首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Pal D  Chakrabarti P 《Biopolymers》2000,53(6):467-475
The known protein structures have been analyzed to find out if there is any pattern in the type of residues used and their conformation at the two terminal positions of the polypeptide chains. While the N-terminal position is overwhelmingly occupied by Met (followed by Ala and Ser), the preference for the C-terminal is not as distinct, the residues with highest propensities being Lys, Arg, Gln, and Asn. Only one main-chain torsion angle, psi, can be defined for the N-terminal residue, which is found to be in the extended conformation due to a favorable electrostatic interaction between the charged amino group and the carbonyl oxygen atom. The distribution of the angle phi for the C-terminal residue, on the other hand, is not much different from that of the nonterminal residues. There are some differences in the distribution of the side-chain torsion angle chi1 of both the terminal residues from the general distribution. The terminal segments are generally flexible and there is a tendency for the more ordered residues to have lesser solvent exposure. About 40% of the terminal groups form a hydrogen bond with protein atoms--a slight preference is observed for the side-chain atoms (more than half of which belong to charged residues) over the main-chain ones. Although the terminal residues are not included in any regular secondary structure, the adjacent ones have a high preference to occur in the beta conformation. There is a higher chance of a beta-strand rather than an alpha-helix to start within the first 6 positions from the N-terminal end. It is suggested that the extended conformation observed for the N-terminal residue propagates along the chain leading to the formation of beta-strand. In the C-terminal end, on the other hand, as one moves upstream the alpha and beta structures are encountered in proportion similar to the average value for these structures in the database. The cleavage site of the zymogen structures has a conformation that can be retained by the N-terminal residue of the active enzyme.  相似文献   

2.
Jha AK  Colubri A  Zaman MH  Koide S  Sosnick TR  Freed KF 《Biochemistry》2005,44(28):9691-9702
A central issue in protein folding is the degree to which each residue's backbone conformational preferences stabilize the native state. We have studied the conformational preferences of each amino acid when the amino acid is not constrained to be in a regular secondary structure. In this large but highly restricted coil library, the backbone preferentially adopts dihedral angles consistent with the polyproline II conformation rather than alpha or beta conformations. The preference for the polyproline II conformation is independent of the degree of solvation. In conjunction with a new masking procedure, the frequencies in our coil library accurately recapitulate both helix and sheet frequencies for the amino acids in structured regions, as well as polyproline II propensities. Therefore, structural propensities for alpha-helices and beta-sheets and for polyproline II conformations in unfolded peptides can be rationalized solely by local effects. In addition, these propensities are often strongly affected by both the chemical nature and the conformation of neighboring residues, contrary to the Flory isolated residue hypothesis.  相似文献   

3.
Tanaka T  Kodama TS  Morita HE  Ohno T 《Chirality》2006,18(8):652-661
Structures of model compounds mimicking aromatic amino acid residues in proteins are optimized by density functional theory (DFT), assuming that the main-chain conformation was a random coil. Excitation energies and dipole and rotational strengths for the optimized structures were calculated based on time-dependent DFT (TD-DFT). The electronic circular dichroism (ECD) bands of the models were significantly affected by side-chain conformations. Hydration models of the aromatic residues were also subjected to TD-DFT calculations, and the ECD bands of these models were found to be highly perturbed by the hydration of the main-chain amide groups. In addition to calculating the random-coil conformation, we also performed TD-DFT calculations of the aromatic residue models, assuming that the main-chain conformation was an alpha-helix or beta-strand. As expected, the overall feature of the ECD bands was also perturbed by the main-chain conformations. Moreover, vibrational circular dichroism (VCD) spectra of the hydration models in a random-coil structure were simulated by DFT, which showed that the VCD spectra are more sensitive to the side-chain conformations than the ECD spectra. The present results show that analyses combining ECD and VCD spectroscopy and using DFT calculations can elucidate the main- and side-chain conformations of aromatic residues in proteins.  相似文献   

