首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Previous studies on the activation mechanism of canonical transient receptor potential (TRPC) channels have often produced conflicting conclusions. All seven have been shown to be activated by phospholipase C (PLC)-coupled receptors, but TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, and TRPC7 have also been proposed to function as store-operated channels.1 In the case of TRPC3, the expression environment and the expression level appear to determine the mode of regulation. Evidence of a close structural relative of TRPC3, TRPC7, has been presented that this channel is activated by receptor activation or by store depletion. On the basis of previous findings for TRPC3, we reasoned that subtle differences in structure or expression conditions might account for the apparent distinct gating mechanisms of TRPC7. To reexamine the mode of activation of TRPC7, we stably and transiently transfected human embryonic kidney (HEK)-293 cells with cDNA encoding for human TRPC7. We examined the ability of a PLC-activating agonist and an intracellular Ca2+ store-depleting agent to activate these channels. Our findings demonstrate that when transiently expressed in HEK-293 cells, TRPC7 forms channels that are activated by PLC-stimulating agonists, but not by Ca2+ store depletion. However, when stably expressed in HEK-293 cells, TRPC7 can be activated by either Ca2+ store depletion or PLC activation. To our knowledge, this is the first demonstration of a channel protein that can be activated by both receptor- and store-operated modes in the same cell. In addition, the results reconcile the apparently conflicting findings of other laboratories regarding TRPC7 regulation. calcium signaling; nonselective cation channels  相似文献   

2.
Osteoblasts subjected to fluid shearincrease the expression of the early response gene, c-fos, andthe inducible isoform of cyclooxygenase, COX-2, two proteins linked tothe anabolic response of bone to mechanical stimulation, in vivo. Theseincreases in gene expression are dependent on shear-induced actinstress fiber formation. Here, we demonstrate that MC3T3-E1osteoblast-like cells respond to shear with a rapid increase inintracellular Ca2+ concentration([Ca2+]i) that wepostulate is important to subsequent cellular responses to shear. Totest this hypothesis, MC3T3-E1 cells were grown on glass slides coatedwith fibronectin and subjected to laminar fluid flow (12 dyn/cm2). Before application of shear, cells were treatedwith two Ca2+ channel inhibitors or various blockers ofintracellular Ca2+ release for 0.5-1 h. Althoughgadolinium, a mechanosensitive channel blocker, significantly reducedthe [Ca2+]i response, neithergadolinium nor nifedipine, an L-type channel Ca2+ channelblocker, were able to block shear-induced stress fiber formation andincrease in c-fos and COX-2 in MC3T3-E1 cells. However, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraaceticacid-AM, an intracellular Ca2+ chelator, or thapsigargin,which empties intracellular Ca2+ stores, completelyinhibited stress fiber formation and c-fos/COX-2 production in shearedosteoblasts. Neomycin or U-73122 inhibition of phospholipase C, whichmediates D-myo-inositol 1,4,5-trisphosphate (IP3)-induced intracellular Ca2+ release, alsocompletely suppressed actin reorganization and c-fos/COX-2 production.Pretreatment of MC3T3-E1 cells with U-73343, the inactive isoform ofU-73122, did not inhibit these shear-induced responses. These resultssuggest that IP3-mediated intracellular Ca2+release is required for modulating flow-induced responses in MC3T3-E1 cells.

  相似文献   

3.
The Ca2+-sensing receptor (CaR) is a pleiotropic, type III G protein-coupled receptor (GPCR) that associates functionally with the cytoskeletal protein filamin. To investigate the effect of CaR signaling on the cytoskeleton, human embryonic kidney (HEK)-293 cells stably transfected with CaR (CaR-HEK) were incubated with CaR agonists in serum-free medium for up to 3 h. Addition of the calcimimetic NPS R-467 or exposure to high extracellular Ca2+ or Mg2+ levels elicited actin stress fiber assembly and process retraction in otherwise stellate cells. These responses were ablated by cotreatment with the calcilytic NPS 89636 and were absent in vector-transfected HEK-293 cells. Cotreatment with the Rho kinase inhibitors Y-27632 and H1152 attenuated the CaR-induced morphological change but not intracellular Ca2+ (Cai2+) mobilization or ERK activation, although transfection with a dominant-negative RhoA-binding protein also inhibited calcimimetic-induced actin stress fiber assembly. CaR effects on morphology were unaffected by inhibition of Gq/11 or Gi/o signaling, epidermal growth factor receptor, or the metalloproteinases. In contrast, CaR-induced cytoskeletal changes were not induced by the aromatic amino acids, treatments that also failed to potentiate CaR-induced ERK activation despite inducing Cai2+ mobilization. Together, these data establish that CaR can elicit Rho-mediated changes in stress fiber assembly and cell morphology, which could contribute to the receptor's physiological actions. In addition, this study provides further evidence that aromatic amino acids elicit differential signaling from other CaR agonists. cytoskeleton; signaling  相似文献   

