首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a sensitive method that employs high-performance liquid chromatography to separate and quantitate uridine diphosphogalactose (UDPGal) and uridine diphosphoglucose (UDPGlu) in human red blood cells. The trichloracetic acid extracts of red blood cells were chromatographed using a Dionex CarboPac anion-exchange resin and a 20-40% potassium phosphate buffer, pH 4.5, in a gradient-elution program. UDPGal and UDPGlu were detected spectrophotometrically at 254 nm. Recoveries of UDPGal and UDPGlu ranged from 96 to 106%. Under these conditions, there was exceptionally good reproducibility in stored specimens, and the method was sensitive in the low picamole range. The mean values and standard deviations in adults were 2.9 +/- 0.4 and 7.8 +/- 0.8 mumol/100 g Hgb for UDPGal and UDPGlu, respectively. The values in children were 4.5 +/- 1.2 and 10.2 +/- 1.7 mumol/100 g Hgb for UDPGal and UDPGlu, respectively. Values determined by the HPLC method are in excellent agreement with those obtained by enzyme analysis.  相似文献   

2.
To measure free creatine in the isolated perfused rat heart, the concentration of phosphocreatine, and phosphocreatine plus creatine (sigma Cr) were measured by 31P- and 1H-NMR, respectively. Quantification was performed in the presence and absence of an intraventricular balloon filled with a known amount of PCr, which acted as an external standard. Total (free plus bound) phosphocreatine and creatine were measured by HPLC analysis of extracts from the same hearts, freeze-clamped at the end of the perfusions. A greater concentration of creatine (mumol/g dry wt.) in the perfused rat heart was measured by HPLC analysis (40.3 +/- 2.38 (11)) as compared to NMR (34.6 +/- 1.95 (11)), whilst no significant difference was observed in the measurement of phosphocreatine between the two assay methods. Consequently, a greater sigma Cr was measured by HPLC. This work suggests that the majority of Cr in the heart is NMR visible and unbound, so available to interact with creatine kinase. The lower free ADP concentration calculated from NMR measurements (53.3 +/- 3.80 microM (9)) was not significantly different from that determined by HPLC analysis (56.9 +/- 5.90 microM (9)). This suggests that the concentration of free ADP in the heart is higher than values where it can regulate oxidative phosphorylation most effectively.  相似文献   

3.
The 31P nuclear magnetic resonance (NMR) spectrum of the digestive gland-gonad complex (DGG) of the schistosome vector Biomphalaria glabrata was characterized and the effects of infection by Schistosoma mansoni noted. The in vivo spectrum was comprised of 11 peaks, 5 downfield and 6 upfield of an external 85% phosphoric acid standard. Based on a variety of analytical procedures, the upfield peaks from the standard were demonstrated to be composed of carbamoyl phosphate + a mixture of 3 phosphatides and sphingomyelin, the gamma + beta phosphorus resonances of nucleotide triphosphate (NTP) and nucleotide diphosphate (NDP), respectively, the alpha phosphorus resonances of NTP + NDP, NAD(H) + the phosphorus resonance of uridine phosphate from uridine diphosphoglucose (UDPG), the phosphorus resonance of glucose phosphate from UDPG and, last, the beta phosphorus resonance of NTP. The downfield peaks were assigned as glycerophosphoryl choline, intracellular inorganic phosphate (Pi), sugar phosphates + phosphoryl choline, aminoethyl phosphonate (AEP), and ceramide AEP. T1 values for the in vivo NMR components were determined by inversion recovery. Infection produced distinct alterations in the levels of nonnucleotide components of the in vivo 31P NMR spectrum and the spectra of tissue extracts. Specifically, the levels of phosphonate, phospholipids, and carbamoyl phosphate were markedly reduced, and the relative level of Pi was increased. The potential significance of these changes to the parasite-host relationship was discussed. In contrast, starvation resulted in a decreased level of phosphonate only. The pH of the intact DGG was estimated by titrating the inorganic phosphate component of tissue extracts. The mean pH was 6.9 for both control and infected material.  相似文献   

