首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have shown that multidrug resistance associated protein 1 (MRP1) mediates ATP-dependent extrusion of bilirubin, possibly limiting its potentially toxic accumulation in cells. To determine directly if Mrp1 protects cells against unconjugated bilirubin (UCB) toxicity, mouse embryo fibroblasts (MEF) were isolated from Mrp1 knockout (-/-) mice and their wild type (WT) (+/+) littermates. Compared to WT cells, cultured MEF (-/-) cells exposed to 40-140 nM unbound [H3]-bilirubin accumulated twice as much [H3]-bilirubin (P<0.01). This was associated with greater, dose-related cytotoxicity, assessed by the methylthiazoletetrazolium test, lactate dehydrogenase release and cellular ATP content. The data confirm that Mrp1 limits intracellular accumulation of UCB and thus decreases its cytotoxicity.  相似文献   

2.
Earlier studies suggest that Mrp1 may mediate ATP-dependent cellular extrusion of unconjugated bilirubin (UCB). We studied the serial responses of expression of Mrp1 mRNA and protein in rats with increased bilirubin production due to hemolysis induced by phenylhydrazine (PHZ) treatment. Mrp1 mRNA was analyzed by quantitative PCR and protein by Western blot. Hepatic expression of Mrp1 mRNA and protein peaked at day 3 of PHZ treatment. Splenic expression of Mrp1 mRNA peaked within 24h and returned to baseline at day 5 whereas Mrp1 protein expression peaked at day 3. Pretreatment with heme-oxygenase inhibitor, tin mesoporphyrin, blunted the increase in serum UCB and erased the overexpression of Mrp1 both in liver and spleen. Thus, the upregulation of Mrp1 in hemolysis is mediated by UCB and/or other products of heme oxygenase, further supporting a role of Mrp1 in UCB transport and protection from its cellular toxicity.  相似文献   

3.
4.
Unconjugated bilirubin (UCB) is a powerful antioxidant and a modulator of cell growth through the interaction with several signal transduction pathways. Although newborns develop a physiological jaundice, in case of severe hyperbilirubinemia UCB may become neurotoxic causing severe long‐term neuronal damages, also known as bilirubin encephalopathy. To investigate the mechanisms of UCB‐induced neuronal toxicity, we used the human neuroblastoma cell line SH‐SY5Y as an in vitro model system. We verified that UCB caused cell death, in part due to oxidative stress, which leads to DNA damage and cell growth reduction. The mechanisms of cytotoxicity and cell adaptation to UCB were studied through a proteomic approach that identified differentially expressed proteins involved in cell proliferation, intracellular trafficking, protein degradation and oxidative stress response. In particular, the results indicated that cells exposed to UCB undertake an adaptive response that involves DJ‐1, a multifunctional neuroprotective protein, crucial for cellular oxidative stress homeostasis. This study sheds light on the mechanisms of bilirubin‐induced neurotoxicity and might help to design a strategy to prevent or ameliorate the neuronal damages leading to bilirubin encephalopathy.  相似文献   

5.
High levels of serum unconjugated bilirubin (UCB) in newborns are associated with axonal damage and glial reactivity that may contribute to subsequent neurologic injury and encephalopathy (kernicterus). Impairments in myelination and white matter damage were observed at autopsy in kernicteric infants. We have recently reported that UCB reduces oligodendrocyte progenitor cell (OPC) survival in a pure OPC in vitro proliferative culture. Here, we hypothesized that neonatal hyperbilirubinemia may also impair oligodendrocyte (OL) maturation and myelination. We used an experimental model of hyperbilirubinemia that has been shown to mimic the pathophysiological conditions leading to brain dysfunction by unbound (free) UCB. Using primary cultures of OL, we demonstrated that UCB delays cell differentiation by increasing the OPC number and reducing the number of mature OL. This finding was combined with a downregulation of Olig1 mRNA levels and upregulation of Olig2 mRNA levels. Addition of UCB, prior to or during differentiation, impaired OL morphological maturation, extension of processes and cell diameter. Both conditions reduced active guanosine triphosphate (GTP)-bound Rac1 fraction. In myelinating co-cultures of dorsal root ganglia neurons and OL, UCB treatment prior to the onset of myelination decreased oligodendroglial differentiation and the number of myelinating OL, also observed when UCB was added after the onset of myelination. In both circumstances, UCB decreased the number of myelin internodes per OL, as well as the myelin internode length. Our studies demonstrate that increased concentrations of UCB compromise myelinogenesis, thereby elucidating a potential deleterious consequence of elevated UCB.  相似文献   