4.
Electrical characteristics of the node were analyzed in comparisonwith those of the flank of the internodal cell in Chara corallina.The dependence of the membrane potential of the node on pH andK+ concentration was almost the same as that of the flank. Inthe flank, the increase in the Ca2+ concentration stopped thedepolarization in the presence of 100 mM KCl. In the node, however,Ca2+ could not stop the depolarization induced by 100 mM KCl.It has been reported that the node has a function to tranducethe signal of osmotic shock into a transient depolarization.In combination with osmotic shock, 10 mM K+ could induce a long-lastingdepolarization of the node. These electrical characteristicsof the node were suggested to be responsible for the electricalresponse to wounding in Characeae.  相似文献   

5.
From video imaging of fura 2-loaded baby hamster kidney (BHK)cells stably expressing the cloned human glucagon receptor, we foundthe Ca2+ response to glucagon tobe specific, dose dependent, synchronous, sensitive to pertussis toxin,and independent of Ca2+ influx.Forskolin did not elicit a Ca2+response, but treatment with a protein kinase A inhibitor, the Rp diastereomer of 8-bromoadenosine-3',5'-cyclicmonophosphothioate, resulted in a reduced glucagon-mediatedCa2+ response as well asCa2+ oscillations. The specificphospholipase C inhibitor U-73122 abolished theCa2+ response to glucagon, and amodest twofold increase in inositol trisphosphate(IP3) production could beobserved after stimulation with glucagon. In BHK cells coexpressingglucagon and muscarinic (M1)acetylcholine receptors, carbachol blocked the rise in intracellular free Ca2+ concentrations inresponse to glucagon, whereas glucagon did not affect thecarbachol-induced increase inCa2+. Furthermore, carbachol, butnot glucagon, could block thapsigargin-activated increases inintracellular free Ca2+concentration. These results indicate that, in BHK cells, glucagon receptors can activate not only adenylate cyclase but also a second independent G protein-coupled pathway that leads to the stimulation ofphospholipase C and the release ofCa2+ fromIP3-sensitive intracellularCa2+ stores. Finally, we provideevidence to suggest that cAMP potentiates theIP3-mediated effects onintracellular Ca2+ handling.

  相似文献   

6.
Abstract: Ion flux through native N-methyl-d -aspartate (NMDA) receptors is inhibited by behaviorally relevant concentrations of ethanol (10–100 mM) in a variety of neuronal preparations. However, in animal tissues, it is often difficult to determine accurately which NMDA receptor subunits are responsible for the observed effect. In this study, human embryonic kidney 293 (HEK 293) cells normally devoid of NMDA receptors were transiently transfected with cDNA expression plasmids coding for specific rat NMDA receptor subunits. Brief application of an NMDA/glycine solution to cells markedly increased intracellular calcium in cells transfected with NR1/NR2A, NR1/NR2B, or NR1/NR2A/NR2B as measured by fura-2 calcium imaging. This increase was both NMDA- and glycine-dependent and was inhibited by competitive and noncompetitive NMDA antagonists, including 2-amino-5-phosphopentanoic acid and MK-801. The NR2B-selective antagonist ifenprodil inhibited responses in cells transfected with NR1/NR2B or NR1/NR2A/NR2B, but not NR1/NR2A subunits. Increasing the transfection ratio of NR2B versus NR2A subunit in NR1/NR2A/NR2B-transfected cells greatly increased their ifenprodil sensitivity. Acute exposure to ethanol (25–100 mM) inhibited the NMDA-mediated increase in intracellular calcium in a dose-dependent manner without affecting basal calcium concentrations. There were no statistically significant differences in ethanol's potency or maximal inhibition between any of the subunit combinations tested. HEK 293 cells transfected with NR1/NR2A/NR2B subunits showed an enhanced sensitivity to ifenprodil following a 24-h exposure to concentrations of ethanol of 50 mM and greater. The enhanced ifenprodil sensitivity following ethanol exposure was not associated with changes in NR1, NR2A, or NR2B immunoreactivity. In contrast to results obtained in transfected HEK 293 cells, no effect of chronic ethanol was observed in oocytes expressing NR1/NR2A/NR2B subunits. These results demonstrate that recombinant NMDA receptors expressed in HEK 293 cells form functional receptors that, like native receptors, are sensitive to modulation by both acute and chronic ethanol treatment.  相似文献   

