首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 227 毫秒
1.
The yeast GPA1, STE4, and STE18 genes encode proteins homologous to the respective alpha, beta and gamma subunits of the mammalian G protein complex which appears to mediate the response to mating pheromones. Overexpression of the STE4 protein by the galactose-inducible GAL1 promoter caused activation of the pheromone response pathway which resulted in cell-cycle arrest in late G1 phase and induction of the FUS1 gene expression, thereby suppressing the sterility of the receptor-less mutant delta ste2. Disruption of STE18, in turn, suppressed activation of the pheromone response induced by overexpression of STE4, suggesting that the STE18 product is required for the STE4 action. However, overexpression of both the STE4 and STE18 proteins did not generate a stronger pheromone response than overexpression of STE4 in the presence of wild-type levels of STE18. These results suggest that the beta subunit is the limiting component for the pheromone response and support the idea that beta and gamma subunits act as a positive regulator. Furthermore, overexpression of GPA1 prevented cell-cycle arrest but not FUS1 induction mediated by overexpression of STE4. This implies that the alpha subunit acts as a negative regulator presumably through interacting with beta and gamma subunits in the mating pheromone signaling pathway.  相似文献   

2.
The STE4 gene of Saccharomyces cerevisiae encodes the beta subunit of the yeast pheromone receptor-coupled G protein. Overexpression of the STE4 protein led to cell cycle arrest of haploid cells. This arrest was like the arrest mediated by mating pheromones in that it led to similar morphological changes in the arrested cells. The arrest occurred in haploid cells of either mating type but not in MATa/MAT alpha diploids, and it was suppressed by defects in genes such as STE12 that are needed for pheromone response. Overexpression of the STE4 gene product also suppressed the sterility of cells defective in the mating pheromone receptors encoded by the STE2 and STE3 genes. Cell cycle arrest mediated by STE4 overexpression was prevented in cells that either were overexpressing the SCG1 gene product (the alpha subunit of the G protein) or lacked the STE18 gene product (the gamma subunit of the G protein). This finding suggests that in yeast cells, the beta subunit is the limiting component of the active beta gamma element and that a proper balance in the levels of the G-protein subunits is critical to a normal mating pheromone response.  相似文献   

3.
4.
The yeast STE18 gene product has sequence and functional similarity to the gamma subunits of G proteins. The cloned STE18 gene was subjected to a saturation mutagenesis using doped oligonucleotides. The populations of mutant genes were screened for two classes of STE18 mutations, those that allowed for increased mating of a strain containing a defective STE4 gene (compensators) and those that inhibited mating even in the presence of a functional STE18 gene (dominant negatives). Three amino acid substitutions that enhanced mating in a specific STE4 (G beta) point mutant background were identified. These compensatory mutations were allele specific and had no detectable phenotype of their own; they may define residues that mediate an association between the G beta and G gamma subunits or in the association of the G beta gamma subunit with other components of the signalling pathway. Several dominant negative mutations were also identified, including two C terminal truncations. These mutant proteins were unable to function in signal transduction by themselves, but they prevented signal transduction mediated by pheromone, as well as the constitutive signalling which is present in cells defective in the GPA1 (G alpha) gene. These mutant proteins may sequester G beta or some other component of the signalling machinery in a nonfunctional complex.  相似文献   

5.
The STE4 and STE18 genes are required for haploid yeast cell mating. Sequencing of the cloned genes revealed that the STE4 polypeptide shows extensive homology to the beta subunits of mammalian G proteins, while the STE18 polypeptide shows weak similarity to the gamma subunit of transducin. Null mutations in either gene can suppress the haploid-specific cell-cycle arrest caused by mutations in the SCG1 gene (previously shown to encode a protein with similarity to the alpha subunit of G proteins). We propose that the products of the STE4 and STE18 genes comprise the beta and gamma subunits of a G protein complex coupled to the mating pheromone receptors. The genetic data suggest pheromone-receptor binding leads to the dissociation of the alpha subunit from beta gamma (as shown for mammalian G proteins), and the free beta gamma element initiates the pheromone response.  相似文献   

