首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Hirschi KD 《The Plant cell》1999,11(11):2113-2122
Calcium (Ca(2)+) efflux from the cytosol modulates Ca(2+) concentrations in the cytosol, loads Ca(2+) into intracellular compartments, and supplies Ca(2+) to organelles to support biochemical functions. The Ca(2+)/H(+) antiporter CAX1 (for CALCIUM EXCHANGER 1) of Arabidopsis is thought to be a key mediator of these processes. To clarify the regulation of CAX1, we examined CAX1 RNA expression in response to various stimuli. CAX1 was highly expressed in response to exogenous Ca(2+). Transgenic tobacco plants expressing CAX1 displayed symptoms of Ca(2+) deficiencies, including hypersensitivity to ion imbalances, such as increased magnesium and potassium concentrations, and to cold shock, but increasing the Ca(2+) in the media abrogated these sensitivities. Tobacco plants expressing CAX1 also demonstrated increased Ca(2+) accumulation and altered activity of the tonoplast-enriched Ca(2+)/H(+) antiporter. These results emphasize that regulated expression of Ca(2+)/H(+) antiport activity is critical for normal growth and adaptation to certain stresses.  相似文献   

7.
Sheath blight (ShB) severely threatens rice cultivation and production; however, the molecular mechanism of rice defence against ShB remains unclear. Screening of transposon Ds insertion mutants identified that Calcineurin B-like protein-interacting protein kinase 31 (CIPK31) mutants were more susceptible to ShB, while CIPK31 overexpressors (OX) were less susceptible. Sequence analysis indicated two haplotypes of CIPK31: Hap_1, with significantly higher CIPK31 expression, was less sensitive to ShB than the Hap_2 lines. Further analyses showed that the NAF domain of CIPK31 interacted with the EF-hand motif of respiratory burst oxidase homologue (RBOHA) to inhibit RBOHA-induced H2O2 production, and RBOHA RNAi plants were more susceptible to ShB. These data suggested that the CIPK31-mediated increase in resistance is not associated with RBOHA. Interestingly, the study also found that CIPK31 interacted with catalase C (CatC); cipk31 mutants accumulated less H2O2 while CIPK31 OX accumulated more H2O2 compared to the wild-type control. Further analysis showed the interaction of the catalase domain of CatC with the NAF domain of CIPK31 by which CIPK31 inhibits CatC activity to accumulate more H2O2.  相似文献   

8.
A respiration-deficient (RD) mutant was isolated from the petite-negative, salt-tolerant yeast Zygosaccharomyces rouxii. One strain among sixteen glycerol-non-utilizing mutants exhibited vigorous liberation of CO2 but no uptake of O2. Furthermore, this strain lacked cytochrome aa3 and had a reduced level of cytochrome b. The few mitochondria found in cells of this strain contained few or no cristae. Salt tolerance and intracellular accumulation of glycerol by the RD strain were almost equal to that of the wild-type strain in media containing NaCl up to 2.5 M. In media with more than 3 M NaCl, the growth of the RD mutant was retarded and the intracellular accumulation of glycerol was depressed in spite of ample production.  相似文献   

9.
A chimeric gene consisting of the 5 flanking sequences of a rice glutelin gene (Gt3) linked to the chloramphenicol acetyltransferase (CAT) coding segment was introduced into tobacco via Agrobacterium tumefaciens-mediated transformation. CAT enzyme activity could be detected in extracts from seeds as early as 8 days after flowering and obtained a maximum level at 16 days after flowering, the onset of overall protein accumulation. Significant expression of CAT activity in non-seed tissues occurred in some, but not all plants, suggesting possible chromosome position effects on non-seed tissue expression. A positive correlation was observed between expression levels in seeds and gene copy numbers.Author for correspondence  相似文献   

10.
11.
12.
Wang  Yang  Wu  Yanping  Wang  Yibing  Fu  Aikun  Gong  Li  Li  Weifen  Li  Yali 《Applied microbiology and biotechnology》2017,101(7):3015-3026

Oxidative stress (OS) plays a major role in the gastrointestinal disorders. Although probiotics were reported to repress OS, few researches compared the antioxidant ability of different Bacillus strains and deciphered the mechanisms. To select a Bacillus strain with higher antioxidant capacity, we used H2O2 to induce intestinal porcine epithelial cell 1 (IPEC-1) OS model. The most suitable H2O2 concentration and incubation time were determined by the half lethal dose and methyl thiazolyl tetrazolium. Correlation analysis was performed to choose a sensitive indicator for OS. As for the comparison of Bacillus, cells were divided into control, Bacillus treatment, H2O2 treatment, and Bacillus pre-protection + H2O2 treatment. Bacillus were co-cultured with IPEC-1 for 3 h in Bacillus and Bacillus pre-protection + H2O2 treatments. Then, based on OS model, 300 μmol/L H2O2 was added into medium of H2O2 and Bacillus pre-protection + H2O2 treatments for another 12 h. Antioxidant and apoptosis gene expressions were detected to screen the target strain. Nuclear factor erythroid-derived 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein1 (Keap1) pathway, reactive oxygen species (ROS) production, mitochondrial membrane potential (Δψm), apoptosis, and necrosis were analyzed. Results revealed that heme oxygenase-1 (HO-1) gene expression had a positive correlation with H2O2 induction. Moreover, Bacillus amyloliquefaciens SC06 (SC06)-meditated IPEC-1 showed the best antioxidant capacity though modulating Nrf2 phosphorylation. Δψm was elevated, while ROS generation was reduced with SC06 pre-protection, resulting in decreased apoptosis and necrosis. Altogether, HO-1 expression could be regarded as an OS indicator. The regulation of Nrf2/Keap1 pathway and ROS production by SC06 are involved in alleviating OS of IPEC-1.