4.
Absolute 31P-NMR measurements of ATP, ADP and 2,3-diphosphoglycerate (2,3-DPG) in oxygenated and partly deoxygenated human erythrocytes, compared to measurements by standard assays after acid extraction, show that ATP is only 65% NMR visible, ADP measured by NMR is unexpectedly 400% higher than the enzymatic measurement and 2,3-DPG is fully NMR visible, regardless of the degree of oxygenation. These results show that binding to hemoglobin is unlikely to cause the decreased visibility of ATP in human erythrocytes as deoxyhemoglobin binds the phosphorylated metabolites more tightly than oxyhemoglobin. The high ADP visibility is unexplained. The levels of free Mg2+ [( Mg2+]free) in human erythrocytes are 225 mumol/l at an oxygen saturation of 98.6% and instead of the expected increase, the level decreased to 196 mumol/l at an oxygen saturation of 38.1% based on the separation between the alpha- and beta-ATP peaks. [Mg2+]free in the erythrocytes decreased to 104 mumol/l at a high 2,3-DPG concentration of 25.4 mmol/l red blood cells (RBC) and a normal ATP concentration of 2.05 mmol/l RBC. By increasing the ATP concentration to 3.57 mmol/l RBC, and with a high 2,3-DPG concentration of 24.7 mmol/l RBC, the 31P-NMR measured [Mg2+]free decreased to 61 mumol/l. These results indicate, that the 31P-NMR determined [Mg2+]free in human erythrocytes, based solely on the separation of the alpha- and beta-ATP peaks, does not give a true measure of intracellular free Mg2+ changes with different oxygen saturation levels. Furthermore the measurement is influenced by the concentration of the Mg2+ binding metabolites ATP and 2,3-DPG. Failure to take these factors into account when interpreting 31P-NMR data from human erythrocytes may explain some discrepancies in the literature regarding [Mg2+]free.  相似文献   

5.
L J Berliner  S S Wong 《Biochemistry》1975,14(22):4977-4982
The kinetically observed Mn(II) activation as well as inhibition has been clarified for bovine galactosyltransferase. An electron spin resonance (ESR) titration of MnCl2 with galactosyltransferase alone at pH 8.0 clearly shows the existence of at least two metal ion binding sites with microscopic dissociation constants of 0.84 +/- 0.1 and 9.0 +/- 1.0 mM, respectively. The second site corresponds with either published kinetic constant for Mn(II) of 8.5 mM (inhibition) or 3.40 mM (activation). The contribution of the binary complex Mn(II)-UDPGal is of lesser significance, as concluded by its ESR measured Kdiss of 14.5 +/- 1.1 mM at pH 8.0. A spin-labeled inhibitor analog of UDPgalactose, UDP-4-O-(2,2,6,6-tetramethyl-4-piperidinyl-1-oxy), or UDP-R, was synthesized as a competitive inhibitor for UDPGal. It was shown from inhibition kinetics to be almost as potent an inhibitor as UDPGlu. The Ki values at pH 8.0 in the N-acetyllactosamine and lactose reactions were 0.38 +/- 0.04 and 0.63 +/- 0.06 mM, respectively, as compared with 0.10 +/- 0.01 and 0.094 +/- 0.009 mM for UDPGlu. An ESR titration of UDP-R with galactosyltransferase at pH 8.0 yielded direct physical dissociation constants of 0.40 +/- 0.07 and 0.53 +/- 0.08 mM in the absence and presence of alpha-lactalbumin, respectively. No other substrates (glucose of N-acetylglucosamine) nor Mn(II) were present.  相似文献   

6.
H A Nunez  R Barker 《Biochemistry》1976,15(17):3843-3847
The metal ion catalysed decomposition of the nucleotide diphosphate sugars, uridine diphosphate glucose, uriding diphosphate galactose, uridine diphosphate N-acetylglucosamine, guanosine diphosphate mannose, and guanosine diphosphate fucose (UDPGlc, UDPGal, UDPGlc-NAc, GDPMan, and GDPFuc, respectively), has been studies as a function of pH. UDPDlc and UDPGal decompose readily to the a,2-cycle phosphate derivative of the sugar and uridine 5'-phosphoric acid (UMP) in the presence of Mn2+. Under all conditions tested, UDPGal decomposes two to three times more rapidly than does UDPGlc. GDPFuc is slowly degraded to free fucose under similar conditions; the other nucleotide diphosphate sugars are stable. The rate of reaction increases with increasing hydroxide ion concentration from pH 6.5 to 7.9 and with metal ion concentration from 10 to 200 mm. Several metal ions are effective catalysts; at pH 7.5 WITH 20 mM UDPGal and 20 mM metal ion, the following apparent first-order rate constants (min-1 x 10(4)) were obtained: Eu3+ 700; Mn2+, 70; Co2+ 27; Zn2+, 22; Ca2+, 3.0; Cu2+, 2.4; and Mg2+, 0. It appears that Mn2+ concentrations that have been used in studies with nucleotide diphosphate sugars at neutral pH can catalyze significant decomposition leading to erroneous interpretation of kinetic and incorporation experiments.  相似文献   