7.
The determination of ligand specificities of odorant receptorswill contribute to the understanding of how odorants are discriminatedby the olfactory system. To date, the ways in which some olfactoryreceptors (ORs) pair with their cognate ligands has been studiedusing a Ca2+ imaging technique. This approach has been usedto investigate orphan G protein–coupled receptors expressedin heterologous cells; however, most attempts to functionallyexpress ORs on the cell surface of heterologous cells have failed.Recently, receptor-transporting protein 1 and Ric-8B have beenidentified as proteins involved in targeting receptors to thecell membrane and amplifying receptor signals, and thus, theyare able to facilitate cellular responses via ORs in a heterologouscell system. Here, we describe a technique in which we employeda myristoylation sequence–conjugated mutant of Ric-8A(Myr-Ric-8A) as a signal amplifier and show Myr-Ric-8A greatlyenhances G15-mediated Ca2+ responses of ORs in HEK293 cells.Coexpression of Myr-Ric-8A enabled us to deorphanize a mouseOR and to determine its molecular receptive range. Our resultssuggest that Myr-Ric-8A should be helpful in functional characterizationof ORs in heterologous cells using Ca2+ imaging.  相似文献   

8.
Transient receptor potential (TRP) proteins have been identified as cation channels that are activated by agonist–receptor coupling and mediate various cellular functions. TRPC7, a homologue of TRP channels, has been shown to act as a Ca2+ channel activated by G protein-coupled stimulation and to be abundantly expressed in the heart with an as-yet-unknown function. We studied the role of TRPC7 in G protein-activated signaling in HEK293 cells and cultured cardiomyocytes in vitro transfected with FLAG-tagged TRPC7 cDNA and in Dahl salt-sensitive rats with heart failure in vivo. TRPC7-transfected HEK293 cells showed an augmentation of carbachol-induced intracellular Ca2+ transient, which was attenuated under a Ca2+-free condition or in the presence of SK&F96365 (a Ca2+-permeable channel blocker). Upon stimulation with angiotensin II (Ang II), cultured neonatal rat cardiomyocytes transfected with TRPC7 exhibited a significant increase in apoptosis detected by TUNEL staining, accompanied with a decrease in the expression of atrial natriuretic factor and destruction of actin fibers, as compared with non-transfected cardiomyocytes. Ang II-induced apoptosis was inhibited by CV-11974 (Candesartan; Ang II type 1 [AT1] receptor blocker), SK&F96365, and FK506 (calcineurin inhibitor). In Dahl salt-sensitive rats, apoptosis and TRPC7 expression were increased in the failing myocardium, and a long-term treatment with temocapril, an angiotensin-converting enzyme inhibitor, suppressed both. Our findings suggest that TRPC7 could act as a Ca2+ channel activated by AT1 receptors, leading to myocardial apoptosis possibly via a calcineurin-dependent pathway. TRPC7 might be a key initiator linking AT1-activation to myocardial apoptosis, and thereby contributing to the process of heart failure.  相似文献   