6.
Astrocytes play an important role in the glutathione (GSH) metabolism of the brain. To test for an involvement of multidrug resistance protein (Mrp) 1 and 5 in the release of GSH and glutathione disulfide (GSSG) from astrocytes, we used astrocyte cultures from wild-type, Mrp1-deficient [Mrp1(-/-)] and Mrp5-deficient [Mrp5(-/-)] mice. During incubation of wild-type or Mrp5(-/-) astrocytes, GSH accumulated in the medium at a rate of about 3 nmol/(h.mg), whereas the export of GSH from Mrp1(-/-) astrocytes was only one-third of that. In addition, Mrp1(-/-) astrocytes had a 50% higher specific GSH content than wild-type or Mrp5(-/-) cells. The presence of 50 microm of the Mrp inhibitor MK571 inhibited the rate of GSH release from wild-type and Mrp5(-/-) astrocytes by 60%, but stimulated at the low concentration of 1 microm GSH release by 40%. In contrast, both concentrations of MK571 did not affect GSH export from Mrp1(-/-) astrocytes. Moreover, in contrast to wild-type and Mrp5(-/-) cells, GSSG export during H(2)O(2) stress was not observed for Mrp1(-/-) astrocytes. These data demonstrate that in astrocytes Mrp1 mediates 60% of the GSH export, that Mrp1 is exclusively responsible for GSSG export and that Mrp5 does not contribute to these transport processes.  相似文献   

7.
Hyperbilirubinemia remains one of the most frequent clinical diagnoses in the neonatal period. This condition may lead to the deposition of unconjugated bilirubin (UCB) in the central nervous system, causing nerve cell damage by molecular and cellular mechanisms that are still being clarified. To date, all the studies regarding bilirubin-induced neurological dysfunction were performed in monotypic nerve cell cultures. The use of co-cultures, where astrocyte-containing culture inserts are placed on the top of neuron cultures, provides the means to directly evaluate the cross-talk between these two different cell types. Therefore, this study was designed to evaluate whether protective or detrimental effects are produced by astrocytes over UCB-induced neurodegeneration. Our experimental model used an indirect co-culture system where neuron-to-astrocyte signaling was established concomitantly with the 24 h exposure to UCB. In this model astrocytes abrogated the well-known UCB-induced neurotoxic effects by preventing the loss of cell viability, dysfunction and death by apoptosis, as well as the impairment of neuritic outgrowth. To this protection it may have accounted the induced expression of the multidrug resistance-associated protein 1 and the 3.5-fold increase in the values of S100B, when communication between both cells was established independently of UCB presence. In addition, the presence of astrocytes in the neuronal environment preserved the UCB-induced increase in glutamate levels, but raised the basal concentrations of nitric oxide and TNF-α although no UCB effects were noticed. Our data suggest that bidirectional signalling during astrocyte-neuron recognition exerts pro-survival effects, stimulates neuritogenesis and sustains neuronal homeostasis, thus protecting cells from the immediate UCB injury. These findings may help explain why irreversible brain damage usually develops only after the first day of post-natal life.  相似文献   

8.
9.
To evaluate mechanisms that mediate passage of unconjugated bilirubin (UCB) across placenta, the transport of [3H]UCB was studied in the human trophoblastic, BeWo cell line. When plotted against the unbound UCB concentration [Bf], uptake exhibited saturative kinetics with a similar apparent Km ( approximately 30 nM) for BeWo cells grown either in polarized (Transwell) or non-polarized fashion (dish). UCB release from cells, but not uptake, was inhibited by sulfobromophthalein but not by taurocholate, and almost abolished by MK571, a specific inhibitor of the activity of multidrug resistance-associated proteins (MRPs). MRP1 and MRP5 were both present in BeWo cells and the expression of MRP1, but not MRP5, was markedly higher in polarized cells. These data indicate that UCB is taken up from the fetal circulation by a still undefined, saturative process not shared by other organic anions and is then excreted to maternal circulation by proteins of the MRP family.  相似文献   