7.
Quantitative 31P-NMR and enzymatic analysis of high-energy phosphates were used to characterize an isolated perfused working rabbit heart preparation. In this model, the left side of the heart works against a physiological after-load. Two perfusates, Krebs-Henseleit saline and the perfluorocarbon emulsion FC-43 (perfluorotributylamine), were evaluated in their ability to maintain cardiac function and high-energy phosphate metabolites over a period of 2-3 h. Adenine nucleotides ATP, ADP, phosphocreatine and inorganic phosphate (Pi) were measured by 31P-NMR while monitoring cardiac output and coronary flow. Intracellular pH was determined using the chemical shift of Pi. At the end of each experiment, hearts were freeze clamped and enzymatically assayed for adenine nucleotides, phosphocreatine and Pi. In every experiment, hearts perfused with FC-43 emulsion maintained the same rate of cardiac output as hearts perfused with Krebs-Henseleit saline, but with half the coronary flow rate: FC-43, 22 +/- 2.5 (n = 5), Krebs-Henseleit saline 42 +/- 2.7 (n = 6) ml/min, P less than 0.001. Hearts perfused with FC-43 emulsion showed higher [phosphocreatine] and [ATP] measured by 31P-NMR. For [phosphocreatine]: FC-43 3.2 +/- 0.7 (n = 5), Krebs-Henseleit saline 1.7 +/- 0.2 (n = 6) mumol/g wet wt., P less than 0.01. For [ATP]: FC-43 1.8 +/- 0.7 (n = 5), Krebs-Henseleit saline 0.9 +/- 0.2 (n = 6) mumol/g wet wt., P less than 0.02. [phosphocreatine] and [ATP] determined by 31P-NMR values were identical within experimental error to those values obtained by enzymatic analysis. Comparing [Pi] determined by both methods, 36% of Pi in FC-43-perfused hearts, and only 24% of Pi in Krebs-Henseleit saline-perfused hearts were visible by NMR, indicating that a large proportion of Pi is bound in the intact functioning heart. Similar results were obtained for [ADP]. Using the combined techniques of 31P-NMR and enzymatic assay, we have shown in this model of the isolated working rabbit heart preparation, that FC-43 emulsion maintains significantly better function and high-energy phosphate levels than Krebs-Henseleit saline.  相似文献   

8.
Amino acids, including glutamine, glutamate and asparagine are major metabolic substrates for the adult enterocyte of several species. To determine whether circulating amino acids are utilized by the fetal intestine, we studied nine fetal sheep (mean gestational age 128 +/- 5 days; term: 147 days). Catheters were inserted into the descending aorta (DA) and the mesenteric vein (MV) to allow for simultaneous blood sampling across the intestine. Fetal blood gas, haemoglobin; O2 saturation and O2 tension were measured. Ammonia was determined by an enzymatic method and HPLC analysis was used to measure the content of all amino acids in DA (descending aorta) and MV (mesenteric vein). Intestinal blood flow measurements were obtained using the radionuclide microsphere method. Intestinal blood flow (81 +/- 28 ml/min/100g) and arterial pH (7.37 +/- 0.04) were within normal range for unstressed fetal lambs. Glutamine and glutamate were the only amino acids that were significantly taken up across the fetal intestinal circulation. The fetal intestine extracted approximately 21% of the delivered glutamine (6.8 +/- 4.5 mumol/min/100g), 7% of the delivered glutamate (1.3 +/- 1.1 mumol/min/100g) and 2.7% of the delivered oxygen (43.0 +/- 19.1 mumol/min/100g). These data suggest that glutamine and glutamate are major substrates for the intestine in unstressed fetal lambs.  相似文献   