9.
The effects ofmaitotoxin (MTX) on plasmalemma permeability are similar to thosecaused by stimulation of P2Z/P2X7ionotropic receptors, suggesting that1) MTX directly activatesP2Z/P2X7 receptors or2) MTX andP2Z/P2X7 receptor stimulationactivate a common cytolytic pore. To distinguish between these twopossibilities, the effect of MTX was examined in1) THP-1 monocytic cells before andafter treatment with lipopolysaccharide and interferon-, a maneuverknown to upregulate P2Z/P2X7receptor, 2) wild-type HEK cells andHEK cells stably expressing theP2Z/P2X7 receptor, and3) BW5147.3 lymphoma cells, a cellline that expresses functional P2Z/P2X7 channels that are poorlylinked to pore formation. In control THP-1 monocytes, addition of MTXproduced a biphasic increase in the cytosolic freeCa2+ concentration([Ca2+]i);the initial increase reflects MTX-inducedCa2+ influx, whereas the secondphase correlates in time with the appearance of large pores and theuptake of ethidium. MTX produced comparable increases in[Ca2+]iand ethidium uptake in THP-1 monocytes overexpressing theP2Z/P2X7 receptor. In bothwild-type HEK and HEK cells stably expressing theP2Z/P2X7 receptor, MTX-inducedincreases in[Ca2+]iand ethidium uptake were virtually identical. The response of BW5147.3cells to concentrations of MTX that produced large increases in[Ca2+]ihad no effect on ethidium uptake. In both THP-1 and HEK cells, MTX- andBz-ATP-induced pores activate with similar kinetics and exhibit similarsize exclusion. Last, MTX-induced pore formation, but not channelactivation, is greatly attenuated by reducing the temperature to22°C, a characteristic shared by theP2Z/P2X7-induced pore. Together,the results demonstrate that, although MTX activates channels that aredistinct from those activated byP2Z/P2X7 receptor stimulation, thecytolytic/oncotic pores activated by MTX- and Bz-ATP are indistinguishable.

  相似文献   

10.
Although bothvascular endothelial growth factor (VEGF) and fibroblast growth factor(FGF) receptors have been shown to be important in the regulation ofvascular endothelial cell growth, the roles of phospholipase C (PLC)and Ca2+ in their downstream signaling cascades are stillnot clear. We have examined the effects of VEGF and FGF on PLCphosphorylation and on changes in intracellular Ca2+ levelsin primary endothelial cells. VEGF stimulation leads to PLCactivation and increases in intracellular Ca2+, which arecorrelated with mitogen-activated protein (MAP) kinase (MAPK)activation and cell growth. Inhibition of Ca2+ increases bythe Ca2+ chelator1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid(BAPTA)-AM resulted in marked inhibition of MAPK activation, which wasshown to be linked to regulation of cell growth in these cells. Incontrast, FGF stimulation did not lead to PLC activation or tochanges in intracellular Ca2+ levels, although MAPKphosphorylation and stimulation of cell proliferation were observed.Neither BAPTA-AM nor the PLC inhibitor U-73122 had an effect on theseFGF-stimulated responses. These data demonstrate a direct role forPLC and Ca2+ in VEGF-regulated endothelial cell growth,whereas this signaling pathway is not linked to FGF-mediated effects inprimary endothelial cells. Thus endothelial cell-specific factorsregulate the ability of VEGF receptors and FGF receptors to couple tothis signaling pathway.

  相似文献   

11.
Tonic contraction of corpus cavernosum smooth muscle cells (SMCs) maintains the flaccid state of the penis, and relaxation is initiated by nitric oxide (NO), leading to erection. Our aim was to investigate the effect of NO on the smooth muscle cellular response to adrenergic stimulation in corpus cavernosum. Fura-2 fluorescence was used to record intracellular Ca2+ concentration ([Ca2+]i) from freshly isolated SMCs from rat and human. Phenylephrine (PE) transiently elevated [Ca2+]i in the presence and absence of extracellular Ca2+, indicating release from intracellular stores. Whereas the NO donor S-nitroso-N-acetylpenicillamine (SNAP) with sildenafil citrate (SIL) caused no change in basal [Ca2+]i, the PE-induced rise of [Ca2+]i was reversibly inhibited by 27 ± 7% (n = 21, P < 0.005) in rat and by 55 ± 15% (n = 9, P < 0.01) in human SMCs. SNAP and SIL also reduced the contractile response to PE. To investigate the mechanism, we applied mediators alone or in combination. The soluble guanylyl cyclase inhibitor ODQ reduced the effect of SNAP and SIL. SIL, cGMP analogs, and NO donors without SIL did not reduce the PE-induced rise of [Ca2+]i. However, the combination of 8-bromo-cGMP with SNAP reduced the Ca2+ peak by 42 ± 9% (n = 22, P < 0.01). Our results demonstrate that NO and cGMP act synergistically to reduce Ca2+ release from intracellular stores. Reduction of intracellular Ca2+ release may contribute to relaxation of the corpus cavernosum, leading to erection. calcium stores; nitric oxide; sildenafil citrate; inositol 1,4,5-trisphosphate receptor  相似文献   