4.
In order to investigate conformational preferences of the 21-residue peptide hormone endothelin-1 (ET-1), an extensive conformational search was carried out in vacuo using a combination of high temperature molecular dynamics / annealing and a Monte Carlo / minimization search in torsion angle space. Fully minimized conformations from the search were grouped into families using a clustering technique based on rms fitting over the Cartesian coordinates of the atoms of the peptide backbone of the ring region. A wide range of local energy minima were identified even though two disulfide bridges (Cys1-Cys15 and Cys3-Cys11) constrain the structure of the peptide. Low energy conformers of ET-1 as a nonionized species in vacuo arestabilized by intramolecular interaction of the ring region (residues 1-15) with the tail (residues 16–21). Strained conformations for individual residues are observed. Conformational similarity to protein loops is established by matching to protein crystal structures In order to assess the influence of aqueous environment on conformational preference, the electrostatic contribution to the solvation energy was calculated for ET-1 as a fully ionized species (Asp8, Lys9, Glu10, Asp18, N- and C-terminus) using a continuum electrostatics model (DelPhi) for each of the conformed generated in vacuo, and the total solvation free energy was estimated by adding a hydrophobic contribution proportional to solvent accessible surface area. Solvation dramatically alters the relative energetics of ET-1 conformers from that calculated in vacuo. Conformers of ET-1 favored by the electrostatic salvation energy in water include conformers with helical secondary structure in the region of residues 9–15. Perhaps of most importance, it was demonstrated that the contribution tosolvation by an individual charge depends not only on its solvent accessibility but on the proximity of other charges, i.e., it is a cooperative effect. This was shown by the calculation of electrostatic solvation energy as afunction of conformation with individual charges systematically turned “on” and “off”. The cooperative effect of multiple charges on solvation demonstrated in this manner calls into question models that relate solvation energysimply to solvent accessibility by atom or residue alone. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
A database of 118 non-redundant proteins was examined to determine the preferences of amino acids for secondary structures: alpha-helix, beta-strand and coil conformations. To better understand how the physicochemical properties of amino acid side chains might influence protein folding, several new scales have been suggested for quantifying the electronic effects of amino acids. These include the pKa at the amino group, localized effect substituent constants (esigma), and a composite of these two scales (epsilon). Amino acids were also classified into 5 categories on the basis of their electronic properties: O (strong electron donor), U (weak donor), Z (ambivalent), B (weak electron acceptor), and X (strong acceptor). Certain categories of amino acid appeared to be critical for particular conformations, e.g., O and U-type residues for alpha-helix formation. Pairwise analysis of the database according to these categories revealed significant context effects in the structural preferences. In general, the propensity of an amino acid for a particular conformation was related to the electronic features of the side chain. Linear regression analyses revealed that the electronic properties of amino acids contributed about as much to the folding preferences as hydrophobicity, which is a well-established determinant of protein folding. A theoretical model has been proposed to explain how the electronic properties of the side chain groups might influence folding along the peptide backbone.  相似文献   

6.
7.
The relationship between the preferred side-chain dihedral angles and the secondary structure of a residue was examined. The structures of 61 proteins solved to a resolution of 2.0 A (1 A = 0.1 nm) or better were analysed using a relational database to store the information. The strongest feature observed was that the chi 1 distribution for most side-chains in an alpha-helix showed an absence of the g- conformation and a shift towards the t conformation when compared to the non-alpha/beta structures. The exceptions to this tendency were for short polar side-chains that form hydrogen bonds with the main-chain which prefer g+. Shifts in the chi 1 preferences for residues in the beta-sheet were observed. Other side-chain dihedral angles (chi 2, chi 3, chi 4) were found to be influenced by the main-chain. This paper presents more accurate distributions for the side-chain dihedral angles which were obtained from the increased number of proteins determined to high resolution. The means and standard deviations for chi 1 and chi 2 angles are presented for all residues according to the secondary structure of the main-chain. The means and standard deviations are given for the most popular conformations for side-chains in which chi 3 and chi 4 rotations affect the position of C atoms.  相似文献   