9.
The aim of this investigation was to characterize the phospholipid composition of normal human blood mononuclear cells using 31P NMR spectroscopy. Mononuclear cells of peripheral blood were obtained from 10 volunteers. Phospholipid extracts were prepared from 60x10(6) cells according to modified Folch's method. An AMX 300 Bruker spectrometer 7.05 T was used. The 31P spectrum of phospholipid extracts from normal human PBMC consisted of 9 peaks, with one each for phosphatidylcholine (PC), plasmalogen of phosphatidylcholine (CPLAS), lysophosphatidylcholine (LPC), sphingomyelin (SM), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS) and cardiolipin (CL), and another one due to the external reference substance, methylenediphosphonic acid (MDPA). The concentrations of these phospholipids (PL), based on the integral intensities, were as follows: 0.398 +/- 0.078 mmole/l for PC; 0.033 +/- 0.019 mmole/l for CPLAS; 0.155 +/- 0.043 mmole/l for SM; 0.266 +/- 0.104 mmole/l for PI+PE; 0.101 +/- 0.040 mmole/l for PS, and 0.026 +/- 0.033 mmole/l for CL. The results of this study confirmed that 31P MRS is a convenient tool for measuring the phospholipid concentrations of biological samples.  相似文献   

10.
The dose-dependent effect of ethanol on the hepatic metabolism of the perfused rat liver has been investigated by (a) 31P-NMR spectroscopy for the follow-up of intracellular phosphorylated metabolites and (b) HPLC for compounds released in the effluents. Perfusion of livers from fed rats with ethanol induced an increase in the level of sn-glycerol 3-phosphate and net accumulations of 3.30 +/- 0.33 and 0.69 +/- 0.15 mumol x g-1 wet liver were reached after 20 min, for 70 mM and 0.5 mM ethanol, respectively. sn-Glycerol-3-phosphate accumulation was fully detected by 31P NMR as indicated by comparing quantitations based on NMR and biochemical assays. Ethanol administration up to a concentration of 10 mM induced a dose-dependent decrease in the release of lactate + pyruvate by the liver. Lactate release decreased from 1129 +/- 39 to 674 +/- 84 nmol x min-1 x g-1, while pyruvate decreased from 230 +/- 9 to 6.2 +/- 0.4 nmol x min-1 x g-1, after 20 min of perfusion with 10 mM ethanol. Nevertheless, the flux through 6-phosphofructo-1-kinase, as measured by both the accumulation of sn-glycerol 3-phosphate and release of lactate + pyruvate, was not affected in the early phase of ethanol oxidation. Finally, data obtained from oxygen consumption, the release of acetate and the accumulation of sn-glycerol 3-phosphate do not support the involvement of the microsomal ethanol-oxidizing system in the catalysis of ethanol oxidation, even at high doses of alcohol.  相似文献   

11.
High resolution 31P NMR spectra (103.2 MHz) of oxygenated Catharanthus roseus and Daucus carota cells grown in suspension cultures were obtained using a solenoidal perfusion probe. The spectra showed resonances for various phosphorylated metabolites such as ATP, ADP, NAD(P)(H), nucleoside diphosphoglucose, and sugar phosphates. The relative levels of the phosphorylated metabolites remained constant throughout the growth curve. No resonances for storage compounds such as polyphosphates, pyrophosphate, or phytates were observed. Two resolved resonances for Pi indicated an intracellular pH of 7.3 and 5.7 (or below) for the cytoplasm and vacuoles, respectively. The time course of Pi uptake and storage during growth in fresh culture medium was followed by studying the level of vacuolar Pi with 31P NMR (145.7 MHz). Simultaneously, the level of Pi in the culture medium was followed with radioactive 32P. C. roseus quickly takes up all the Pi from the culture medium (maximum rate 1.7 mumol min-1 g-1 (dry weight of cells]. The Pi is first stored in the vacuoles; subsequently, one part of this pool is used to keep a constant cytoplasmic Pi level while another part is apparently accumulated as an NMR invisible Pi store, probably in another cell organelle. In contrast, D. carota does not accumulate Pi in the vacuoles and consequently it takes up Pi from the medium at a much slower rate (0.05 mumol min-1 g-1 (dry weight of cells].  相似文献   