12.
Cyclic ADP-ribose (cADPR), a potent Ca2+ mobilizing intracellular messenger synthesized by CD38, regulates the opening of ryanodine receptors (RyRs). Increases in intracellular Ca2+ concentrations in pancreatic islets, resulting from Ca2+ mobilization from RyRs as well as Ca2+ influx from extracellular sources, are important in insulin secretion by glucose. In the present study, by screening a rat islet cDNA library, we isolated a novel RyR cDNA (the islet-type RyR), which is generated from the RyR2 gene by alternative splicing of exons 4 and 75. When the expression vectors for the islet-type and the authentic RyRs were transfected into HEK293 cells, the islet-type RyR2 as well as the authentic one showed high affinity [3H]ryanodine binding. Intracellular Ca2+ release in the islet-type RyR2-transfected cells was enhanced in the presence of cADPR but not in the authentic RyR2-transfected cells. The islet-type RyR2 mRNA was expressed in a variety of tissues such as in pancreatic islets, cerebrum, and cerebellum, whereas the authentic RyR2 mRNA was predominantly expressed in heart and aorta. These results suggest that the islet-type RyR2 may be an intracellular target for cADPR signaling.  相似文献   

13.
Agonist stimulation of human pulmonary artery smooth muscle cells (PASMC) and endothelial cells (PAEC) with histamine showed similar spatiotemporal patterns of Ca2+ release. Both sustained elevation and oscillatory patterns of changes in cytosolic Ca2+ concentration ([Ca2+]cyt) were observed in the absence of extracellular Ca2+. Capacitative Ca2+ entry (CCE) was induced in PASMC and PAEC by passive depletion of intracellular Ca2+ stores with 10 µM cyclopiazonic acid (CPA; 15–30 min). The pyrazole derivative BTP2 inhibited CPA-activated Ca2+ influx, suggesting that depletion of CPA-sensitive internal stores is sufficient to induce CCE in both PASMC and PAEC. The recourse of histamine-mediated Ca2+ release was examined after exposure of cells to CPA, thapsigargin, caffeine, ryanodine, FCCP, or bafilomycin. In PASMC bathed in Ca2+-free solution, treatment with CPA almost abolished histamine-induced rises in [Ca2+]cyt. In PAEC bathed in Ca2+-free solution, however, treatment with CPA eliminated histamine-induced sustained and oscillatory rises in [Ca2+]cyt but did not affect initial transient increase in [Ca2+]cyt. Furthermore, treatment of PAEC with a combination of CPA (or thapsigargin) and caffeine (and ryanodine), FCCP, or bafilomycin did not abolish histamine-induced transient [Ca2+]cyt increases. These observations indicate that 1) depletion of CPA-sensitive stores is sufficient to cause CCE in both PASMC and PAEC; 2) induction of CCE in PAEC does not require depletion of all internal Ca2+ stores; 3) the histamine-releasable internal stores in PASMC are mainly CPA-sensitive stores; 4) PAEC, in addition to a CPA-sensitive functional pool, contain other stores insensitive to CPA, thapsigargin, caffeine, ryanodine, FCCP, and bafilomycin; and 5) although the CPA-insensitive stores in PAEC may not contribute to CCE, they contribute to histamine-mediated Ca2+ release. intracellular calcium stores; oscillations; pulmonary hypertension  相似文献   

14.
The ability of two alkyl pyridinium sponge toxin preparations (poly-APS and halitoxin) to form transient pores/lesions in cell membranes and allow transfection of plasmid cDNA have been investigated using HEK 293 cells. Poly-APS and halitoxin preparations caused a collapse in membrane potential, reductions in input resistance and increased Ca2+ permeability. At least partial recovery was observed after poly-APS application but recovery was more rarely seen with halitoxin. The transfection with plasmid cDNAs for an enhanced green fluorescent protein (EGFP) and human tumour necrosis factor receptor 2 (TNFR2) was assessed for both toxin preparations and compared with lipofectamine. Stable transfection was achieved with poly-APS although it was less efficient than lipofectamine. These results show that viable cells transfected with alien cDNA can be obtained using novel transient pore-forming alkyl pyridinium sponge toxins and a simple pre-incubation protocol. This provides the first proof of principle that pore-forming alkyl pyridinium compounds can be used to deliver cDNA to the intracellular environment without permanently compromising the plasma membrane.  相似文献   