8.
To study the conformational preferences induced by the insertion of the 4-amino-1,2-dithiolane-4-carboxylic acid (Adt) residue into a peptide backbone, the achiral N-protected dipeptide methylamide Boc-Adt-Adt-NHMe (1) was synthesized and its crystal state and solution conformation studied and compared with that exhibited by its carba-analogue Boc-Ac5c-Ac5c-NHMe containing two residues of 1-aminocyclopentane-1-carboxylic acid (Ac5c). Compound 1 in the crystal adopts a type-III beta-turn conformation and an analogous structure is that preferred in chloroform solution as established by 1H-NMR and NOE information. In the crystal packing three different Adt rings form a cavity and the involved sulphur atoms give rise to unusual multiple interactions with one NH group. The chemical nature of these intermolecular and intramolecular main-chain...side-chain NH...S interactions are discussed in terms of quantum chemical calculations.  相似文献   

9.
The alpha-helix is a fundamental protein structural motif and is frequently terminated by a glycine residue. Explanations for the predominance of glycine at the C-cap terminal portions of alpha-helices have invoked uniquely favorable energetics of this residue in a left-handed conformation or enhanced solvation of the peptide backbone because of the absence of a side chain. Attempts to quantify the contributions of these two effects have been made previously, but the issue remains unresolved. Here we have used chemical protein synthesis to dissect the energetic basis of alpha-helix termination by comparing a series of ubiquitin variants containing an L-amino acid or the corresponding D-amino acid at the C-cap Gly35 position. D-Amino acids can adopt a left-handed conformation without energetic penalty, so the contributions of conformational strain and backbone solvation can thus be separated. Analysis of the thermodynamic data revealed that the preference for glycine at the C' position of a helix is predominantly a conformational effect.  相似文献   

10.
Theoretical studies on glycyl-alanyl and seryl dipeptides were performed to determine the probable backbone and side-group conformations that are preferred for solvent interaction. By following the method of Lee & Richards [(1971) J. Mol. Biol. 55, 379-400], a solute molecule is represented by a set of interlocking spheres of appropriate van der Waals radii assigned to each atom, and a solvent (water) molecule is rolled along the envelope of the van der Waals surface, and the surface accessible to the solvent molecule, and hence the solvent accessibility for a particular conformation of the solute molecule, is computed. From the calculated solvent accessibilities for various conformations, solvation maps for dipeptides were constructed. These solvation maps suggest that the backbone polar atoms could interact with solvent molecules selectively, depending on the backbone conformation. A conformation in the right-handed bridge (zetaR) region is favoured for both solvent interaction and intrachain hydrogen-bonding. Also the backbone side-chain hydrogen-bonding within the same dipeptide fragment in proteins is less favoured than hydrogen-bonding between side chain and water and between side chain and atoms of other residues. Solvent accessibilities suggest that very short distorted alphaR-helical and extended-structural parts may be stabilized via solvent interaction, and this could easily be possible at the surface of the protein molecules, in agreement with protein-crystal data.  相似文献   

11.
The distributions of side-chain conformations in 258 crystal structures of oligopeptides have been analyzed. The sample contains 321 residues having side chains that extend beyond the C beta atom. Statistically observed preferences of side-chain dihedral angles are summarized and correlated with stereochemical and energetic constraints. The distributions are compared with observed distributions in proteins of known X-ray structures and with computed minimum-energy conformations of amino acid derivatives. The distributions are similar in all three sets of data, and they appear to be governed primarily by intraresidue interactions. In side chains with no beta-branching, the most important interactions that determine chi 1 are those between the C gamma H2 group and atoms of the neighboring peptide groups. As a result, the g- conformation (chi 1 congruent to -60 degrees) occurs most frequently for rotation around the C alpha-C beta bond in oligopeptides, followed by the t conformation (chi 1 congruent to 180 degrees), while the g+ conformation (chi 1 congruent to 60 degrees) is least favored. In residues with beta-branching, steric repulsions between the C gamma H2 or C gamma H3 groups and backbone atoms govern the distribution of chi 1. The extended (t) conformation is highly favored for rotation around the C beta-C gamma and C gamma-C delta bonds in unbranched side chains, because the t conformer has a lower energy than the g+ and g- conformers in hydrocarbon chains. This study of the observed side-chain conformations has led to a refinement of one of the energy parameters used in empirical conformational energy computations.  相似文献   