12.
Abstract: Perchloric acid (PCA) extracts were prepared from liquid-N2-frozen guinea pig brains and their organophosphate profiles examined by P-31 nuclear magnetic resonance (NMR) spectroscopy. Thirty-two phosphorus-containing brain metabolites were characterized and quantitated. A distinctive feature of brain tissue metabolism relative to that of other tissues probed by P-31 NMR is its pronounced ribose 5-phosphate content. Comparison of brain metabolite levels following control or sublethal cyanide treatment (4 mg/kg) revealed specific cyanide-induced changes in brain metabolism. Brains from cyanidetreated animals were characterized by a reduced phosphocreatine content and elevated α-glycerolphosphate and inorganic orthophosphate contents relative to control. P-31 NMR spectra of brain PCA extracts at pH 7.2 were also obtained under conditions that approximate those used for in vivo and intact tissue in vitro P-31 spectroscopic analyses. The spectra reveal nine separate resonance bands corresponding to: sugar phosphates, principally ribose 5-phosphate (3.7δ); inorganic orthophosphate (2.2δ); glycerol 3-phosphorylethanolamine (0.3δ); glycerol 3-phosphorylcholine (−0.1δ); phosphocreatine (−3.2δ); adenosine tri-(β-ATP) and di-(β-ADP) phosphate ionized end-groups (−6.2δ); α-ATP, α-ADP, and nicotinamide adenine dinucleotides esterified end-groups (−11.1δ); uridine diphosphohexose, hexose esterified end-groups (−13.0δ); and β-ATP ionized middle group (−21.6δ). Knowledge of the phosphatic molecules that contribute resonances to the brain P-31 NMR spectrum as well as understanding their magnetic resonance properties is essential for the interpretation of in vivo brain spectroscopic data as well as brain extract data, since these same compounds contribute to the intact brain P-31 spectrum.  相似文献   

13.
T Kallas  F W Dahlquist 《Biochemistry》1981,20(20):5900-5907
Phosphorus-31 nuclear magnetic resonance (31P NMR) spectra were obtained from actively photosynthesizing and darkened suspensions of the unicellular cyanobacterium Synechococcus. These spectra show intracellular resonances belonging to inorganic phosphate (Pi), a sugar phosphate (sugar-P), nucleotide di- and triphosphates, and poly-phosphates. The pH-dependent chemical shifts of Pi and sugar-P allowed the estimation of intracellular pH. When irradiated with high-intensity tungsten-halogen light (100 x 10(4) ergs . cm-2 . s-1, measured in the visible range), concentrated cell suspensions in the NMR spectrometer incorporated NaH14CO3 at approximately two-thirds the rate shown by a dilute suspension of cells at saturating light intensity. On the basis of NaH14CO3 incorporation, the effective light intensity obtained under NMR conditions would support growth at approximately one-fourth the maximum rate in dilute suspensions of cells. Irradiated cells maintained a cytoplasmic pH of 7.1--7.3 when exposed to an external pH from 6.4 to 8.3. At an external pH of 6.7, a darkness to light shift caused a 0.4 pH unit alkalinization of the cytoplasm. Treatment of cell suspensions with the uncoupler, carbonyl cyanide m-chlorophenylhydrazone (CCCP), in light or darkness, collapsed the internal pH to the level of the external pH. The results suggest a strong light- or energy-dependent buffering of the cytoplasm over a range of external pH. The study demonstrates that 31P NMR can be used to investigate intracellular events in an actively photosynthesizing microorganism.  相似文献   

14.
The subcellular compartmentalization of adenosine 5'-triphosphate (ATP) in isolated perfused rat heart and its relation to energy depletion in ischemia were examined by 31P nuclear magnetic resonance (31P-NMR) spectroscopy and chemical analyses. The signal intensities of the beta-phosphate of ATP and creatine phosphate in the 31P-NMR were standardized by the intracellular volume ratio measured with 23Na-NMR to determine the actual content of each. During aerobic perfusion the ATP content determined by NMR (13.7 +/- 2.2 mumol/g dry weight) was significantly lower than that found by chemical analysis (22.4 +/- 0.7 mumol/g dry weight), while the creatine phosphate contents determined by the two methods were the same. During ischemia at 33 degrees C, the signal of the beta-phosphate of ATP in the 31P-NMR spectrum decreased progressively, disappearing completely after 16 min. But at this time 5.7 +/- 1.7 mumol/g dry weight of myocardial ATP was still detected by chemical analysis. These results indicated that there were two different compartments of intracellular ATP in the heart, only one of which is detectable by 31P-NMR spectroscopy, and that during ischemia the ATP that is detectable, which seems to be the free ATP in the cytosol, decreased more rapidly than the ATP in the other compartment.  相似文献   