10.
Microglia are the main players of the brain immune response. They act as active sensors that rapidly respond to injurious insults by shifting into different activated states. Elevated levels of unconjugated bilirubin (UCB) induce cell death, immunostimulation and oxidative stress in both neurons and astrocytes. We recently reported that microglial phagocytic phenotype precedes the release of pro-inflammatory cytokines upon UCB exposure. We investigated whether and how microglia microenvironment influences the response to UCB. Our findings revealed that conditioned media derived from UCB-treated astrocytes reduce microglial inflammatory reaction and cell death, suggesting an attempt to curtail microglial over activation. Conditioned medium from UCB-challenged neurons, although down-regulating tumor necrosis factor-α and interleukin-1β promoted the release of interleukin-6 and nitric oxide, the activation of matrix metalloproteinase-9, and cell death, as compared with UCB-direct effects on microglia. Moreover, soluble factors released by UCB-treated neurons intensified the phagocytic properties manifested by microglia under direct exposure to UCB. Results from neuron-microglia mixed cultures incubated with UCB evidenced that sensitized microglia were able to prevent neurite outgrowth impairment and cell death. In conclusion, our data indicate that stressed neurons signal microglial clearance functions, but also overstimulate its inflammatory potential ultimately leading to microglia demise.  相似文献   

11.
Multidrug resistance protein Mrp2 (symbol Abcc2) in liver plays a significant role in the biliary excretion of organic anionic conjugates. Mutations in human MRP2 result in defects in excretion of conjugated bilirubin and other cholephiles known as the Dubin-Johnson syndrome. Previous studies indicate that transporters with Mrp2-like functions are present in ancient vertebrates. We have now characterized an Mrp2 ortholog at the molecular level from the liver of the small skate, Raja erinacea, a marine vertebrate that evolved approximately 200 million years ago. The full-length skate Mrp2 cDNA is 6 kb and encodes for a 1,564-amino acid peptide with 56% identity to human Mrp2. Northern blot analysis demonstrated that skate Mrp2 is abundantly expressed in skate liver, intestine, and kidney. Immunoblots reveal a 180-kDa protein in skate liver. Immunofluorescence studies locate skate Mrp2 to the apical membrane of hepatocytes, renal tubules, and intestine. A PDZ-interacting motif is also found at its COOH terminus. Further sequence analysis indicates that transmembrane domains 1, 9, 11, 16, and 17 are the most highly conserved transmembrane domains between skate Mrp2 and mammalian MRP2/Mrp2s. This analysis indicates that Mrp2 orthologs evolved early in vertebrate evolution and that conserved domains may be important determinants of Mrp2 substrate specificity.  相似文献   

12.
Abstract: Two membrane glycoproteins acting as energy-dependent efflux pumps, mdr -encoded P-glycoprotein (P-gp) and the more recently described multidrug resistance-associated protein (MRP), are known to confer cellular resistance to many cytotoxic hydrophobic drugs. In the brain, P-gp has been shown to be expressed specifically in the capillary endothelial cells forming the blood-brain barrier, but localization of MRP has not been well characterized yet. Using RT-PCR and immunoblot analysis, we have compared the expression of P-gp and Mrp1 in homogenates, isolated capillaries, primary cultured endothelial cells, and RBE4 immortalized endothelial cells from rat brain. Whereas the mdr1a P-gp-encoding mRNA was specifically detected in brain microvessels and mdr1b mRNA in brain parenchyma, mrp1 mRNA was present both in microvessels and in parenchyma. However, Mrp1 was weakly expressed in microvessels. Mrp1 expression was higher in brain parenchyma, as well as in primary cultured brain endothelial cells and in immortalized RBE4 cells. This Mrp1 overexpression in cultured brain endothelial cells was less pronounced when the cells were cocultured with astrocytes. A low Mrp activity could be demonstrated in the endothelial cell primary monocultures, because the intracellular [3H]vincristine accumulation was increased by several MRP modulators. No Mrp activity was found in the cocultures or in the RBE4 cells. We suggest that in rat brain, Mrp1, unlike P-gp, is not predominantly expressed in the blood-brain barrier endothelial cells and that Mrp1 and the mdr1b P-gp isoform may be present in other cerebral cells.  相似文献   

13.
Usually, all newborns demonstrate high serum unconjugated bilirubin (UCB) level. UCB may induce adverse effects in the central nervous system. We aimed to evaluate the cytotoxic effects of UCB and the protective effects of docosahexaenoic acid (DHA) on astrocyte cell cultures. The viability of astrocyte cells decreased after UCB treatment in a dose-dependent manner. Pre-incubation of DHA prevents the cells from UCB-mediated neurotoxicity. Our results shown that UCB leads to inhibition of antioxidant enzymes superoxide dismutase (SOD), catalase and GPx activity and induction of apoptosis. But only 4-h pretreatment of DHA can suppress of UCB-mediated inhibition of antioxidant enzymes SOD, catalase and GPx activity and induction of apoptosis in astrocytes. Our results strongly indicated that DHA has a protective effect on UCB-mediated neurotoxicity through inhibition apoptosis and antioxidant enzymes activity of SOD, CAT and GPx in rat primer astrocyte cell line  相似文献   