15.
The rat dorsal root ganglion (DRG) Ca2+-sensing receptor (CaR) was stably expressed in-frame as an enhanced green fluorescent protein (EGFP) fusion protein in human embryonic kidney (HEK)293 cells, and is functionally linked to changes in intracellular Ca2+ concentration ([Ca2+]i). RT-PCR analysis indicated the presence of the message for the DRG CaR cDNA. Western blot analysis of membrane proteins showed a doublet of 168–175 and 185 kDa, consistent with immature and mature forms of the CaR.EGFP fusion protein, respectively. Increasing extracellular [Ca2+] ([Ca2+]e) from 0.5 to 1 mM resulted in increases in [Ca2+]i levels, which were blocked by 30 µM 2-aminoethyldiphenyl borate. [Ca2+]e-response studies indicate a Ca2+ sensitivity with an EC50 of 1.75 ± 0.10 mM. NPS R-467 and Gd3+ activated the CaR. When [Ca2+]e was successively raised from 0.25 to 4 mM, peak [Ca2+]i, attained with 0.5 mM, was reduced by 50%. Similar reductions were observed with repeated applications of 10 mM Ca2+, 1 and 10 µM NPS R-467, or 50 and 100 µM Gd3+, indicating desensitization of the response. Furthermore, Ca2+ mobilization increased phosphorylated protein kinase C (PKC) levels in the cells. However, the PKC activator, phorbol myristate acetate did not inhibit CaR-mediated Ca2+ signaling. Rather, a spectrum of PKC inhibitors partially reduced peak responses to Cae2+. Treatment of cells with 100 nM PMA for 24 h, to downregulate PKC, reduced [Ca2+]i transients by 49.9 ± 5.2% (at 1 mM Ca2+) and 40.5 ± 6.5% (at 2 mM Ca2+), compared with controls. The findings suggest involvement of PKC in the pathway for Ca2+ mobilization following CaR activation. desensitization; protein kinase C  相似文献   

16.
Calcium ions (Ca2+) play a pivotal role in cellular physiology. Often Ca2+-dependent processes are studied in commonly available cell lines. To induce Ca2+ signals on demand, cells may need to be equipped with additional proteins. A prominent group of membrane proteins evoking Ca2+ signals are G-protein coupled receptors (GPCRs). These proteins register external signals such as photons, odorants, and neurotransmitters and convey ligand recognition into cellular responses, one of which is Ca2+ signaling. To avoid receptor cross-talk or cross-activation with introduced proteins, the repertoire of cell-endogenous receptors must be known. Here we examined the presence of histamine receptors in six cell lines frequently used as hosts to study cellular signaling processes. In a concentration-dependent manner, histamine caused a rise in intracellular Ca2+ in HeLa, HEK 293, and COS-1 cells. The concentration for half-maximal activation (EC50) was in the low micromolar range. In individual cells, transient Ca2+ signals and Ca2+ oscillations were uncovered. The results show that (i) HeLa, HEK 293, and COS-1 cells express sufficient amounts of endogenous receptors to study cellular Ca2+ signaling processes directly and (ii) these cell lines are suitable for calibrating Ca2+ biosensors in situ based on histamine receptor evoked responses.  相似文献   

17.
The mechanism involved inN-methyl-D-glucamine(NMDA)-induced Ca2+-dependentintracellular acidosis is not clear. In this study, we investigated indetail several possible mechanisms using cultured rat cerebellargranule cells and microfluorometry [fura 2-AM or 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-AM].When 100 µM NMDA or 40 mM KCl was added, a marked increase in theintracellular Ca2+ concentration([Ca2+]i)and a decrease in the intracellular pH were seen. Acidosis wascompletely prevented by the use ofCa2+-free medium or1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, suggesting that it resulted from an influx of extracellular Ca2+. The following fourmechanisms that could conceivably have been involved were excluded:1)Ca2+ displacement of intracellularH+ from common binding sites;2) activation of an acid loader or inhibition of acid extruders; 3)overproduction of CO2 or lactate; and 4) collapse of the mitochondrialmembrane potential due to Ca2+uptake, resulting in inhibition of cytosolicH+ uptake. However,NMDA/KCl-induced acidosis was largely prevented by glycolyticinhibitors (iodoacetate or deoxyglucose in glucose-free medium) or byinhibitors of the Ca2+-ATPase(i.e.,Ca2+/H+exchanger), including La3+,orthovanadate, eosin B, or an extracellular pH of 8.5. Our results therefore suggest that Ca2+-ATPaseis involved in NMDA-induced intracellular acidosis in granule cells. Wealso provide new evidence that NMDA-evoked intracellular acidosisprobably serves as a negative feedback signal, probably with theacidification itself inhibiting the NMDA-induced[Ca2+]i increase.