12.
We have carried out a systematic analysis in order to evaluate whether Intra-Chain Disulfide Bridged Peptides (ICDBPs) observed in proteins of known three-dimensional structure adopt structurally similar conformations as they may correspond to structural/functional motifs. 406 representative ICDBPs comprising between 3 to 17 amino acid residues could be classified according to peptide sequence length and main-chain secondary structure conformation into 146 classes. ICDBPs comprising 6 amino acid residues are maximally represented in the Protein Data Bank. They also represent the maximum number of main-chain secondary structure conformational classes. Individual ICDBPs in each class represent different protein superfamilies and correspond to different amino acid sequences. We identified 145 ICDBP pairs that had not less-than 0.5 A root mean square deviation value corresponding to their equivalent peptide backbone atoms. We believe these ICDBPs represent structural motifs and possible candidates in order to further explore their structure/function role in the corresponding proteins. The common conformational classes observed for ICDBPs defined according to the main-chain secondary structure conformations; H (helix), B (residue in a isolated beta bridge), C (coil), E (extended beta strand), G (3(10) helix), I (pi helix), S (bend), T (hydrogen-bonded turn) were; "CHHH", "CTTC", "CSSS" and "CSSC" (for ICDBP length 4), "CSSCC" (length 5), "EETTEE", "CCSSCC", "CCSSSC" (length 6), "EETTTEE" (length 7), "EETTTTEE" (length 8), "EEEETTEEEE" (length 10), "EEEETTTEEEE" (length 11) and "EEEETTTTEEEE" (length 12).  相似文献   

13.
Chellgren BW  Creamer TP 《Proteins》2006,62(2):411-420
Loss of conformational entropy is one of the primary factors opposing protein folding. Both the backbone and side-chain of each residue in a protein will have their freedom of motion restricted in the final folded structure. The type of secondary structure of which a residue is part will have a significant impact on how much side-chain entropy is lost. Side-chain conformational entropies have previously been determined for folded proteins, simple models of unfolded proteins, alpha-helices, and a dipeptide model for beta-strands, but not for polyproline II (PII) helices. In this work, we present side-chain conformational estimates for the three regular secondary structure types: alpha-helices, beta-strands, and PII helices. Entropies are estimated from Monte Carlo computer simulations. Beta-strands are modeled as two structures, parallel and antiparallel beta-strands. Our data indicate that restraining a residue to the PII helix or antiparallel beta-strand conformations results in side-chain entropies equal to or higher than those obtained by restraining residues to the parallel beta-strand conformation. Side-chains in the alpha-helix conformation have the lowest side-chain entropies. The observation that extended structures retain the most side-chain entropy suggests that such structures would be entropically favored in unfolded proteins under folding conditions. Our data indicate that the PII helix conformation would be somewhat favored over beta-strand conformations, with antiparallel beta-strand favored over parallel. Notably, our data imply that, under some circumstances, residues may gain side-chain entropy upon folding. Implications of our findings for protein folding and unfolded states are discussed.  相似文献   

14.
1. The residue pair is considered as the fundamental unit which differentiates alpha-helix, beta-pleated sheet and the various turns and kink structures of the protein backbone. 2. The HPLG alphabet (Robson & Pain, 1974) is used to group pairs of residues, giving 16 possible conformational pairs, all of which are found with differing frequencies in the nine proteins examined. 3. The frequencies of occurrence of the 16 different types of turn or kink are analysed in relation to the constituent amino acids. Those containing the L or G conformation are of low frequency and are grouped for purposes of this analysis. 4. The distribution of amino acids within all the conformational pairs is non-random, with distinct preferences shown by certain residues. 5. All pairs containing an L or G conformation require the presence of a glycine or a proton-donor side chain. 6. The results are discussed in terms of the determination of these ;random' structures by local interactions.  相似文献   