15.
Spatially localized 31P NMR spectroscopy was used to assay in vivo the liver of intact rats fed erotic acid (OA) in a diet which produces hepatic steatosis. Twenty-three sets of multiple volume spectra were obtained from twenty-one 265- to 315-g female rats after 0-9 days of feeding either a 1% OA/64% sucrose diet (12 rats) or a 65% sucrose control diet (9 rats). The intensity of the in vivo diphosphodiester resonance ascribed to UDP-hexos(amin)es increased and the phosphomonoester resonance decreased in intensity prior to fatty infiltration. High resolution NMR spectroscopy of extracts of these livers indicated that the UDP-hexos(amin)e peak included four different UDP-sugars including UDP-N-acetylglucosamine (UDP-glcNAc), and that lower phosphocholine (P-Cho) accounted for the lower phosphomonoester resonance in vivo. Increased UDP-glcNAc is thought to reflect impaired lipoprotein glycosylation as a mechanism for hepatic steatosis in orotic acid feeding. P-Cho deficiency has been shown to be due to an increased rate of phosphatidylcholine synthesis. Low P-Cho concentration has been shown to be associated with lipid accumulation in a choline-deficient diet, but was not previously associated with hepatic steatosis in OA feeding. Changes in phosphorus metabolites were observed 2 days prior to the development of fatty liver, HPLC assay of uridine nucleotides showed a good correlation between magnetic resonance spectroscopy and HPLC quantitation. In this study there were two biochemical correlates of impaired hepatic lipid secretion detectable by in vivo assay with 31P NMR spectroscopy. This method has application for noninvasive assays in ornithine transcarbamylase-deficient patients.  相似文献   

16.
The main metabolic properties of human red blood cells (RBC) overloaded with glucose catabolizing enzymes such as hexokinase and glucose oxidase were evaluated. Human erythrocytes loaded with human hexokinase metabolized 3.1 +/- 0.2 mumol/h/ml RBC of glucose, an amount double that consumed by normal and unloaded cells (1.46 +/- 0.16 mumol/h/ml RBC), while glucose oxidase-loaded erythrocytes consumed up to 5.5 +/- 0.5 mumol/h/ml RBC of glucose but with a time-dependent increase in methemoglobin formation due to the H2O2 produced in the glucose oxidase reaction. This methemoglobin production was greatly reduced while glucose consumption was increased (8.1 +/- 0.4 mumol/h/ml RBC) by coentrapment of hexokinase and glucose oxidase. Similar results were obtained in mouse red blood cells, although the role of hexokinase was less pronounced due to a higher basal level of this enzyme. When administered to diabetic mice the hexokinase/glucose oxidase-overloaded erythrocytes had a circulating half-life of 5 days and were able to regulate blood glucose at near physiological levels. A single intraperitoneal administration of 500 microliters of enzyme-loaded cells maintained a near-normal blood glucose concentration for 7 +/- 1 days, while repeated administrations at 10-day intervals were effective in the regulation of blood glucose levels for several weeks. These results suggest that enzyme-loaded erythrocytes can behave as circulating bioreactors and can provide a new way to reduce abnormally elevated blood glucose.  相似文献   