  相似文献   

13.
Hydroponically grown 12-day-old rice (Oryza sativa L. cv. BRRI dhan47) seedlings were exposed to 150 mM NaCl alone and combined with 0.5 mM MnSO4. Salt stress resulted in disruption of ion homeostasis by Na+ influx and K+ efflux. Higher accumulation of Na+ and water imbalance under salinity caused osmotic stress, chlorosis, and growth inhibition. Salt-induced ionic toxicity and osmotic stress consequently resulted in oxidative stress by disrupting the antioxidant defense and glyoxalase systems through overproduction of reactive oxygen species (ROS) and methylglyoxal (MG), respectively. The salt-induced damage increased with the increasing duration of stress. However, exogenous application of manganese (Mn) helped the plants to partially recover from the inhibited growth and chlorosis by improving ionic and osmotic homeostasis through decreasing Na+ influx and increasing water status, respectively. Exogenous application of Mn increased ROS detoxification by increasing the content of the phenolic compounds, flavonoids, and ascorbate (AsA), and increasing the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), superoxide dismutase (SOD), and catalase (CAT) in the salt-treated seedlings. Supplemental Mn also reinforced MG detoxification by increasing the activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) in the salt-affected seedlings. Thus, exogenous application of Mn conferred salt-stress tolerance through the coordinated action of ion homeostasis and the antioxidant defense and glyoxalase systems in the salt-affected seedlings.  相似文献   

14.
The intracellular potassium (K+) homeostasis, which is crucial for plant survival in saline environments, is modulated by K+ channels and transporters. Some members of the high‐affinity K+ transporter (HAK) family are believed to function in the regulation of plant salt tolerance, but the physiological mechanisms remain unclear. Here, we report a significant inducement of OsHAK21 expression by high‐salinity treatment and provide genetic evidence of the involvement of OsHAK21 in rice salt tolerance. Disruption of OsHAK21 rendered plants sensitive to salt stress. Compared with the wild type, oshak21 accumulated less K+ and considerably more Na+ in both shoots and roots, and had a significantly lower K+ net uptake rate but higher Na+ uptake rate. Our analyses of subcellular localizations and expression patterns showed that OsHAK21 was localized in the plasma membrane and expressed in xylem parenchyma and individual endodermal cells (putative passage cells). Further functional characterizations of OsHAK21 in K+ uptake‐deficient yeast and Arabidopsis revealed that OsHAK21 possesses K+ transporter activity. These results demonstrate that OsHAK21 may mediate K+ absorption by the plasma membrane and play crucial roles in the maintenance of the Na+/K+ homeostasis in rice under salt stress.  相似文献   

15.
16.
Nuclear matrix attachment regions (MARs) are thought to influence the expression of the flanking genes. TM2, a new DNA fragment isolated from tobacco, can bind with the rice nuclear matrix in vitro. In this study, we investigated the effect of TM2 on transgene expression under the control of three different promoters in stably transformed rice calli and plants. The presence of TM2 flanking the transgene increased the expression of constructs based on the constitutive CaMV 35S and maize ubiquitin gene promoters in both resistant calli and transformed plants. The GUS expression directed by the photosynthetic-tissue-specific PNZIP promoter was also increased in photosynthetic tissues of transformants. However, TM2 did not change the gene expression pattern controlled by the PNZIP promoter. The effect of TM2 in transgenic plants was stronger than that in transgenic calli based on all three promoters. Our results indicate that TM2, as a novel strong MAR, can be used to increase the transgene expression levels in the whole plant or in particular tissues of monocotyledons.  相似文献   

17.
18.
Metal transport from the cytosol to the vacuole is thought to be an important component of ion tolerance and of a plant's potential for use in phytoremediation. The Arabidopsis antiporter CAX2 (calcium exchanger 2) may be a key mediator of this process. CAX2 expression in yeast suppressed both Ca(2+) and Mn(2+) growth defects. A peptide-specific antibody to the antiporter reacted with a 39-kD protein from plant vacuolar membranes. Tobacco (Nicotiana tabacum) plants expressing CAX2 accumulated more Ca(2+), Cd(2+), and Mn(2+) and were more tolerant to elevated Mn(2+) levels. Expression of CAX2 in tobacco increased Cd(2+) and Mn(2+) transport in isolated root tonoplast vesicles. These results suggest that CAX2 has a broad substrate range and modulation of this transporter may be an important component of future strategies to improve plant ion tolerance.  相似文献   

19.
NaCl stress (200 mM) inhibited the electron transport activity of photosystem 2 (PS2) more than that of PS1. The degree of electron transport activity inhibition was lower in the salt-tolerant cultivar Pokkali than in the salt-sensitive cultivar Peta. The polypeptide composition of the thylakoid membrane and PS2 particles did not change after NaCl treatment but there was a difference in polypeptide compositions of thylakoid membrane and PS2 particles between the two cultivars. PS2 particles of cv. Pokkali contained more 33-kDa and 43-kDa polypeptides than cv. Peta. Additionally, PS2 particles after NaCl treatment showed deficiency of 23-kDa outside polypeptides of PS2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号