation of this relationship. Crinoid calyces were collected from five separate clusters, two of which contained associated platyceratids. 'Infested' crinoids either died prematurely or were stunted, compared to crinoids in the 'uninfested' clusters. Platyceratid attachment apparently had an adverse effect upon crinoid growth. Serial acetate peels show positioning of the gastropod on the crinoid tegmen over a highly developed anal tube, or chimney. However, the terminus of the anal tube abuts the gastropod's shell and is poorly situated for fecal ingestion by the snail. We suggest that the snail probably pursued another trophic strategy, perhaps taking advantage of aerosol filtration by the crinoid and elevation above the substrate.  相似文献   

6.
Abstract:  The modern study of fossil crinoids began with J. S. Miller who, in 1821, described specimens from southern England, nearby Wales and other regions, and named several common Early Carboniferous genera. Later, in 1950–60, James Wright monographed all known Early Carboniferous crinoids from the British Isles. In spite of such previous scrutiny, we recognize here two new genera among species already described: Glamorganocrinus gen. nov. (type species: Ophiurocrinus gowerensis Wright, 1960) from South Wales and Mendipocrinus gen. nov. (type species: Poteriocrinus latifrons Austin and Austin, 1847) from southern England. These new genera increase the number of advanced cladid genera in the Ivorian Substage of the Tournaisian in western Europe to 18, and the total number of crinoid genera to 36. A review of species assigned to Mespilocrinus has led to the recognition of M. granulifer De Koninck and LeHon, 1854 as a nomen dubium. A new species of Mespilocrinus , M. wrighti sp. nov., is described from the Ivorian of South Wales; this is the most highly derived species of the genus, as based on a phylogenetic analysis including ten species and 13 characters, with Pycnosaccus as the outgroup. A single, well-ordered tree resulted from this analysis. Interpretation of this tree suggests that the centre of evolution for Mespilocrinus was North America, where three species appeared during the Kinderhookian (early Tournaisian), rapidly achieving morphological disparity within the genus. This radiation event was part of the overall explosive radiation of crinoids following the Late Devonian mass extinction event when crinoid diversity was at a global minimum during the Frasnian. Recovery began during the Famennian, followed by an explosive radiation in the Tournaisian.  相似文献   

7.
The structure and functioning of the gut of Pomacea canaliculata (D'Orb.) has been investigated using living and preserved material. Anatomical studies were also carried out on preserved specimens of Pila globosa, Turbinicola saxea and Lanistes ovum bangweolicus .
The gut of pilids is specialised for a macrophagous diet, usually of aquatic angiosperms. The mid-oesophagus is a crop for storage, and the stomach has a large triturating gizzard developed from the gastric shield area. This is the site of extra-cellular digestion; there is no intra-cellular digestion in any part of the gut. The ducts of the digestive gland open into a special region of the stomach, the vestibule, which is histologically similar to them. The style sac begins the compacting of the faeces, which is completed in tho intestine. There is no evidence that absorption ocrurs in the epithelium of tho stomach or intestine; soluble products of digestion are carried into the digestive gland, which is the main site of absorption. Its activity is supplemented by amoebocytes entering the lumen of the style sac and intestine. Two types of cell occur in the gland, one type producing digestive enzymes and absorbing soluble products of digestion, the other type being excretory in function. There is no sign of phagocytosis in either. The excretory activity of the kidney is further supplemented by an anal gland.  相似文献   

8.
记述了采自中国山东省网翅蝗科的1新种,黄条网翅蝗Arcyptera flavivittata sp.nov..模式标本保存于山东农业大学植物保护学院,泰安.  相似文献   

9.
利用顶空取样、溶剂解吸附和气质联用技术分析了黄鼬(Mustela sibirica)肛腺分泌物的挥发性成分。鉴定出的六种化合物均为含硫的环状有机物:(1)2,2-二甲基硫代环丁烷;(2)顺或反2,4-二甲基硫代环丁烷;(3)反-2,3-二甲基硫代环丁烷;(4)2-乙基硫代环丁烷;(5)2-丙基硫代环丁烷;(6)3,3-二甲基-1,2-二硫代环戊烷。尽管黄鼬肛腺成分的组成和鼬鼠其它种存在很大的相似性,但是成分组成的种间差异很明显。另外,2-乙基硫代环丁烷仅存在于雌性黄鼬中。很多研究已经证明对鼠类有驱赶作用的2,2-二甲基硫代环丁烷和2-丙基硫代环丁烷在黄鼬肛腺分泌物同时存在,说明黄鼬肛腺分泌物对鼠类可能有很强的驱避作用。  相似文献   