14.
Excessive hyperbilirubinemia can cause irreversible neurological damage in the neonatal period. However, the complete understanding of the pathogenesis of unconjugated bilirubin (UCB) encephalopathy remains a matter of debate. This study investigates whether UCB inhibits the endocytosis of cationized ferritin (CF) by cultured rat astrocytes. The relationship between endocytosis and MTT reduction, as well as changes on tubulin and glial fibrillary acidic protein (GFAP) assembly, were also evaluated. Inhibition of endocytosis was complete in the presence of 171 M UCB, while a marked decrease of CF labeling was noticed for 86 M UCB. In addition, MTT reduction was inhibited by 60 to 76% as UCB concentrations changed from 17 to 171 M, while alterations on both GFAP and microtubule morphology were only achieved by cell exposure to 171 M UCB. These findings indicate that inhibition of CF endocytosis in rat cortical astrocytes by UCB is a concentration-dependent process that appears to be primarily related to a direct effect on the cell membrane and not to any alteration of cytoskeletal microtubules and intermediate filaments.  相似文献   

15.
During neonatal hyperbilirubinaemia, astrocytes activated by unconjugated bilirubin (UCB) may contribute to brain toxicity through the production of cytokines. As a first step in addressing the signal transduction cascades involved in the UCB-induced astroglial immunological response, we tested whether tumour necrosis factor (TNF)-alpha receptor 1 (TNFR1), mitogen-activated protein kinase (MAPK) and nuclear factor kappaB (NF-kappaB) would be activated in astrocytes exposed to UCB, and examined the profile of cytokine production. Astrocyte cultures stimulated with UCB showed a rapid rise in TNFR1 protein levels, followed by activation of the MAPKs p38, Jun N-terminal kinase1/2 and extracellular signal-regulated kinase1/2, and NF-kappaB. Interestingly, the induction of these signal effectors preceded the early up-regulation of TNF-alpha and interleukin (IL)-1beta mRNAs, and later secretion of TNF-alpha, IL-1beta and IL-6. Treatment of astrocytes with UCB also induced cell death, with levels comparable to those obtained after exposure of astrocytes to recombinant TNF-alpha and IL-1beta. Moreover, loss of cell viability and cytokine secretion were reduced when the NF-kappaB signal transduction pathway was inhibited, suggesting a key role for NF-kappaB in the astroglial response to UCB. These results demonstrate the complexity of the molecular mechanisms involved in cell injury by UCB during hyperbilirubinaemia and provide a basis for the development of novel therapeutic strategies.  相似文献   

16.
Unconjugated bilirubin (UCB) exhibits potent antioxidant and cytoprotective properties, but causes apoptosis and cytotoxicity at pathologically elevated concentrations. Accurate measurement of UCB concentrations in cells, fluids and tissues is needed to evaluate its role in redox regulation, prevention of atherosclerotic and malignant diseases, and bilirubin encephalopathy. In the present study, we developed and validated a highly sensitive method for tissue UCB determinations. UCB was extracted from rat organs with chloroform/methanol/hexane at pH 6.2 and then partitioned into a minute volume of alkaline buffer that was subjected to HPLC using an octyl reverse phase (RP) column. Addition of mesobilirubin as an internal standard corrected for losses of UCB during extraction. Recoveries averaged 75+/-5%. The detection limit was 10pmol UCB/g wet tissue. Variance was +/-2.5%. When used to measure UCB concentrations in tissues of jaundiced Gunn rats, this procedure yielded UCB levels directly comparable to published methods, and accurately determined very low tissue bilirubin concentrations (相似文献   

17.
18.