15.
The role of hither-to-fore unrecognized long-range hydrogen bonds between main-chain amide hydrogens and polar side chains on the stability of a well-studied (betaalpha)8, TIM barrel protein, the alpha subunit of tryptophan synthase (alphaTS), was probed by mutational analysis. The F19-D46 and I97-D124 hydrogen bonds link the N terminus of a beta-strand with the C terminus of the succeeding antiparallel alpha-helix, and the A103-D130 hydrogen bond links the N terminus of an alpha-helix with the C terminus of the succeeding antiparallel beta-strand, forming clamps for the respective betaalpha or alphabeta hairpins. The individual replacement of these aspartic acid side chains with alanine leads to what appear to be closely related partially folded structures with significantly reduced far-UV CD ellipticity and thermodynamic stability. Comparisons with the effects of eliminating another main-chain-side-chain hydrogen bond, G26-S33, and two electrostatic side-chain-side-chain hydrogen bonds, D38-H92 and D112-H146, all in the same N-terminal folding unit of alphaTS, demonstrated a unique role for the clamp interactions in stabilizing the native barrel conformation. Because neither the asparagine nor glutamic acid variant at position 46 can completely reproduce the spectroscopic, thermodynamic, or kinetic folding properties of aspartic acid, both size and charge are crucial to its unique role in the clamp hydrogen bond. Kinetic studies suggest that the three clamp hydrogen bonds act in concert to stabilize the transition state leading to the fully folded TIM barrel motif.  相似文献   

16.
We describe an efficient solvation model for proteins. In this model atomic solvation parameters imitating the hydrocarbon core of a membrane, water, and weak polar solvent (octanol) were developed. An optimal number of solvation parameters was chosen based on analysis of atomic hydrophobicities and fitting experimental free energies of gas-cyclohexane, gas-water, and octanol-water transfer for amino acids. The solvation energy term incorporated into the ECEPP/2 potential energy function was tested in Monte Carlo simulations of a number of small peptides with known energies of bilayer-water and octanol-water transfer. The calculated properties were shown to agree reasonably well with the experimental data. Furthermore, the solvation model was used to assess membrane-promoting alpha-helix formation. To accomplish this, all-atom models of 20-residue homopolypeptides-poly-Leu, poly-Val, poly-Ile, and poly-Gly in initial random coil conformation-were subjected to nonrestrained Monte Carlo conformational search in vacuo and with the solvation terms mimicking the water and hydrophobic parts of the bilayer. All the peptides demonstrated their largest helix-forming tendencies in a nonpolar environment, where the lowest-energy conformers of poly-Leu, Val, Ile revealed 100, 95, and 80% of alpha-helical content, respectively. Energetic and conformational properties of Gly in all environments were shown to be different from those observed for residues with hydrophobic side chains. Applications of the solvation model to simulations of peptides and proteins in the presence of membrane, along with limitations of the approach, are discussed.  相似文献   

17.
Tobi D  Elber R  Thirumalai D 《Biopolymers》2003,68(3):359-369
The conformational equilibrium of a blocked valine peptide in water and aqueous urea solution is studied using molecular dynamics simulations. Pair correlation functions indicate enhanced concentration of urea near the peptide. Stronger hydrogen bonding of urea-peptide compared to water-peptide is observed with preference for helical conformation. The potential of mean force, computed using umbrella sampling, shows only small differences between urea and water solvation that are difficult to quantify. The changes in solvent structure around the peptide are explained by favorable electrostatic interactions (hydrogen bonds) of urea with the peptide backbone. There is no evidence for significant changes in hydrophobic interactions in the two conformations of the peptide in urea solution. Our simulations suggest that urea denatures proteins by preferentially forming hydrogen bonds to the peptide backbone, reducing the barrier for exposing protein residues to the solvent, and reaching the unfolded state.  相似文献   

18.
The conformational properties of the cyclohexadepsipeptide antibiotic Beauvericin have been investigated by 1H-NMR spectroscopy in polar (C2H3O2H) and non-polar (CCl4, C62H6, C2HCl3) solvents and in two solvent mixtures; one a mixture of a polar and non-polar solvent (C2H3O2H/CCl4) and the other an aromatic solvent in a non-polar environment (C62H6/CCl4). The ion-complexation properties of Beauvericin with alkali metal halides (Li+, Na+, K+, Cs+) have also been studied. It is demonstrated that changes in chemical shifts of Beauvericin with concentration, with polarity of solvent or with added alkali metal ion reflect changes not only in the solvent properties but also changes in backbone conformation and changes due to ion-complexation, where appropriate, and therefore cannot be used, by themselves, to determine the conformation of the molecule, its self-aggregation properties, or the stoichiometry of the metal ion-complex. The backbone conformations of Beauvericin in different environments are determined by methods that are independent of chemical shift analysis; i.e., by measurements of 5J(HH) magnitudes observed between the alpha-CH protons of the L-phenylalanine and D-hydroxyisovaleric acid (DHyIv) residues and by nuclear Overhauser effect measurements observed between alpha-CH(HyIv) and (N)-CH3(Phe) proton signals. In the knowledge of these results the chemical shifts of Beauvericin in different environments can then be rationalised. It is found that the conformation of Beauvericin in a polar solvent is different from that found in a non-polar solvent and from that found for the in the ion-complexed form is similar to that found in non-polar solvents. By taking into account the conformational properties of the L-phenylalanine and DHyIv side-chains, it is possible to assign unambiguously the magnetically non-equivalent beta-CH2(Phe) and gamma Me(HyIv) proton signals and so elucidate the complete conformational behaviour of the uncomplexed forms of Beauvericin in a polar and a non-polar environment, and of the ion-complexed form of Beauvericin in a polar solvent.  相似文献   