  相似文献   

18.
The large conductance Ca2+-activated K+ (BKCa) channels are highly expressed in vascular smooth muscle cells (VSMCs) and play an essential role in the regulation of various physiological functions. Besides its electrophysiological function in vascular relaxation, BKCa has also been reported to be implicated in nitric oxide (NO)-induced apoptosis of VSMCs. However, the molecular mechanism is not clear and has not been determined on cloned channels. The present study was designed to clarify whether activation of cloned BKCa channel was involved in NO-induced apoptosis in human embryonic kidney 293 (HEK293) cell. The cDNA encoding the α-subunit of BKCa channel, hSloα, was transiently transfected into HEK293 cells. The apoptotic death in HEK-hSloα cells was detected using immunocytochemistry, analysis of fragmented DNA by agarose gel electrophoresis, MTT test, and flow cytometry assays. Whole-cell and single-channel characteristics of HEK-hSloα cells exhibited functional features similar to native BKCa channel in VSMCs. Exposuring of HEK- hSloα cells to S-nitroso-N-acetyl-penicillamine increased the hSloα channel activities of whole-cell and single-channel, and then increased percentage of cells undergoing apoptosis. However, blocking hSloα channels with 1 mM tetraethylammonia or 100 nM iberiotoxin significantly decreased the NO-induced apoptosis, whereas 30 μM NS1619, the specific agonist of BKCa, independently increased hSloα currents and induced apoptosis. These results indicated that activation of cloned BKCa channel was involved in NO-induced apoptosis of HEK293 cells.  相似文献   

19.
The intent of this work was to evaluate the role of cAMP inregulation of ciliary activity in frog mucociliary epithelium and toexamine the possibility of cross talk between the cAMP- andCa2+-dependent pathways in thatregulation. Forskolin and dibutyryl cAMP induced strong transientintracellular Ca2+ concentration([Ca2+]i)elevation and strong ciliary beat frequency enhancement with prolongedstabilization at an elevated plateau. The response was not affected byreduction of extracellular Ca2+concentration. The elevation in[Ca2+]iwas canceled by pretreatment with1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, thapsigargin, and a phospholipase C inhibitor, U-73122. Underthose experimental conditions, forskolin raised the beat frequency to amoderately elevated plateau, whereas the initial strong rise infrequency was completely abolished. All effects were canceled by H-89,a selective protein kinase A (PKA) inhibitor. The results suggest adual role for PKA in ciliary regulation. PKA releasesCa2+ from intracellular stores,strongly activating ciliary beating, and, concurrently, producesmoderate prolonged enhancement of the beat frequency by aCa2+-independent mechanism.

  相似文献   

20.
Calcium ion is a key messenger in turgor regulation of internodalcells of Lamprothamnium succinctum in response to hypoosmotictreatment. An increase in the concentration of cytosolic freecalcium ion ([Ca2+]c) is prerequisite for the turgor regulation[Okazaki and Tazawa (1990) J. Membr. Biol. 114: 189], We examinedwhether or not a calcium-dependent protein kinase (CDPK) isinvolved in the Ca2+-mediated turgor regulation of Lamprothamniumcells. A 53-kDa CDPK which phosphorylated preferentially histoneH1 but poorly myelin basic protein or casein, was detected inthe cell extract of Lamprothamnium by an in-gel protein kinaseassay. This protein kinase was detected by Western blottingand was immunoprecipitated using an anti-Dunaliella tertiolectaCDPK antibody which can neutralize the Dunaliella CDPK activity[Yuasa et al. (1995) Plant Cell Physiol. 36: 699]. The 53-kDaCDPK was partially purified from Lamprothamnium and its activitywas shown to be inhibited by the antibody and K-252a, a proteinkinase inhibitor. Microinjection of the antibody into the cytosblof Lamprothamnium cells inhibited the decrease in turgor pressurein response to hypoosmotic treatment. However, a transient increasein [Ca2+]c, which was suggested by a transient reduction ofthe velocity of cytoplasmic streaming, was induced in antibody-injectedcells after hypoosmotic treatment. Turgor regulation upon hypoosmotictreatment was inhibited when the cells were treated with K-252a.These results imply that CDPK of Lamprothamnium functions ata down-stream position of Ca2+-mobilization in processing turgorregulation in response to hypoosmotic treatment. 2 These authors contributed equally to the work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号