6.
7.
I have isolated a new type of sterile mutant of Saccharomyces cerevisiae, carrying a single mutant allele, designated dac1, which was mapped near the centromere on chromosome VIII. The dac1 mutation caused specific defects in the pheromone responsiveness of both a and alpha cells and did not seem to be associated with any pleiotropic phenotypes. Thus, in contrast to the ste4, ste5, ste7, ste11, and ste12 mutations, the dac1 mutation had no significant effect on such constitutive functions of haploid cells as pheromone production and alpha-factor destruction. The characteristics of this phenotype suggest that the DAC1 gene encodes a component of the pheromone response pathway common to both a and alpha cells. Introduction of the GPA1 gene encoding an S. cerevisiae homolog of the alpha subunit of mammalian guanine nucleotide-binding regulatory proteins (G proteins) into sterile dac1 mutants resulted in restoration of pheromone responsiveness and mating competence to both a and alpha cells. These results suggest that the dac1 mutation is an allele of the GPA1 gene and thus provide genetic evidence that the yeast G protein homolog is directly involved in the mating pheromone signal transduction pathway.  相似文献   

8.
Akr1p, which contains six ankyrin repeats, was identified during a screen for mutations that displayed synthetic lethality with a mutant allele of the bud emergence gene BEM1. Cells from which AKR1 had been deleted were alive but misshapen at 30 degrees C and inviable at 37 degrees C. During a screen for mutants that required one or more copies of wild-type AKR1 for survival at 30 degrees C, we isolated mutations in GPA1, which encodes the G alpha subunit of the pheromone receptor-coupled G protein. (The active subunit of this G protein is G beta gamma, and G alpha plays an inhibitory role in G beta gamma-mediated signal transduction.) AKR1 could serve as a multicopy suppressor of the lethality caused by either loss of GPA1 or overexpression of STE4, which encodes the G beta subunit of this G protein, suggesting that pheromone signaling is inhibited by overexpression of Akr1p. Mutations in AKR1 displayed synthetic lethality with a weak allele of GPA1 and led to increased expression of the pheromone-inducible gene FUS1, suggesting that Akr1p normally (and not just when overexpressed) inhibits signaling. In contrast, deletion of BEM1 resulted in decreased expression of FUS1, suggesting that Bem1p normally facilitates pheromone signaling. During a screen for proteins that displayed two-hybrid interactions with Akr1p, we identified Ste4p, raising the possibility that an interaction between Akr1p and Ste4p contributes to proper regulation of the pheromone response pathway.  相似文献   

9.
The SCG1 (GPA1), STE4, and STE18 genes of Saccharomyces cerevisiae encode mating-pathway components whose amino acid sequences are similar to those of the alpha, beta, and gamma subunits, respectively, of mammalian G proteins. Genetic evidence suggests that the STE4 and STE18 gene products interact. The mating defects of a set of ste4 mutants were partially suppressed by the overexpression of STE18, and, moreover, a combination of partially defective ste4 and ste18 alleles created a totally sterile phenotype, whereas such synthetic sterility was not observed when the ste18 allele was combined with a weakly sterile ste11 allele. Others have provided genetic evidence consistent with an interaction between the SCG1 (GPA1) and STE4 gene products. We have examined the physical interactions of these subunits by using an in vivo protein association assay. The STE4 and STE18 gene products associated with each other, and this association was disrupted by a mutation in the STE4 gene product whose phenotype was partially suppressed by overexpression of STE18. The STE4 and SCG1 (GPA1) gene products also interacted in the assay, whereas we detected no association of the SCG1 (GPA1) and STE18 gene products.  相似文献   

10.
Scg1, the product of the Saccharomyces cerevisiae SCG1 (also called GPA1) gene, is homologous to the alpha subunits of G proteins involved in signal transduction in mammalian cells. Scg1 negatively controls the pheromone response pathway in haploid cells. Either pheromonal activation or an scg1 null mutation relieves the negative control and leads to an arrest of cell growth in the G1 phase of the cell cycle. Expression of rat G alpha s was previously shown to complement the growth defect of scg1 null mutants while not allowing mating. We have extended this analysis to examine the effects of the short form of G alpha s (which lacks 15 amino acids present in the long form), G alpha i2, G alpha o, and Scg1-mammalian G alpha hybrids. In addition, we have found that constructs able to complement scg1 are also able to inhibit the response to pheromone and mating when expressed in a wild-type SCG1 strain. Overexpression of Scg1 has a similar inhibitory effect. These results are consistent with a model proposed for the action of Scg1 as the alpha component of a heterotrimeric G protein in which the beta gamma component (Ste4/Ste18) activates the pheromone response after dissociation from Scg1. They suggest that the G alpha constructs able to complement scg1 can interact with beta gamma to prevent activation of the pathway but are unable to interact with pheromone receptors to activate the pathway.  相似文献   