10.
Taphonomic information is examined to evaluate the early history of connective tissues in the Crinoidea. The pattern of stalk segmentation of Middle and Late Ordovician crinoids is consistent with the two-ligament (intercolumnal and through-going ligaments) pattern present in living isocrinid crinoids and interpreted for fossil isocrinids, holocrinids, and Lower Mississippian crinoids. A single rhombiferan was also examined; its taphonomic pattern is also indicative of this style of tissue organization. Furthermore, the taphonomy of all Middle and Late Ordovician crinoids may reflect that they lacked discretely organized muscles between arm brachials, which is consistent with the hypothesis that muscles evolved as a connective tissue between plates only once within the Crinoidea, during the Early Devonian. These data indicate that the two-ligament organization of the stalk is a primitive feature among the Crinoidea and perhaps even among stalked echinoderms. Therefore, the autotomy function of this column-tissue organization among living crinoids is an exaptation. On the other hand, discretely organized muscles as connective tissue in crinoid arms is a derived trait that first appeared during the middle Paleozoic; this adaptation proved very successful for the advanced cladid crinoids.  相似文献   

11.
Fossilized tube feet are described on Codiacrinus schultzei Follmann from the Lower Devonian Hunsrück Slate of Germany. This is the first definitive proof of tube feet on any fossil crinoid. Three lightly pyritized, flattened tube feet are preserved in a single interray of this cladid crinoid. The tube feet were at least 7 mm long. Their preservation is very similar to the tube feet reported previously from a Hunsrück ophiuroid, except that the Codiacrinus tube feet have small papillae, similar to living crinoids.  相似文献   

12.
One of the earliest isorophid edrioasteroids from the upper Middle Cambrian-lower Upper Cambrian (upper part of Series 3-lower part of the Furongian Series) of northern Iran is described. It has unusual branched ambulacra, which extend beyond the theca almost to the marginal rim. These unusual features reflect the latent possibility of appearance of separated from the theca and even branching food-gathering appendages, such as arms in crinoids and brachials in blastozoans, in common ancestor of all radially symmetrical echinoderms.  相似文献   

13.
14.
Two cladid crinoid species, ?Ulocrinus indicus Wanner, 1924, and ?Ulocrinus conoideus Wanner, 1937, are reinterpreted as cladid crinoids that do not belong to the cromyocrinids. This justifies Wanner's questioning of the generic assignment. ?Ulocrinus indicus has bifascial radial facets and is considered an advanced intermediate dendrocrinid assigned to the incertae superfamiliae, Katerocrinidae n. fam., Katerocrinus indicus n. gen., n. comb. This extends the range of the bifascial dendrocrinids upward into the Permian. ?Ulocrinus conoideus has trifascial radial facets and is assigned to the superfamily Scytalocrinoidea, incertae familiae, Dochmocrinus conoideus n. gen., n. comb. It re-emphasizes the need for revision of the family Scytalocrinidae. An unnamed, poorly preserved cup is described and considered to be a pelecocrinid crinoid, thus adding to the diversity of the West Timor Permian crinoids.  相似文献   

15.
美洲鲥胚胎及仔稚鱼的发育   总被引:5,自引:0,他引:5  
对美洲鲥(Alosa sapidissima)早期生活史阶段的生长发育特征进行了观察和测量, 描述了胚胎和仔、稚鱼的生长发育特征。美洲鲥受精卵球形、无油球, 为沉性卵, 卵径2.85-3.28 mm。在水温20.3℃-21.9℃孵化条件下, 经过82h 孵化出膜, 根据其胚胎发育过程的形态特征, 胚胎发育分为受精卵、卵裂期、囊胚期、原肠胚期、神经胚期、器官形成期和出膜期7 个发育阶段。美洲鲥初孵仔鱼全长为(8.56±0.36) mm, 其卵黄囊体积为(4.57±0.77) mm3。1 日龄仔鱼脑部发育明显, 口张开, 肛门开通, 胸鳍形成。2 日龄仔鱼卵黄囊体积(0.71±0.23)mm3, 只有刚孵化的15.54%。3 日龄仔鱼经过1d 的混合营养期, 卵黄被完全吸收, 4 日龄仔鱼完全营外源性营养, 卵黄囊的体积(V)随孵化时间(h)的变化方程为V=4.1583e?0.0356h(R2=0.9901)。此后, 背鳍鳍条、尾鳍鳍条、臀鳍鳍条和腹鳍鳍条相继在晚期仔鱼出现, 9 日龄仔鱼尾椎开始弯曲, 21 日龄仔鱼尾椎弯曲完成。27 日龄鱼鳞开始形成, 到33 日龄稚鱼全身披鳞, 个体发育进入幼鱼期, 仔稚鱼期间的生长模型方程为: TL=0.0049D2+0.5091D+9.2578 (R2=0.9885, TL 为全长, D 为日龄)。    相似文献   

16.
The function of Phenoloxidases (POs) in sclerotization and defense in insects is well understood, but little is known concerning their occurrence, origins, and function in the digestive tract. In Gyrllus bimaculatus gut all of the PO activity is found in the lumen of the digestive tract, and no detectible activity is found in homogenates of the gut epithelium or secretions from incubated epithelial tissues. Prophenoloxidases (PPOs) are synthesized in the hemocytes of Bombyx mori and are transported into the cuticle. It is suggested that the PPOs in the caecal lumen of G. bimaculatus likewise are synthesized in hemocytes and are transported by unknown means into the caecal lumen, where they are activated to POs by trypsin. Peristalsis transports the POs both forward into the crop and posterior within the peritrophic membrane into the hind gut. The PPOs in the hemolymph consist of a trimer (270–280 kDa) and a tetramer (340–370 kDa). The active POs in the gut lumen consist of a monomer (85–95 kDa) in addition to an activated trimer and tetramer.  相似文献   