Dicoumarol is frequently used as inhibitor of the detoxifying enzyme NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1). In order to test whether dicoumarol may also affect the cellular glutathione (GSH) metabolism, we have exposed cultured primary astrocytes to dicoumarol and investigated potential effects of this compound on the cell viability as well as on the cellular and extracellular contents of GSH and its metabolites. Incubation of astrocytes with dicoumarol in concentrations of up to 100 µM did not acutely compromise cell viability nor was any GSH consumption or GSH oxidation to glutathione disulfide (GSSG) observed. However, unexpectedly dicoumarol inhibited the cellular multidrug resistance protein (Mrp) 1-dependent export of GSH in a time- and concentration-dependent manner with half-maximal effects observed at low micromolar concentrations of dicoumarol. Inhibition of GSH export by dicoumarol was not additive to that observed for the known Mrp1 inhibitor MK571. In addition, dicoumarol inhibited also the Mrp1-mediated export of GSSG during menadione-induced oxidative stress and the export of the GSH–bimane-conjugate (GS–B) that had been generated in the cells after exposure to monochlorobimane. Half-maximal inhibition of the export of Mrp1 substrates was observed at dicoumarol concentrations of around 4 µM (GSH and GSSG) and 30 µM (GS–B). These data demonstrate that dicoumarol strongly affects the GSH metabolism of viable cultured astrocytes by inhibiting Mrp1-mediated export processes and identifies for the first time Mrp1 as additional cellular target of dicoumarol.

  相似文献   

19.
Brain human immunodeficiency virus type-1 (HIV-1) infection is associated with oxidative stress, which may lead to HIV-1 encephalitis, a chronic neurodegenerative condition. In vitro , oxidative stress can be induced in glial cells by exposure to HIV-1 envelope protein glycoprotein (gp120). Multidrug resistance proteins (Mrps) are known to efflux endogenous substrates (i.e. GSH and GSSG) involved in cellular defense against oxidative stress. Altered GSH/GSSG export may contribute to oxidative damage during HIV-1 encephalitis. At present, it is unknown if gp120 exposure can alter the functional expression of Mrp isoforms. Heat-shock protein 70, inducible nitric oxide synthase, intracellular GSSG, 2',7'-dichlorofluorescein fluorescence, and extracellular nitrite were increased in primary cultures of rat astrocytes triggered with gp120, suggesting an oxidative stress response. RT-PCR and immunoblot analysis demonstrated increased Mrp1 mRNA (2.3-fold) and protein (2.2-fold), respectively, in gp120 treated astrocytes while Mrp4 mRNA or protein expression was not changed. Cellular retention of 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, an established Mrp substrate, was reduced (twofold) in gp120-treated astrocytes, suggesting increased Mrp-mediated transport. In addition, GSH and GSSG export were enhanced in gp120-triggered cells. These data suggest that gp120 can up-regulate Mrp1, but not Mrp4, functional expression in cultured astrocytes. Our observation of increased GSH/GSSG efflux in response to gp120 treatment implies that Mrp isoforms may be involved in regulating the oxidative stress response in glial cells.  相似文献   

20.
Hypochlorous acid (HOCl), an oxidant produced by myeloperoxidase (MPO), induces protein and lipid oxidation, which is implicated in the pathogenesis of atherosclerosis. Individuals with mildly elevated bilirubin concentrations (i.e., Gilbert syndrome; GS) are protected from atherosclerosis, cardiovascular disease, and related mortality. We aimed to investigate whether exogenous/endogenous unconjugated bilirubin (UCB), at physiological concentrations, can protect proteins/lipids from oxidation induced by reagent and enzymatically generated HOCl. Serum/plasma samples supplemented with exogenous UCB (≤250 µM) were assessed for their susceptibility to HOCl and MPO/H2O2/Cl oxidation, by measuring chloramine, protein carbonyl, and malondialdehyde (MDA) formation. Serum/plasma samples from hyperbilirubinemic Gunn rats and humans with GS were also exposed to MPO/H2O2/Cl to: (1) validate in vitro data and (2) determine the relevance of endogenously elevated UCB in preventing protein and lipid oxidation. Exogenous UCB dose-dependently (P<0.05) inhibited HOCl and MPO/H2O2/Cl-induced chloramine formation. Albumin-bound UCB efficiently and specifically (3.9–125 µM; P<0.05) scavenged taurine, glycine, and N-α-acetyllysine chloramines. These results were translated into Gunn rat and GS serum/plasma, which showed significantly (P<0.01) reduced chloramine formation after MPO-induced oxidation. Protein carbonyl and MDA formation was also reduced after MPO oxidation in plasma supplemented with UCB (P<0.05; 25 and 50 µM, respectively). Significant inhibition of protein and lipid oxidation was demonstrated within the physiological range of UCB, providing a hypothetical link to protection from atherosclerosis in hyperbilirubinemic individuals. These data demonstrate a novel and physiologically relevant mechanism whereby UCB could inhibit protein and lipid modification by quenching chloramines induced by MPO-induced HOCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号