11.
Heterotrimeric guanine nucleotide-binding proteins (G proteins) consisting of alpha, beta, and gamma subunits mediate signalling between cell surface receptors and intracellular effectors in eukaryotic cells. To define signalling functions of G gamma subunits (STE18 gene product) involved in pheromone response and mating in the yeast Saccharomyces cerevisiae, we isolated and characterized dominant-negative STE18 alleles. We obtained dominant-negative mutations that disrupt C-terminal sequences required for prenylation of G gamma precursors (CAAX box) and that affect residues in the N-terminal half of Ste18p. Overexpression of mutant G gamma subunits in wild-type cells blocked signal transduction; this effect was suppressed upon overexpression of G beta subunits. Mutant G gamma subunits may therefore sequester G beta subunits into nonproductive G beta gamma dimers. Because mutant G gamma subunits blocked the constitutive signal resulting from disruption of the G alpha subunit gene (GPA1), they are defective in functions required for downstream signalling. Ste18p bearing a C107Y substitution in the CAAX box displayed reduced electrophoretic mobility, consistent with a prenylation defect. G gamma subunits carrying N-terminal substitutions had normal electrophoretic mobilities, suggesting that these proteins were prenylated. G gamma subunits bearing substitutions in their N-terminal region or C-terminal CAAX box (C107Y) supported receptor-G protein coupling in vitro, whereas C-terminal truncations caused partial defects in receptor coupling.  相似文献   

12.
Saccharomyces cerevisiae mating pheromones function by binding to cell surface receptors and activating signal transduction processes which regulate gene expression. In this report, we have analyzed the minimum sequence requirements for conferring both a and alpha mating pheromone inducibilities onto a heterologous promoter. Here we show that the repetitive pheromone response element (PRE) which binds to STE12 protein is sufficient to confer pheromone responsiveness only when present in multiple copies. Moreover, by itself, it is preferentially responsive to alpha factor in a cells. In contrast, a single copy of the PQ box of the STE3 upstream activation sequence (UAS) is sufficient to confer a-factor responsiveness in alpha cells. The PQ box binds both MCM1 and MAT alpha 1 in a cooperative manner, and neither the P nor Q site alone is sufficient to confer a-factor responsiveness. In a cells, however, even multiple copies of the PQ box fail to confer alpha-factor responsiveness. Therefore, the PRE and the PQ box are functionally distinct pheromone-responsive elements with opposite cell type specificities. Moreover, these results indicate that the MCM1 protein functions in a signal transduction pathway in a manner analogous to that of its mammalian homolog, the serum response factor, which regulates the expression of the c-fos proto-oncogene in mammals.  相似文献   

13.
14.
15.
16.
17.
18.
Genes required for mating by a and alpha cells of Saccharomyces cerevisiae (STE, "sterile," genes) encode products such as peptide pheromones, pheromone receptors, and proteins responsible for pheromone processing. a-specific STE genes are those required for mating by a cells but not by alpha cells. To identify new a-specific STE genes, we have employed a novel strategy that enabled us to determine if a ste mutant defective in mating as a is also defective in mating as alpha without the need to do crosses. This technique involved a strain (K12-14b) of genotype mata1 HML alpha HMR alpha sir3ts, which mates as a at 25 degrees and as alpha at 34 degrees. We screened over 40,000 mutagenized colonies derived from K12-14b and obtained 28 a-specific ste mutants. These strains contained mutations in three known a-specific genes--STE2, STE6 and STE14--and in a new gene, STE16. ste16 mutants are defective in the production of the pheromone, a-factor, and exhibit slow growth. Based on the distribution of a-specific ste mutants described here, we infer that we have identified most if not all nonessential genes that can give rise to a-specific mating defects.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号