17.
The effects of administration of galactosamine (GalN) and glucosamine (GlcN) on the levels of UDP-sugars and hexose monophosphates in rat livers were studied by a variety of 31P NMR methods. The flux of metabolites in the liver was monitored by in vivo NMR and showed elevated levels of UDP-sugars, and even greater increases in resonances at 4.6 ppm for GlcN treatment and at 2.0 ppm for GalN treatment. The individual compounds corresponding to these changes were identified in PCA liver extracts by 31P-[1H] two-dimensional relay spectroscopy with a HOHAHA-type 1H spin-lock. This method of transferring proton magnetization allows for nearly all of the proton chemical shifts to be observed for the hexose moiety of a UDP-sugar present in a complex mixture. The UDP-sugars in the extracts from treated rats were predominantly UDP-hexosamines. Relay spectra were also used to determine that GalN-1-P was the major component (16.0 mumol/g of liver) of the GalN-treated liver, while both alpha and beta anomers of GlcNAc-6-P were readily identified as the major hexose monophosphates in the GlcN experiment. Spectra from the 1H dimension of relay experiments conducted on extracts were nearly superimposable on relay spectra obtained under the same conditions for mixtures of standard compounds of known structure. UDP-GlcN and UDP-GalN were not commercially available, but their presence was established in the extracts after GalN treatment by obtaining relay spectra for a mixture of the compounds produced in situ enzymatically, without purification.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The novel UDP-sugar uridine 5'-(3-deoxy-3-fluoro-D-galactopyranosyl diphosphate) (1) and UDP-(2-deoxy-2-fluoro)-D-galactose (2) have been prepared enzymatically and tested as substrate analogues for the enzyme UDP-galactopyranose mutase (UDP-Galp mutase EC 5.4.99.9). Turnover of both 1 and 2 by UDP-Galp mutase was observed by HPLC and 19F NMR. The HPLC elution profile and 19F chemical shift of the products are consistent with the formation of the predicted furanose forms of 1 and 2. The Km values for compounds 1 and 2 were similar to those of the natural substrate UDP-Galp (0.26 mM for 1, 0.2 mM for 2, and 0.6 mM for UDP-Galp), but the values for kcat were substantially different (1.6/min for 1, 0.02/min for 2, and 1364/min for UDP-Galp). A correlation was also observed between the equilibrium yield of product formed during turnover of UDP-sugar by UDP-Galp mutase (UDP-Galp, compound 1 or compound 2), and the amount of furanose present for the free sugar at thermal equilibrium in aqueous solution, using 1H and 19F NMR spectroscopy. The implications of these results to the mechanism of the unusual enzymatic reaction are discussed.  相似文献   

19.
A novel nonradioactive, microassay method has been developed to determine simultaneously the two enzymatic activities of orotate phosphoribosyltransferase (OPRTase) and orotidine 5'-monophosphate decarboxylase (ODCase), either as a bifunctional protein (uridine 5'-monophosphate synthase, UMPS) or as separate enzymes. Substrates (orotate for OPRTase or orotidine 5'-monophosphate for ODCase) and a product (UMP) of the enzymatic assay were separated by high-performance liquid chromatography (HPLC) using a reversed-phase column and an ion-pairing system; the amount of UMP was quantified by dual-wavelength uv detection at 260 and 278 nm. This HPLC assay can easily detect picomole levels of UMP in enzymatic reactions using low specific activity UMPS of mammalian cell extracts, which is difficult to do with the other nonradioactive assays that have been described. The HPLC assay is suitable for use in protein purification and for kinetic study of these enzymes.  相似文献   

20.
L-Ribulose 5-phosphate (L-Ru5P) was identified as the primary effector molecule of L-arabinose-induced bulge formation in Escherichia coli IFO 3545 observed in nutrient broth with 5% (w/v) sodium chloride. Hyperinduction of L-arabinose isomerase was due to exogenous sodium chloride and the resulting alteration in the balance of the L-arabinose-metabolizing enzymes resulted in accumulation of L-Ru5P. L-Ru5P induced the lysis of an L-arabinose-negative, L-Ru5P 4-epimerase-less mutant, ara-207, even when directly added to the medium but was not active against the wild-type strain. Some L-arabinose-utilizing (L-arabinose-resistant) revertants of ara-207 were still sensitive to L-Ru5P, indicating the involvement of another mutation in L-Ru5P-sensitivity other than genetic lack of L-Ru5P 4-epimerase. Among the various pentose phosphate esters tested, only L-Ru5P could induce lysis of ara-207. The lytic activity of L-Ru5P was attributed to its effect on bacterial sugar nucleotide metabolism which caused secondary accumulation of uridine 5'-diphosphate galactose (UDPGal), which provoked lysis induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号