17.
The anal sacs of Thalassema thalassemum consist of an elongate tubular invagination (end sac) that is uniformly covered with numerous sessile ciliated funnels. While the funnels are composed of multi-ciliated, non-muscular cells and possess a ciliated neck-like constriction, the end sacs are lined by a simple epithelium of large, irregularly formed and sparsely ciliated cells that include masses of secretory granules. Podocytes are incorporated in the peritoneum that surrounds the anal sacs. A muscle grid consisting of inner longitudinal, outer circular and additional diagonal fibres that branch off of the circular fibres is embedded in the matrix between the end sac epithelium and peritoneum. Major structural differences between the hindgut and anal sacs support the hypothesis that the anal sacs are not gut derivatives but are instead part of a modified metanephridial system. Comparison of the anal sac morphology in Echiura reveals that T. thalassemum shares a tubular end sac with all known members of Thalassematinae and Ikedaidae, as well as with some members of Bonelliidae and Echiurinae, while the sessile funnels are apomorphic for the Thalassematinae.  相似文献   

18.
Two common Upper Ordovician crinoids, Xenocrinus and Dendrocrinus , had distinctive columns that showed marked contrasts of both form and function. Xenocrinus baeri (Meek) had a tetragonal facet geometry but functioned in the normal manner for a symplectially articulated column. Column flexure was by bending, the four directions of curvature being limited by the tetragonal arrangement of crenulae. In contrast, columns of Dendrocrinus casei Meek, with a characteristic pentastellate symmetry, were able to twist, a functional adaptation not previously reported from crinoids; this was controlled by the unusual geometry of the crenularium. This suggests that some or all crinoid columns may be subject to twisting stresses, perhaps associated with changes in the current direction, that crenulae may resist passively. Functional morphology, column, crinoids, X enocrinus , D endrocrinus  相似文献   

19.
The occurrence of Paleozoic gastropods attached to echinoderms has been recognized for nearly 170 years. Specimens have been illustrated from each of the geologic periods from the Ordovician to Permian. We illustrate two occurrences of Permian platycrinitid camerate crinoids from West Timor, Platycrinites s.s. wachsmuthi (Wanner) and Neoplatycrinus dilatatus Wanner, that have the platyceratid attached on the tegmen on the former and along the radial summit on the latter. Both platyceratids barely cover the anal opening and suppress the development of the arms of at least one ray. The D ray arms are suppressed on Platycrinites s.s. wachsmuthi, whereas the development of the C ray arms and perhaps the most adjacent arms of the D and B rays are suppressed on Neoplatycrinus dilatatus. An additional specimen of Neoplatycrinus major retains the impressed conch outline of a formerly attached platyceratid on the tegmen. This is the first report of a platyceratid/Neoplatycrinus association. The West Timor occurrences are among the youngest known of the platyceratid/platycrinitid association before the End-Permian extinction of the camerates. In addition, an abnormal four-rayed theca of Platycrinites s.s. wachsmuthi is described.  相似文献   

20.
This study documents previously unknown taxonomic and morphological diversity among early Palaeozoic crinoids. Based on highly complete, well preserved crown material, we describe two new genera from the Ordovician and Silurian of the Baltic region (Estonia) that provide insight into two major features of the geological history of crinoids: the early evolution of the flexible clade during the Great Ordovician Biodiversification Event (GOBE), and their diversification history surrounding the end‐Ordovician mass extinction. The unexpected occurrence of a highly derived sagenocrinid, Tintinnabulicrinus estoniensis gen. et. sp. nov., from Upper Ordovician (lower Katian) rocks of the Baltic palaeocontinent provides high‐resolution temporal, taxonomic and palaeobiogeographical constraints on the origin and early evolution of the Flexibilia. The Silurian (lower Rhuddanian, Llandovery) Paerticrinus arvosus gen. et sp. nov. is the oldest known Silurian crinoid from Baltica and thus provides the earliest Baltic record of crinoids following the aftermath of the end‐Ordovician mass extinction. A Bayesian ‘fossil tip‐dating’ analysis implementing the fossilized birth–death process and a relaxed morphological clock model suggests that flexibles evolved c. 3 million years prior to their oldest fossil record, potentially involving an ancestor–descendant relationship (via ‘budding’ cladogenesis or anagenesis) with the paraphyletic cladid Cupulocrinus. The sagenocrinid subclade rapidly diverged from ‘taxocrinid’ grade crinoids during the final stages of the GOBE, culminating in maximal diversity among Ordovician crinoid faunas on a global scale. Remarkably, diversification patterns indicate little taxonomic turnover among flexibles across the Late Ordovician mass extinction. However, the elimination of closely related clades may have helped pave the way for their subsequent Silurian diversification and increased ecological role in post‐Ordovician Palaeozoic marine communities. This study highlights the significance of studies reporting faunas from undersampled palaeogeographical regions for clade‐based phylogenetic studies and improving estimates of global biodiversity through geological time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号