19.
Substitution of trans-proline at three positions in ubiquitin (residues 19, 37 and 38) produces significant context-dependent effects on protein stability (both stabilizing and destabilizing) that reflect changes to a combination of parameters including backbone flexibility, hydrophobic interactions, solvent accessibility to polar groups and intrinsic backbone conformational preferences. Kinetic analysis of the wild-type yeast protein reveals a predominant fast-folding phase which conforms to an apparent two-state folding model. Temperature-dependent studies of the refolding rate reveal thermodynamic details of the nature of the transition state for folding consistent with hydrophobic collapse providing the overall driving force. Br?nsted analysis of the refolding and unfolding rates of a family of mutants with a variety of side chain substitutions for P37 and P38 reveals that the two prolines, which are located in a surface loop adjacent to the C terminus of the main alpha-helix (residues 24-33), are not significantly structured in the transition state for folding and appear to be consolidated into the native structure only late in the folding process. We draw a similar conclusion regarding position 19 in the loop connecting the N-terminal beta-hairpin to the main alpha-helix. The proline residues of ubiquitin are passive spectators in the folding process, but influence protein stability in a variety of ways.  相似文献   

20.
Many interesting proteins possess defined sequence stretches containing negatively charged amino acids. At present, experimental methods (X-ray crystallography, NMR) have failed to provide structural data for many of these sequence domains. We have applied the dihedral probability grid-Monte Carlo (DPG-MC) conformational search algorithm to a series of N- and C-capped polyelectrolyte peptides, (Glu)20, (Asp)20, (PSer)20, and (PSer-Asp)10, that represent polyanionic regions in a number of important proteins, such as parathymosin, calsequestrin, the sodium channel protein, and the acidic biomineralization proteins. The atomic charges were estimated from charge equilibration and the valence and van der Waals parameters are from DREIDING. Solvation of the carboxylate and phosphate groups was treated using sodium counterions for each charged side chain (one Na+ for COO-; two Na for CO(PO3)-2) plus a distance-dependent (shielded) dielectric constant, epsilon = epsilon 0 R, to simulate solvent water. The structures of these polyelectrolyte polypeptides were obtained by the DPG-MC conformational search with epsilon 0 = 10, followed by calculation of solvation energies for the lowest energy conformers using the protein dipole-Langevin dipole method of Warshel. These calculations predict a correlation between amino acid sequence and global folded conformational minima: 1. Poly-L-Glu20, our structural benchmark, exhibited a preference for right-handed alpha-helix (47% helicity), which approximates experimental observations of 55-60% helicity in solution. 2. For Asp- and PSer-containing sequences, all conformers exhibited a low preference for right-handed alpha-helix formation (< or = 10%), but a significant percentage (approximately 20% or greater) of beta-strand and beta-turn dihedrals were found in all three sequence cases: (1) Aspn forms supercoil conformers, with a 2:1:1 ratio of beta-turn:beta-strand:alpha-helix dihedral angles; (2) PSer20 features a nearly 1:1 ratio of beta-turn:beta-sheet dihedral preferences, with very little preference for alpha-helical structure, and possesses short regions of strand and turn combinations that give rise to a collapsed bend or hairpin structure; (3) (PSer-Asp)10 features a 3:2:1 ratio of beta-sheet:beta-turn:alpha-helix and gives rise to a superturn or C-shaped structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号